RESUMO
Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the TGF-ß1 signaling pathway, as well as its interaction with the Erk and Wnt/ß-catenin pathways.
RESUMO
Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the transforming growth factor-ß1 (TGF-ß1) signaling pathway, as well as its interaction with the extracellular signal-regulated kinase (Erk) and Wnt/ß-catenin pathways.
RESUMO
Receptor for activated C kinase 1 (RACK1) is a versatile protein involved in multiple biological processes. In a previous study by Zhao et al., hepatic RACK1 deletion in mice led to an inhibition of autophagy, blocked autophagy-dependent lipolysis, and caused steatosis. Using the same mouse model (RACK1hep-/-), we revealed new roles of RACK1 in maintaining bile acid homeostasis and hepatic glucose uptake, which further affected circulatory lipid and glucose levels. To be specific, even under hepatic steatosis, the plasma lipids were generally reduced in RACK1hep-/- mouse, which was due to the suppression of intestinal lipid absorption. Accordingly, a decrease in total bile acid level was found in RACK1hep-/- livers, gallbladders, and small intestine tissues, and specific decrease of 12-hydroxylated bile acids was detected by liquid chromatography-mass spectrometry. Consistently, reduced expression of CYP8B1 was found. A decrease in hepatic glycogen storage was also observed, which might be due to the inhibited glucose uptake by GLUT2 insufficiency. Interestingly, RACK1-KO-inducing hepatic steatosis did not raise insulin resistance (IR) nor IR-inducing factors like endoplasmic reticulum stress and inflammation. In summary, this study uncovers that hepatic RACK1 might be required in maintaining bile acid homeostasis and glucose uptake in hepatocytes. This study also provides an additional case of hepatic steatosis disassociation with insulin resistance.