Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(4): e13918, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36729373

RESUMO

PURPOSE: Ethos CBCT-based adaptive radiotherapy (ART) system can generate an online adaptive plan by re-optimizing the initial reference plan based on the patient anatomy at the treatment. The optimization process is fully automated without any room for human intervention. Due to the change in anatomy, the ART plan can be significantly different from the initial plan in terms of plan parameters such as the aperture shapes and number of monitor units (MUs). In this study, we investigated the feasibility of using calculation-based patient specific QA for ART plans in conjunction with measurement-based and calculation-based QA for initial plans to establish an action level for the online ART patient-specific QA. METHODS: A cohort of 98 cases treated on CBCT-based ART system were collected for this study. We performed measurement-based QA using ArcCheck and calculation-based QA using Mobius for both the initial plan and the ART plan for analysis. For online the ART plan, Mobius calculation was conducted prior to the delivery, while ArcCheck measurement was delivered on the same day after the treatment. We first investigated the modulation factors (MFs) and MU numbers of the initial plans and ART plans, respectively. The γ passing rates of initial and ART plan QA were analyzed. Then action limits were derived for QA calculation and measurement for both initial and online ART plans, respectively, from 30 randomly selected patient cases, and were evaluated using the other 68 patient cases. RESULTS: The difference in MF between initial plan and ART-plan was 12.9% ± 12.7% which demonstrates their significant difference in plan parameters. Based on the patient QA results, pre-treatment calculation and measurement results are generally well aligned with ArcCheck measurement results for online ART plans, illustrating their feasibility as an indicator of failure in online ART QA measurements. Furthermore, using 30 randomly selected patient cases, the γ analysis action limit derived for initial plans and ART plans are 89.6% and 90.4% in ArcCheck QA (2%/2 mm) and are 92.4% and 93.6% in Mobius QA(3%/2 mm), respectively. According to the calculated action limits, the ArcCheck measurements for all the initial and ART plans passed QA successfully while the Mobius calculation action limits flagged seven and four failure cases respectively for initial plans and ART plans, respectively. CONCLUSION: An ART plan can be substantially different from the initial plan, and therefore a separate session of ART plan QA is needed to ensure treatment safety and quality. The pre-treatment QA calculation via Mobius can serve as a reliable indicator of failure in online ART plan QA. However, given that Ethos ART system is still relatively new, ArcCheck measurement of initial plan is still in practice. It may be skipped as we gain more experience and have better understanding of the system.


Assuntos
Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica
2.
J Appl Clin Med Phys ; 24(7): e13950, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36877668

RESUMO

PURPOSE: Varian Ethos utilizes novel intelligent-optimization-engine (IOE) designed to automate the planning. However, this introduced a black box approach to plan optimization and challenge for planners to improve plan quality. This study aims to evaluate machine-learning-guided initial reference plan generation approaches for head & neck (H&N) adaptive radiotherapy (ART). METHODS: Twenty previously treated patients treated on C-arm/Ring-mounted were retroactively re-planned in the Ethos planning system using a fixed 18-beam intensity-modulated radiotherapy (IMRT) template. Clinical goals for IOE input were generated using (1) in-house deep-learning 3D-dose predictor (AI-Guided) (2) commercial knowledge-based planning (KBP) model with universal RTOG-based population criteria (KBP-RTOG) and (3) an RTOG-based constraint template only (RTOG) for in-depth analysis of IOE sensitivity. Similar training data was utilized for both models. Plans were optimized until their respective criteria were achieved or DVH-estimation band was satisfied. Plans were normalized such that the highest PTV dose level received 95% coverage. Target coverage, high-impact organs-at-risk (OAR) and plan deliverability was assessed in comparison to clinical (benchmark) plans. Statistical significance was evaluated using a paired two-tailed student t-test. RESULTS: AI-guided plans were superior to both KBP-RTOG and RTOG-only plans with respect to clinical benchmark cases. Overall, OAR doses were comparable or improved with AI-guided plans versus benchmark, while they increased with KBP-RTOG and RTOG plans. However, all plans generally satisfied the RTOG criteria. Heterogeneity Index (HI) was on average <1.07 for all plans. Average modulation factor was 12.2 ± 1.9 (p = n.s), 13.1 ± 1.4 (p = <0.001), 11.5 ± 1.3 (p = n.s.) and 12.2 ± 1.9 for KBP-RTOG, AI-Guided, RTOG and benchmark plans, respectively. CONCLUSION: AI-guided plans were the highest quality. Both KBP-enabled and RTOG-only plans are feasible approaches as clinics adopt ART workflows. Similar to constrained optimization, the IOE is sensitive to clinical input goals and we recommend comparable input to an institution's planning directive dosimetric criteria.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Pescoço , Órgãos em Risco , Radioterapia de Intensidade Modulada/métodos , Aprendizado de Máquina
3.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684678

RESUMO

Atrial fibrillation (AF) is a common cardiac arrhythmia and affects one to two percent of the population. In this work, we leverage the three-dimensional atrial endocardial unipolar/bipolar voltage map to predict the AF type and recurrence of AF in 1 year. This problem is challenging for two reasons: (1) the unipolar/bipolar voltages are collected at different locations on the endocardium and the shapes of the endocardium vary widely in different patients, and thus the unipolar/bipolar voltage maps need aligning to the same coordinate; (2) the collected dataset size is very limited. To address these issues, we exploit a pretrained 3D point cloud registration approach and finetune it on left atrial voltage maps to learn the geometric feature and align all voltage maps into the same coordinate. After alignment, we feed the unipolar/bipolar voltages from the registered points into a multilayer perceptron (MLP) classifier to predict whether patients have paroxysmal or persistent AF, and the risk of recurrence of AF in 1 year for patients in sinus rhythm. The experiment shows our method classifies the type and recurrence of AF effectively.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Átrios do Coração/cirurgia , Humanos , Redes Neurais de Computação , Estudos Retrospectivos , Resultado do Tratamento
4.
J Appl Clin Med Phys ; 21(8): 149-159, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32559018

RESUMO

In radiotherapy, a trade-off exists between computational workload/speed and dose calculation accuracy. Calculation methods like pencil-beam convolution can be much faster than Monte-Carlo methods, but less accurate. The dose difference, mostly caused by inhomogeneities and electronic disequilibrium, is highly correlated with the dose distribution and the underlying anatomical tissue density. We hypothesize that a conversion scheme can be established to boost low-accuracy doses to high-accuracy, using intensity information obtained from computed tomography (CT) images. A deep learning-driven framework was developed to test the hypothesis by converting between two commercially available dose calculation methods: Anisotropic analytic algorithm (AAA) and Acuros XB (AXB). A hierarchically dense U-Net model was developed to boost the accuracy of AAA dose toward the AXB level. The network contained multiple layers of varying feature sizes to learn their dose differences, in relationship to CT, both locally and globally. Anisotropic analytic algorithm and AXB doses were calculated in pairs for 120 lung radiotherapy plans covering various treatment techniques, beam energies, tumor locations, and dose levels. For each case, the CT and the AAA dose were used as the input and the AXB dose as the "ground-truth" output, to train and test the model. The mean squared errors (MSEs) and gamma passing rates (2 mm/2% & 1 mm/1%) were calculated between the boosted AAA doses and the "ground-truth" AXB doses. The boosted AAA doses demonstrated substantially improved match to the "ground-truth" AXB doses, with average (± s.d.) gamma passing rate (1 mm/1%) 97.6% (±2.4%) compared to 87.8% (±9.0%) of the original AAA doses. The corresponding average MSE was 0.11(±0.05) vs 0.31(±0.21). Deep learning is able to capture the differences between dose calculation algorithms to boost the low-accuracy algorithms. By combining a less accurate dose calculation algorithm with a trained deep learning model, dose calculation can potentially achieve both high accuracy and efficiency.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
J Appl Clin Med Phys ; 21(5): 76-86, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32216098

RESUMO

PURPOSE: The purpose of this study was to address the dosimetric accuracy of synthetic computed tomography (sCT) images of patients with brain tumor generated using a modified generative adversarial network (GAN) method, for their use in magnetic resonance imaging (MRI)-only treatment planning for proton therapy. METHODS: Dose volume histogram (DVH) analysis was performed on CT and sCT images of patients with brain tumor for plans generated for intensity-modulated proton therapy (IMPT). All plans were robustly optimized using a commercially available treatment planning system (RayStation, from RaySearch Laboratories) and standard robust parameters reported in the literature. The IMPT plan was then used to compute the dose on CT and sCT images for dosimetric comparison, using RayStation analytical (pencil beam) dose algorithm. We used a second, independent Monte Carlo dose calculation engine to recompute the dose on both CT and sCT images to ensure a proper analysis of the dosimetric accuracy of the sCT images. RESULTS: The results extracted from RayStation showed excellent agreement for most DVH metrics computed on the CT and sCT for the nominal case, with a mean absolute difference below 0.5% (0.3 Gy) of the prescription dose for the clinical target volume (CTV) and below 2% (1.2 Gy) for the organs at risk (OARs) considered. This demonstrates a high dosimetric accuracy for the generated sCT images, especially in the target volume. The metrics obtained from the Monte Carlo doses mostly agreed with the values extracted from RayStation for the nominal and worst-case scenarios (mean difference below 3%). CONCLUSIONS: This work demonstrated the feasibility of using sCT generated with a GAN-based deep learning method for MRI-only treatment planning of patients with brain tumor in intensity-modulated proton therapy.


Assuntos
Neoplasias Encefálicas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Humanos , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
6.
J Appl Clin Med Phys ; 19(2): 128-136, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29396894

RESUMO

Electron therapy is widely used to treat shallow tumors because of its characteristic sharp dose fall-off beyond a certain range. A customized cutout is typically applied to block radiation to normal tissues. Determining the final monitor unit (MU) for electron treatment requires an output factor for the cutout, which is usually generated by measurement, especially for highly irregular cutouts. However, manual measurement requires a lengthy quality assurance process with possible errors. This work presents an accurate and efficient cutout output factor prediction model, convolution-based modified Clarkson integration (CMCI), to replace patient-specific output factor measurement. Like the Clarkson method, we decompose the field into basic sectors. Unlike the Clarkson integration method, we use annular sectors for output factor estimation. This decomposition method allows calculation via convolution. A 2D distribution of fluence is generated, and the output factor at any given point can be obtained. We applied our method to 10 irregularly shaped cutouts for breast patients for 6E, 9E, and 15E beams and compared the results with measurements and the electron Monte Carlo (eMC) calculation using the Eclipse planning system. While both the CMCI and eMC methods showed good agreement with chamber measurements and film measurements in relative distributions at the nominal source to surface distance (SSD) of 100 cm, eMC generated larger errors than the CMCI method at extended SSDs, with up to -9.28% deviations from the measurement for 6E beam. At extended SSD, the mean absolute errors of our method relative to measurements were 0.92 and 1.14, while the errors of eMC were 1.42 and 1.79 for SSD 105 cm and 110 cm, respectively. These results indicate that our method is more accurate than eMC, especially for low-energy beams, and can be used for MU calculation and as a QA tool for electron therapy.


Assuntos
Algoritmos , Elétrons , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica
7.
J Appl Clin Med Phys ; 19(1): 17-24, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29119677

RESUMO

PURPOSE: Full face and neck thermoplastic masks provide standard-of-care immobilization for patients receiving H&N IMRT. However, these masks are uncomfortable and increase skin dose. The purpose of this pilot trial was to investigate the feasibility and setup accuracy of minimal face and neck mask immobilization with optical surface guidance. METHODS: Twenty patients enrolled onto this IRB-approved protocol. Patients were immobilized with masks securing only forehead and chin. Shoulder movement was restricted by either moldable cushion or hand held strap retractors. Positional information, including isocenter location and CT skin contours, were imported to a commercial surface image guidance system. Patients typically received standard-of-care IMRT to 60-70 Gy in 30-33 fractions. Patients were first set up to surface markings with optical image guidance referenced to regions of interest (ROIs) on simulation CT images. Positioning was confirmed by in-room CBCT. Following six-dimensional robotic couch correction, a new optical real-time surface image was acquired to track intrafraction motion and to serve as a reference surface for setup at the next treatment fraction. Therapists manually recorded total treatment time as well as couch shifts based on kV imaging. Intrafractional ROI motion tracking was automatically recorded by the optical image guidance system. Patient comfort was assessed by self-administered surveys. RESULTS: Setup error was measured as six-dimensional shifts (vertical/longitudinal/lateral/rotation/pitch/roll). Mean error values were -0.51 ± 2.42 mm, -0.49 ± 3.30 mm, 0.23 ± 2.58 mm, -0.15 ± 1.01o , -0.02 ± 1.19o , and 0.06 ± 1.08o , respectively. Average treatment time was 21.6 ± 8.4 mins). Subjective comfort during surface-guided treatment was confirmed on patient surveys. CONCLUSION: These pilot results confirm feasibility of minimal mask immobilization combined with commercially available optical image guidance. Patient acceptance of minimal mask immobilization has been encouraging. Follow-up validation, with direct comparison to standard mask immobilization, appears warranted.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Imobilização/métodos , Órgãos em Risco/efeitos da radiação , Posicionamento do Paciente , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos
8.
J Appl Clin Med Phys ; 18(2): 69-84, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28300376

RESUMO

We have previously developed a GPU-based Monte Carlo (MC) dose engine on the OpenCL platform, named goMC, with a built-in analytical linear accelerator (linac) beam model. In this paper, we report our recent improvement on goMC to move it toward clinical use. First, we have adapted a previously developed automatic beam commissioning approach to our beam model. The commissioning was conducted through an optimization process, minimizing the discrepancies between calculated dose and measurement. We successfully commissioned six beam models built for Varian TrueBeam linac photon beams, including four beams of different energies (6 MV, 10 MV, 15 MV, and 18 MV) and two flattening-filter-free (FFF) beams of 6 MV and 10 MV. Second, to facilitate the use of goMC for treatment plan dose calculations, we have developed an efficient source particle sampling strategy. It uses the pre-generated fluence maps (FMs) to bias the sampling of the control point for source particles already sampled from our beam model. It could effectively reduce the number of source particles required to reach a statistical uncertainty level in the calculated dose, as compared to the conventional FM weighting method. For a head-and-neck patient treated with volumetric modulated arc therapy (VMAT), a reduction factor of ~2.8 was achieved, accelerating dose calculation from 150.9 s to 51.5 s. The overall accuracy of goMC was investigated on a VMAT prostate patient case treated with 10 MV FFF beam. 3D gamma index test was conducted to evaluate the discrepancy between our calculated dose and the dose calculated in Varian Eclipse treatment planning system. The passing rate was 99.82% for 2%/2 mm criterion and 95.71% for 1%/1 mm criterion. Our studies have demonstrated the effectiveness and feasibility of our auto-commissioning approach and new source sampling strategy for fast and accurate MC dose calculations for treatment plans.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Teóricos , Método de Monte Carlo , Planejamento de Assistência ao Paciente , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Simulação por Computador , Humanos , Masculino , Aceleradores de Partículas/instrumentação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
9.
J Xray Sci Technol ; 25(6): 907-926, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28697578

RESUMO

BACKGROUND: In regularized iterative reconstruction algorithms, the selection of regularization parameter depends on the noise level of cone beam projection data. OBJECTIVE: Our aim is to propose an algorithm to estimate the noise level of cone beam projection data. METHODS: We first derived the data correlation of cone beam projection data in the Fourier domain, based on which, the signal and the noise were decoupled. Then the noise was extracted and averaged for estimation. An adaptive regularization parameter selection strategy was introduced based on the estimated noise level. Simulation and real data studies were conducted for performance validation. RESULTS: There exists an approximately zero-energy double-wedge area in the 3D Fourier domain of cone beam projection data. As for the noise level estimation results, the averaged relative errors of the proposed algorithm in the analytical/MC/spotlight-mode simulation experiments were 0.8%, 0.14% and 0.24%, respectively, and outperformed the homogeneous area based as well as the transformation based algorithms. Real studies indicated that the estimated noise levels were inversely proportional to the exposure levels, i.e., the slopes in the log-log plot were -1.0197 and -1.049 with respect to the short-scan and half-fan modes. The introduced regularization parameter selection strategy could deliver promising reconstructed image qualities. CONCLUSIONS: Based on the data correlation of cone beam projection data in Fourier domain, the proposed algorithm could estimate the noise level of cone beam projection data accurately and robustly. The estimated noise level could be used to adaptively select the regularization parameter.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Espalhamento de Radiação
10.
J Appl Clin Med Phys ; 16(4): 181­192, 2015 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-26219014

RESUMO

The aim of this study is to compare the recent Eclipse Acuros XB (AXB) dose calculation engine with the Pinnacle collapsed cone convolution/superposition (CCC) dose calculation algorithm and the Eclipse anisotropic analytic algorithm (AAA) for stereotactic ablative radiotherapy (SAbR) treatment planning of thoracic spinal (T-spine) metastases using IMRT and VMAT delivery techniques. The three commissioned dose engines (CCC, AAA, and AXB) were validated with ion chamber and EBT2 film measurements utilizing a heterogeneous slab-geometry water phantom and an anthropomorphic phantom. Step-and-shoot IMRT and VMAT treatment plans were developed and optimized for eight patients in Pinnacle, following our institutional SAbR protocol for spinal metastases. The CCC algorithm, with heterogeneity corrections, was used for dose calculations. These plans were then exported to Eclipse and recalculated using the AAA and AXB dose calculation algorithms. Various dosimetric parameters calculated with CCC and AAA were compared to that of the AXB calculations. In regions receiving above 50% of prescription dose, the calculated CCC mean dose is 3.1%-4.1% higher than that of AXB calculations for IMRT plans and 2.8%-3.5% higher for VMAT plans, while the calculated AAA mean dose is 1.5%-2.4% lower for IMRT and 1.2%-1.6% lower for VMAT. Statistically significant differences (p < 0.05) were observed for most GTV and PTV indices between the CCC and AXB calculations for IMRT and VMAT, while differences between the AAA and AXB calculations were not statistically significant. For T-spine SAbR treatment planning, the CCC calculations give a statistically significant overestimation of target dose compared to AXB. AAA underestimates target dose with no statistical significance compared to AXB. Further study is needed to determine the clinical impact of these findings.


Assuntos
Algoritmos , Anisotropia , Imagens de Fantasmas , Radiocirurgia/métodos , Neoplasias da Coluna Vertebral/cirurgia , Neoplasias Torácicas/cirurgia , Simulação por Computador , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Coluna Vertebral/secundário , Neoplasias Torácicas/patologia
11.
Radiol Oncol ; 48(4): 408-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25435856

RESUMO

BACKGROUND: With the rapidly increasing application of adaptive radiotherapy, large datasets of organ geometries based on the patient's anatomy are desired to support clinical application or research work, such as image segmentation, re-planning, and organ deformation analysis. Sometimes only limited datasets are available in clinical practice. In this study, we propose a new method to generate large datasets of organ geometries to be utilized in adaptive radiotherapy. METHODS: Given a training dataset of organ shapes derived from daily cone-beam CT, we align them into a common coordinate frame and select one of the training surfaces as reference surface. A statistical shape model of organs was constructed, based on the establishment of point correspondence between surfaces and non-uniform rational B-spline (NURBS) representation. A principal component analysis is performed on the sampled surface points to capture the major variation modes of each organ. RESULTS: A set of principal components and their respective coefficients, which represent organ surface deformation, were obtained, and a statistical analysis of the coefficients was performed. New sets of statistically equivalent coefficients can be constructed and assigned to the principal components, resulting in a larger geometry dataset for the patient's organs. CONCLUSIONS: These generated organ geometries are realistic and statistically representative.

12.
Front Oncol ; 14: 1357790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571510

RESUMO

Fractionated radiotherapy was established in the 1920s based upon two principles: (1) delivering daily treatments of equal quantity, unless the clinical situation requires adjustment, and (2) defining a specific treatment period to deliver a total dosage. Modern fractionated radiotherapy continues to adhere to these century-old principles, despite significant advancements in our understanding of radiobiology. At UT Southwestern, we are exploring a novel treatment approach called PULSAR (Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy). This method involves administering tumoricidal doses in a pulse mode with extended intervals, typically spanning weeks or even a month. Extended intervals permit substantial recovery of normal tissues and afford the tumor and tumor microenvironment ample time to undergo significant changes, enabling more meaningful adaptation in response to the evolving characteristics of the tumor. The notion of dose painting in the realm of radiation therapy has long been a subject of contention. The debate primarily revolves around its clinical effectiveness and optimal methods of implementation. In this perspective, we discuss two facets concerning the potential integration of dose painting with PULSAR, along with several practical considerations. If successful, the combination of the two may not only provide another level of personal adaptation ("adaptive dose painting"), but also contribute to the establishment of a timely feedback loop throughout the treatment process. To substantiate our perspective, we conducted a fundamental modeling study focusing on PET-guided dose painting, incorporating tumor heterogeneity and tumor control probability (TCP).

13.
Sci Rep ; 14(1): 8250, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589494

RESUMO

Personalized, ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is designed to administer tumoricidal doses in a pulsed mode with extended intervals, spanning weeks or months. This approach leverages longer intervals to adapt the treatment plan based on tumor changes and enhance immune-modulated effects. In this investigation, we seek to elucidate the potential synergy between combined PULSAR and PD-L1 blockade immunotherapy using experimental data from a Lewis Lung Carcinoma (LLC) syngeneic murine cancer model. Employing a long short-term memory (LSTM) recurrent neural network (RNN) model, we simulated the treatment response by treating irradiation and anti-PD-L1 as external stimuli occurring in a temporal sequence. Our findings demonstrate that: (1) The model can simulate tumor growth by integrating various parameters such as timing and dose, and (2) The model provides mechanistic interpretations of a "causal relationship" in combined treatment, offering a completely novel perspective. The model can be utilized for in-silico modeling, facilitating exploration of innovative treatment combinations to optimize therapeutic outcomes. Advanced modeling techniques, coupled with additional efforts in biomarker identification, may deepen our understanding of the biological mechanisms underlying the combined treatment.


Assuntos
DEAE-Dextrano , Radiocirurgia , Animais , Camundongos , Imunoterapia/métodos , Redes Neurais de Computação , Terapia Combinada , Antígeno B7-H1
14.
IEEE Trans Med Imaging ; 43(3): 980-993, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37851552

RESUMO

Recently, the diffusion model has emerged as a superior generative model that can produce high quality and realistic images. However, for medical image translation, the existing diffusion models are deficient in accurately retaining structural information since the structure details of source domain images are lost during the forward diffusion process and cannot be fully recovered through learned reverse diffusion, while the integrity of anatomical structures is extremely important in medical images. For instance, errors in image translation may distort, shift, or even remove structures and tumors, leading to incorrect diagnosis and inadequate treatments. Training and conditioning diffusion models using paired source and target images with matching anatomy can help. However, such paired data are very difficult and costly to obtain, and may also reduce the robustness of the developed model to out-of-distribution testing data. We propose a frequency-guided diffusion model (FGDM) that employs frequency-domain filters to guide the diffusion model for structure-preserving image translation. Based on its design, FGDM allows zero-shot learning, as it can be trained solely on the data from the target domain, and used directly for source-to-target domain translation without any exposure to the source-domain data during training. We evaluated it on three cone-beam CT (CBCT)-to-CT translation tasks for different anatomical sites, and a cross-institutional MR imaging translation task. FGDM outperformed the state-of-the-art methods (GAN-based, VAE-based, and diffusion-based) in metrics of Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM), showing its significant advantages in zero-shot medical image translation.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Imageamento por Ressonância Magnética
15.
Med Phys ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996043

RESUMO

BACKGROUND: The reliable and efficient estimation of uncertainty in artificial intelligence (AI) models poses an ongoing challenge in many fields such as radiation therapy. AI models are intended to automate manual steps involved in the treatment planning workflow. We focus in this study on dose prediction models that predict an optimal dose trade-off for each new patient for a specific treatment modality. They can guide physicians in the optimization, be part of automatic treatment plan generation or support decision in treatment indication. Most common uncertainty estimation methods are based on Bayesian approximations, like Monte Carlo dropout (MCDO) or Deep ensembling (DE). These two techniques, however, have a high inference time (i.e., require multiple inference passes) and might not work for detecting out-of-distribution (OOD) data (i.e., overlapping uncertainty estimate for in-distribution (ID) and OOD). PURPOSE: In this study, we present a direct uncertainty estimation method and apply it for a dose prediction U-Net architecture. It can be used to flag OOD data and give information on the quality of the dose prediction. METHODS: Our method consists in the addition of a branch decoding from the bottleneck which reconstructs the CT scan given as input. The input reconstruction error can be used as a surrogate of the model uncertainty. For the proof-of-concept, our method is applied to proton therapy dose prediction in head and neck cancer patients. A dataset of 60 oropharyngeal patients was used to train the network using a nested cross-validation approach with 11 folds (training: 50 patients, validation: 5 patients, test: 5 patients). For the OOD experiment, we used 10 extra patients with a different head and neck sub-location. Accuracy, time-gain, and OOD detection are analyzed for our method in this particular application and compared with the popular MCDO and DE. RESULTS: The additional branch did not reduce the accuracy of the dose prediction model. The median absolute error is close to zero for the target volumes and less than 1% of the dose prescription for organs at risk. Our input reconstruction method showed a higher Pearson correlation coefficient with the prediction error (0.620) than DE (0.447) and MCDO (between 0.599 and 0.612). Moreover, our method allows an easier identification of OOD (no overlap for ID and OOD data and a Z-score of 34.05). The uncertainty is estimated simultaneously to the regression task, therefore requires less time and computational resources. CONCLUSIONS: This study shows that the error in the CT scan reconstruction can be used as a surrogate of the uncertainty of the model. The Pearson correlation coefficient with the dose prediction error is slightly higher than state-of-the-art techniques. OOD data can be more easily detected and the uncertainty metric is computed simultaneously to the regression task, therefore faster than MCDO or DE. The code and pretrained model are available on the gitlab repository: https://gitlab.com/ai4miro/ct-reconstruction-for-uncertainty-quatification-of-hdunet.

16.
Phys Med Biol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053505

RESUMO

This article examines the critical role of fast Monte Carlo dose calculations in advancing proton therapy techniques, particularly in the context of increasing treatment customization and precision. As adaptive radiotherapy and other patient-specific approaches evolve, the need for accurate and precise dose calculations, essential for techniques like proton-based stereotactic radiosurgery, becomes more prominent. These calculations, however, are time-intensive, with the treatment planning/optimization process constrained by the achievable speed of dose computations. Thus, enhancing the speed of Monte Carlo methods is vital, as it not only facilitates the implementation of novel treatment modalities but also leads to more optimal treatment plans. Today, the state-of-the-art in Monte Carlo dose calculation speeds is 106 - 107protons per second. This review highlights the latest advancements in fast Monte Carlo dose calculations that have led to such speeds, including emerging artificial intelligence-based techniques, and discusses their application in both current and emerging proton therapy strategies.

17.
Cureus ; 16(5): e60044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854210

RESUMO

Background Clinical trial matching, essential for advancing medical research, involves detailed screening of potential participants to ensure alignment with specific trial requirements. Research staff face challenges due to the high volume of eligible patients and the complexity of varying eligibility criteria. The traditional manual process, both time-consuming and error-prone, often leads to missed opportunities. Recently, large language models (LLMs), specifically generative pre-trained transformers (GPTs), have become impressive and impactful tools. Utilizing such tools from artificial intelligence (AI) and natural language processing (NLP) may enhance the accuracy and efficiency of this process through automated patient screening against established criteria. Methods Utilizing data from the National NLP Clinical Challenges (n2c2) 2018 Challenge, we utilized 202 longitudinal patient records. These records were annotated by medical professionals and evaluated against 13 selection criteria encompassing various health assessments. Our approach involved embedding medical documents into a vector database to determine relevant document sections and then using an LLM (OpenAI's GPT-3.5 Turbo and GPT-4) in tandem with structured and chain-of-thought prompting techniques for systematic document assessment against the criteria. Misclassified criteria were also examined to identify classification challenges. Results This study achieved an accuracy of 0.81, sensitivity of 0.80, specificity of 0.82, and a micro F1 score of 0.79 using GPT-3.5 Turbo, and an accuracy of 0.87, sensitivity of 0.85, specificity of 0.89, and micro F1 score of 0.86 using GPT-4. Notably, some criteria in the ground truth appeared mislabeled, an issue we couldn't explore further due to insufficient label generation guidelines on the website. Conclusion Our findings underscore the potential of AI and NLP technologies, including LLMs, in the clinical trial matching process. The study demonstrated strong capabilities in identifying eligible patients and minimizing false inclusions. Such automated systems promise to alleviate the workload of research staff and improve clinical trial enrollment, thus accelerating the process and enhancing the overall feasibility of clinical research. Further work is needed to determine the potential of this approach when implemented on real clinical data.

18.
Biomed Phys Eng Express ; 10(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241733

RESUMO

This study explored the feasibility of on-couch intensity modulated radiotherapy (IMRT) planning for prostate cancer (PCa) on a cone-beam CT (CBCT)-based online adaptive RT platform without an individualized pre-treatment plan and contours. Ten patients with PCa previously treated with image-guided IMRT (60 Gy/20 fractions) were selected. In contrast to the routine online adaptive RT workflow, a novel approach was employed in which the same preplan that was optimized on one reference patient was adapted to generate individual on-couch/initial plans for the other nine test patients using Ethos emulator. Simulation CTs of the test patients were used as simulated online CBCT (sCBCT) for emulation. Quality assessments were conducted on synthetic CTs (sCT). Dosimetric comparisons were performed between on-couch plans, on-couch plans recomputed on the sCBCT and individually optimized plans for test patients. The median value of mean absolute difference between sCT and sCBCT was 74.7 HU (range 69.5-91.5 HU). The average CTV/PTV coverage by prescription dose was 100.0%/94.7%, and normal tissue constraints were met for the nine test patients in on-couch plans on sCT. Recalculating on-couch plans on the sCBCT showed about 0.7% reduction of PTV coverage and a 0.6% increasing of hotspot, and the dose difference of the OARs was negligible (<0.5 Gy). Hence, initial IMRT plans for new patients can be generated by adapting a reference patient's preplan with online contours, which had similar qualities to the conventional approach of individually optimized plan on the simulation CT. Further study is needed to identify selection criteria for patient anatomy most amenable to this workflow.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Masculino , Humanos , Estudos de Viabilidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
19.
Med Phys ; 51(6): 3932-3949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710210

RESUMO

BACKGROUND: In radiation therapy (RT), accelerated partial breast irradiation (APBI) has emerged as an increasingly preferred treatment modality over conventional whole breast irradiation due to its targeted dose delivery and shorter course of treatment. APBI can be delivered through various modalities including Cobalt-60-based systems and linear accelerators with C-arm, O-ring, or robotic arm design. Each modality possesses distinct features, such as beam energy or the degrees of freedom in treatment planning, which influence their respective dose distributions. These modality-specific considerations emphasize the need for a quantitative approach in determining the optimal dose delivery modality on a patient-specific basis. However, manually generating treatment plans for each modality across every patient is time-consuming and clinically impractical. PURPOSE: We aim to develop an efficient and personalized approach for determining the optimal RT modality for APBI by training predictive models using two different deep learning-based convolutional neural networks. The baseline network performs a single-task (ST), predicting dose for a single modality. Our proposed multi-task (MT) network, which is capable of leveraging shared information among different tasks, can concurrently predict dose distributions for various RT modalities. Utilizing patient-specific input data, such as a patient's computed tomography (CT) scan and treatment protocol dosimetric goals, the MT model predicts patient-specific dose distributions across all trained modalities. These dose distributions provide patients and clinicians quantitative insights, facilitating informed and personalized modality comparison prior to treatment planning. METHODS: The dataset, comprising 28 APBI patients and their 92 treatment plans, was partitioned into training, validation, and test subsets. Eight patients were dedicated to the test subset, leaving 68 treatment plans across 20 patients to divide between the training and validation subsets. ST models were trained for each modality, and one MT model was trained to predict doses for all modalities simultaneously. Model performance was evaluated across the test dataset in terms of Mean Absolute Percent Error (MAPE). We conducted statistical analysis of model performance using the two-tailed Wilcoxon signed-rank test. RESULTS: Training times for five ST models ranged from 255 to 430 min per modality, totaling 1925 min, while the MT model required 2384 min. MT model prediction required an average of 1.82 s per patient, compared to ST model predictions at 0.93 s per modality. The MT model yielded MAPE of 1.1033 ± 0.3627% as opposed to the collective MAPE of 1.2386 ± 0.3872% from ST models, and the differences were statistically significant (p = 0.0003, 95% confidence interval = [-0.0865, -0.0712]). CONCLUSION: Our study highlights the potential benefits of a MT learning framework in predicting RT dose distributions across various modalities without notable compromises. This MT architecture approach offers several advantages, such as flexibility, scalability, and streamlined model management, making it an appealing solution for clinical deployment. With such a MT model, patients can make more informed treatment decisions, physicians gain more quantitative insight for pre-treatment decision-making, and clinics can better optimize resource allocation. With our proposed goal array and MT framework, we aim to expand this work to a site-agnostic dose prediction model, enhancing its generalizability and applicability.


Assuntos
Aprendizado Profundo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Doses de Radiação , Neoplasias da Mama/radioterapia , Neoplasias da Mama/diagnóstico por imagem
20.
Med Phys ; 51(1): 18-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37856190

RESUMO

BACKGROUND: Online adaptive radiotherapy (ART) involves the development of adaptable treatment plans that consider patient anatomical data obtained right prior to treatment administration, facilitated by cone-beam computed tomography guided adaptive radiotherapy (CTgART) and magnetic resonance image-guided adaptive radiotherapy (MRgART). To ensure accuracy of these adaptive plans, it is crucial to conduct calculation-based checks and independent verification of volumetric dose distribution, as measurement-based checks are not practical within online workflows. However, the absence of comprehensive, efficient, and highly integrated commercial software for secondary dose verification can impede the time-sensitive nature of online ART procedures. PURPOSE: The main aim of this study is to introduce an efficient online quality assurance (QA) platform for online ART, and subsequently evaluate it on Ethos and Unity treatment delivery systems in our clinic. METHODS: To enhance efficiency and ensure compliance with safety standards in online ART, ART2Dose, a secondary dose verification software, has been developed and integrated into our online QA workflow. This implementation spans all online ART treatments at our institution. The ART2Dose infrastructure comprises four key components: an SQLite database, a dose calculation server, a report generator, and a web portal. Through this infrastructure, file transfer, dose calculation, report generation, and report approval/archival are seamlessly managed, minimizing the need for user input when exporting RT DICOM files and approving the generated QA report. ART2Dose was compared with Mobius3D in pre-clinical evaluations on secondary dose verification for 40 adaptive plans. Additionally, a retrospective investigation was conducted utilizing 1302 CTgART fractions from ten treatment sites and 1278 MRgART fractions from seven treatment sites to evaluate the practical accuracy and efficiency of ART2Dose in routine clinical use. RESULTS: With dedicated infrastructure and an integrated workflow, ART2Dose achieved gamma passing rates that were comparable to or higher than those of Mobius3D. Additionally, it significantly reduced the time required to complete pre-treatment checks by 3-4 min for each plan. In the retrospective analysis of clinical CTgART and MRgART fractions, ART2Dose demonstrated average gamma passing rates of 99.61 ± 0.83% and 97.75 ± 2.54%, respectively, using the 3%/2 mm criteria for region greater than 10% of prescription dose. The average calculation times for CTgART and MRgART were approximately 1 and 2 min, respectively. CONCLUSION: Overall, the streamlined implementation of ART2Dose notably enhances the online ART workflow, offering reliable and efficient online QA while reducing time pressure in the clinic and minimizing labor-intensive work.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Software , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA