Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 17(7): 665-680, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483333

RESUMO

The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas/química , Software , Simulação de Acoplamento Molecular , Peptidomiméticos/química , Conformação Proteica
2.
Biochemistry ; 55(35): 4885-908, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27505032

RESUMO

Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules and/or solution conditions that can stabilize or destabilize thermally stable proteins, multidomain proteins, oligomeric proteins, and, most importantly, aggregation-prone metastable proteins.


Assuntos
Chaperonina 60/química , Proteínas/química , Técnicas Biossensoriais , Cinética , Ligantes , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica
3.
Methods Mol Biol ; 1873: 293-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30341618

RESUMO

Methods to assess the kinetic stability of proteins, particularly those that are aggregation prone, are very useful in establishing ligand induced stabilizing effects. Because aggregation prone proteins are by nature difficult to work with, most solution based methods are compromised by this inherent instability. Here, we describe a label-free method that examines the denaturation of immobilized proteins where the dynamic unfolded protein populations are captured and detected by chaperonin binding.


Assuntos
Desnaturação Proteica , Dobramento de Proteína , Proteínas/química , Temperatura , Técnicas Biossensoriais , Linhagem Celular , Análise de Dados , Cinética , Agregados Proteicos , Ligação Proteica , Proteínas/metabolismo , Software , Interface Usuário-Computador
4.
PLoS One ; 8(8): e70661, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23976948

RESUMO

Docking Approach using Ray Casting (DARC) is structure-based computational method for carrying out virtual screening by docking small-molecules into protein surface pockets. In a complementary study we find that DARC can be used to identify known inhibitors from large sets of decoy compounds, and can identify new compounds that are active in biochemical assays. Here, we describe our adaptation of DARC for use on Graphics Processing Units (GPUs), leading to a speedup of approximately 27-fold in typical-use cases over the corresponding calculations carried out using a CPU alone. This dramatic speedup of DARC will enable screening larger compound libraries, screening with more conformations of each compound, and including multiple receptor conformations when screening. We anticipate that all three of these enhanced approaches, which now become tractable, will lead to improved screening results.


Assuntos
Gráficos por Computador , Simulação de Acoplamento Molecular , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Software , Algoritmos , Ensaios de Triagem em Larga Escala , Ligantes , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA