Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054364

RESUMO

Eat1 is a recently discovered alcohol acetyltransferase responsible for bulk ethyl acetate production in yeasts such as Wickerhamomyces anomalus and Kluyveromyces lactis These yeasts have the potential to become efficient bio-based ethyl acetate producers. However, some fundamental features of Eat1 are still not understood, which hampers the rational engineering of efficient production strains. The cellular location of Eat1 in yeast is one of these features. To reveal its location, Eat1 was fused with yeast-enhanced green fluorescent protein (yEGFP) to allow intracellular tracking. Despite the current assumption that bulk ethyl acetate production occurs in the yeast cytosol, most of Eat1 localized to the mitochondria of Kluyveromyces lactis CBS 2359 Δku80 We then compared five bulk ethyl acetate-producing yeasts in iron-limited chemostats with glucose as the carbon source. All yeasts produced ethyl acetate under these conditions. This strongly suggests that the mechanism and location of bulk ethyl acetate synthesis are similar in these yeast strains. Furthermore, an in silico analysis showed that Eat1 proteins from various yeasts were mostly predicted as mitochondrial. Altogether, it is concluded that Eat1-catalyzed ethyl acetate production occurs in yeast mitochondria. This study has added new insights into bulk ethyl acetate synthesis in yeast, which is relevant for developing efficient production strains.IMPORTANCE Ethyl acetate is a common bulk chemical that is currently produced from petrochemical sources. Several Eat1-containing yeast strains naturally produce large amounts of ethyl acetate and are potential cell factories for the production of bio-based ethyl acetate. Rational design of the underlying metabolic pathways may result in improved production strains, but it requires fundamental knowledge on the function of Eat1. A key feature is the location of Eat1 in the yeast cell. The precursors for ethyl acetate synthesis can be produced in multiple cellular compartments through different metabolic pathways. The location of Eat1 determines the relevance of each pathway, which will provide future targets for the metabolic engineering of bulk ethyl acetate production in yeast.


Assuntos
Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Mitocôndrias/enzimologia , Proteínas/metabolismo , Acetatos/metabolismo , Proteínas Fúngicas/genética , Kluyveromyces/genética , Mitocôndrias/genética , Transporte Proteico , Proteínas/genética , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismo
2.
Metab Eng ; 41: 92-101, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28356220

RESUMO

Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the discovery of a new enzyme (Eat1) from the yeast Wickerhamomyces anomalus that resulted in high ethyl acetate production when expressed in Saccharomyces cerevisiae and Escherichia coli. Purified Eat1 showed alcohol acetyltransferase activity with ethanol and acetyl-CoA. Homologs of eat1 are responsible for most ethyl acetate synthesis in known ethyl acetate-producing yeasts, including S. cerevisiae, and are only distantly related to known alcohol acetyltransferases. Eat1 is therefore proposed to compose a novel alcohol acetyltransferase family within the α/ß hydrolase superfamily. The discovery of this novel enzyme family is a crucial step towards the development of biobased ethyl acetate production and will also help in selecting improved S. cerevisiae brewing strains.


Assuntos
Acetatos/metabolismo , Proteínas Fúngicas , Proteínas , Saccharomyces cerevisiae , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Biotechnol Biofuels ; 13: 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328168

RESUMO

BACKGROUND: Genetic engineering of microorganisms has become a common practice to establish microbial cell factories for a wide range of compounds. Ethyl acetate is an industrial solvent that is used in several applications, mainly as a biodegradable organic solvent with low toxicity. While ethyl acetate is produced by several natural yeast species, the main mechanism of production has remained elusive until the discovery of Eat1 in Wickerhamomyces anomalus. Unlike other yeast alcohol acetyl transferases (AATs), Eat1 is located in the yeast mitochondria, suggesting that the coding sequence contains a mitochondrial pre-sequence. For expression in prokaryotic hosts such as E. coli, expression of heterologous proteins with eukaryotic signal sequences may not be optimal. RESULTS: Unprocessed and synthetically truncated eat1 variants of Kluyveromyces marxianus and Wickerhamomyces anomalus have been compared in vitro regarding enzyme activity and stability. While the specific activity remained unaffected, half-life improved for several truncated variants. The same variants showed better performance regarding ethyl acetate production when expressed in E. coli. CONCLUSION: By analysing and predicting the N-terminal pre-sequences of different Eat1 proteins and systematically trimming them, the stability of the enzymes in vitro could be improved, leading to an overall improvement of in vivo ethyl acetate production in E. coli. Truncated variants of eat1 could therefore benefit future engineering approaches towards efficient ethyl acetate production.

4.
Biotechnol Biofuels ; 13: 65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280373

RESUMO

BACKGROUND: Ethyl acetate is a widely used industrial solvent that is currently produced by chemical conversions from fossil resources. Several yeast species are able to convert sugars to ethyl acetate under aerobic conditions. However, performing ethyl acetate synthesis anaerobically may result in enhanced production efficiency, making the process economically more viable. RESULTS: We engineered an E. coli strain that is able to convert glucose to ethyl acetate as the main fermentation product under anaerobic conditions. The key enzyme of the pathway is an alcohol acetyltransferase (AAT) that catalyses the formation of ethyl acetate from acetyl-CoA and ethanol. To select a suitable AAT, the ethyl acetate-forming capacities of Atf1 from Saccharomyces cerevisiae, Eat1 from Kluyveromyces marxianus and Eat1 from Wickerhamomyces anomalus were compared. Heterologous expression of the AAT-encoding genes under control of the inducible LacI/T7 and XylS/Pm promoters allowed optimisation of their expression levels. CONCLUSION: Engineering efforts on protein and fermentation level resulted in an E. coli strain that anaerobically produced 42.8 mM (3.8 g/L) ethyl acetate from glucose with an unprecedented efficiency, i.e. 0.48 C-mol/C-mol or 72% of the maximum pathway yield.

5.
ACS Synth Biol ; 8(2): 216-222, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668910

RESUMO

The CRISPR-Cas9 nuclease has been repurposed as a tool for gene repression (CRISPRi). This catalytically dead Cas9 (dCas9) variant inhibits transcription by blocking either initiation or elongation by the RNA polymerase complex. Conditional control of dCas9-mediated repression has been achieved with inducible promoters that regulate the expression of the dcas9 gene. However, as dCas9-mediated gene silencing is very efficient, even slightly leaky dcas9 expression leads to significant background levels of repression of the target gene. In this study, we report on the development of optimized control of dCas9-mediated silencing through additional regulation at the translation level. We have introduced the TAG stop codon in the dcas9 gene in order to insert a synthetic amino acid, l-biphenylalanine (BipA), at a permissive site in the dCas9 protein. In the absence of BipA, a nonfunctional, truncated dCas9 is produced, but when BipA is present, the TAG codon is translated resulting in a functional, full-length dCas9 protein. This synthetic, BipA-containing dCas9 variant (dCas9-BipA) could still fully repress gene transcription. Comparison of silencing mediated by dCas9 to dCas9-BipA revealed a 14-fold reduction in background repression by the latter system. The here developed proof-of-principle system thus reduces unwanted background levels of gene silencing, allowing for tight and timed control of target gene expression.


Assuntos
Aminoácidos/genética , Proteína 9 Associada à CRISPR/metabolismo , Inativação Gênica/fisiologia , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
6.
Biotechnol Adv ; 37(7): 107407, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195083

RESUMO

Sustainable production of bulk chemicals is one of the major challenges in the chemical industry, particularly due to their low market prices. This includes short and medium chain esters, which are used in a wide range of applications, for example fragrance compounds, solvents, lubricants or biofuels. However, these esters are produced mainly through unsustainable, energy intensive processes. Microbial conversion of biomass-derived sugars into esters may provide a sustainable alternative. This review provides a broad overview of natural ester production by microorganisms. The underlying ester-forming enzymatic mechanisms are discussed and compared, with particular focus on alcohol acyltransferases (AATs). This large and versatile group of enzymes condense an alcohol and an acyl-CoA to form esters. Natural production of esters typically cannot compete with existing petrochemical processes. Much effort has therefore been invested in improving in vivo ester production through metabolic engineering. Identification of suitable AATs and efficient alcohol and acyl-CoA supply are critical to the success of such strategies and are reviewed in detail. The review also focusses on the physical properties of short and medium chain esters, which may simplify downstream processing, while limiting the effects of product toxicity. Furthermore, the esters could serve as intermediates for the synthesis of other compounds, such as alcohols, acids or diols. Finally, the perspectives and major challenges of microorganism-derived ester synthesis are presented.


Assuntos
Ésteres/metabolismo , Engenharia Metabólica , Álcoois , Biocombustíveis
7.
Front Microbiol ; 9: 3202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622529

RESUMO

Esters are essential for the flavor and aroma of fermented products, and are mainly produced by alcohol acyl transferases (AATs). A recently discovered AAT family named Eat (Ethanol acetyltransferase) contributes to ethyl acetate synthesis in yeast. However, its effect on the synthesis of other esters is unknown. In this study, the role of the Eat family in ester synthesis was compared to that of other Saccharomyces cerevisiae AATs (Atf1p, Atf2p, Eht1p, and Eeb1p) in silico and in vivo. A genomic study in a collection of industrial S. cerevisiae strains showed that variation of the primary sequence of the AATs did not correlate with ester production. Fifteen members of the EAT family from nine yeast species were overexpressed in S. cerevisiae CEN.PK2-1D and were able to increase the production of acetate and propanoate esters. The role of Eat1p was then studied in more detail in S. cerevisiae CEN.PK2-1D by deleting EAT1 in various combinations with other known S. cerevisiae AATs. Between 6 and 11 esters were produced under three cultivation conditions. Contrary to our expectations, a strain where all known AATs were disrupted could still produce, e.g., ethyl acetate and isoamyl acetate. This study has expanded our understanding of ester synthesis in yeast but also showed that some unknown ester-producing mechanisms still exist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA