Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nano Lett ; 22(14): 5742-5750, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35666985

RESUMO

This paper reports an approach to repurpose low-cost, bulk multilayer MoS2 for development of ultraefficient hydrogen evolution reaction (HER) catalysts over large areas (>cm2). We create working electrodes for use in HER by dry transfer of MoS2 nano- and microflakes to gold thin films deposited on prestrained thermoplastic substrates. By relieving the prestrain at a macroscopic scale, a tunable level of tensile strain is developed in the MoS2 and consequently results in a local phase transition as a result of spontaneously formed surface wrinkles. Using electrochemical impedance spectroscopy, we verified that electrochemical activation of the strained MoS2 lowered the charge transfer resistance within the materials system, achieving HER activity comparable to platinum (Pt). Raman and X-ray photoelectron spectroscopy show that desulfurization in the multilayer MoS2 was promoted by the phase transition; the combined effect of desulfurization and the lower charge resistance induced superior HER performance.

2.
J Am Chem Soc ; 139(48): 17694-17699, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29125746

RESUMO

Direct methane conversion into value-added products has become increasingly important. Because of inertness of methane, cleaving the first C-H bond has been very difficult, requiring high reaction temperature on the heterogeneous catalysts. Once the first C-H bond becomes activated, the remaining C-H bonds are successively dissociated on the metal surface, hindering the direct methane conversion into chemicals. Here, a single-atom Rh catalyst dispersed on ZrO2 surface has been synthesized and used for selective activation of methane. The Rh single atomic nature was confirmed by extended X-ray fine structure analysis, electron microscopy images, and diffuse reflectance infrared Fourier transform spectroscopy. A model of the single-atom Rh/ZrO2 catalyst was constructed by density functional theory calculations, and it was shown that CH3 intermediates can be energetically stabilized on the single-atom catalyst. The direct conversion of methane was performed using H2O2 in the aqueous solution or using O2 in gas phase as oxidants. Whereas Rh nanoparticles produced CO2 only, the single-atom Rh catalyst produced methanol in aqueous phase or ethane in gas phase.

3.
Nat Commun ; 14(1): 6871, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898596

RESUMO

Multiple light scattering hampers imaging objects in complex scattering media. Approaches used in real practices mainly aim to filter out multiple scattering obscuring the ballistic waves that travel straight through the scattering medium. Here, we propose a method that makes the deterministic use of multiple scattering for microscopic imaging of an object embedded deep within scattering media. The proposed method finds a stack of multiple complex phase plates that generate similar light trajectories as the original scattering medium. By implementing the inverse scattering using the identified phase plates, our method rectifies multiple scattering and amplifies ballistic waves by almost 600 times. This leads to a significant increase in imaging depth-more than three times the scattering mean free path-as well as the correction of image distortions. Our study marks an important milestone in solving the long-standing high-order inverse scattering problems.

4.
Nat Commun ; 14(1): 105, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609405

RESUMO

Myelination processes are closely related to higher brain functions such as learning and memory. While their longitudinal observation has been crucial to understanding myelin-related physiology and various brain disorders, skull opening or thinning has been required to secure clear optical access. Here we present a high-speed reflection matrix microscope using a light source with a wavelength of 1.3 µm to reduce tissue scattering and aberration. Furthermore, we develop a computational conjugate adaptive optics algorithm designed for the recorded reflection matrix to optimally compensate for the skull aberrations. These developments allow us to realize label-free longitudinal imaging of cortical myelin through an intact mouse skull. The myelination processes of the same mice were observed from 3 to 10 postnatal weeks to the depth of cortical layer 4 with a spatial resolution of 0.79 µm. Our system will expedite the investigations on the role of myelination in learning, memory, and brain disorders.


Assuntos
Encefalopatias , Microscopia , Camundongos , Animais , Bainha de Mielina , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Crânio/fisiologia
5.
Adv Mater ; 35(8): e2209500, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462219

RESUMO

Hindered gas bubble release and limited electron conducting process represent the major bottlenecks for large-scale electrochemical water splitting. Both the desorption of bubbles and continuous electron transport are achievable on the surfaces of biomimetic catalytic materials by designing multiscale structural hierarchy. Inspired by the tubular structures of the deep-sea sponges, an exceptionally active and binder-free porous nickel tube arrays (PNTA) decorated with NiFe-Zn2+ -pore nanosheets (NiFe-PZn ) are fabricated. The PNTA facilitate removal of bubbles and electron transfer in the oxygen evolution reaction by reproducing trunks of the sponges, and simultaneously, the NiFe-PZn increase the number of catalytic active sites by simulating the sponge epidermis. With improved external mass transfer and interior electron transfer, the hierarchical NiFe-PZn @PNTA electrode exhibits superior oxygen evolution reaction performance with an overpotential of 172 mV at 10 mA cm-2 (with a Tafel slope of 50 mV dec-1 ). Furthermore, this electrocatalytic system recorded excellent reaction stability over 360 h with a constant current density of 100 mA cm-2 at the potential of 1.52 V (versus RHE). This work provides a new strategy of designing hierarchical electrocatalysts for highly efficient water splitting.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37877895

RESUMO

Indium oxide (In2O3) is a transparent wide-bandgap semiconductor suitable for use in the back-end-of-line-compatible channel layers of heterogeneous monolithic three-dimensional (M3D) devices. The structural, chemical, and electrical properties of In2O3 films deposited by plasma-enhanced atomic layer deposition (PEALD) were examined using two different liquid-based precursors: (3-(dimethylamino)propyl)-dimethyl indium (DADI) and (N,N-dimethylbutylamine)trimethylindium (DATI). DATI-derived In2O3 films had higher growth per cycle (GPC), superior crystallinity, and low defect density compared with DADI-derived In2O3 films. Density functional theory calculations revealed that the structure of DATI can exhibit less steric hindrance compared with that of DADI, explaining the superior physical and electrical properties of the DATI-derived In2O3 film. DATI-derived In2O3 field-effect transistors (FETs) exhibited unprecedented performance, showcasing a high field-effect mobility of 115.8 cm2/(V s), a threshold voltage of -0.12 V, and a low subthreshold gate swing value of <70 mV/decade. These results were achieved by employing a 10-nm-thick HfO2 gate dielectric layer with an effective oxide thickness of 3.9 nm. Both DADI and DATI-derived In2O3 FET devices exhibited remarkable stability under bias stress conditions due to a high-quality In2O3 channel layer, good gate dielectric/channel interface matching, and a suitable passivation layer. These findings underscore the potential of ALD In2O3 films as promising materials for upper-layer channels in the next generation of M3D devices.

7.
Small ; 8(20): 3161-8, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22821640

RESUMO

In this paper, a simple and powerful method of producing nanoparticle-anchored graphene oxide (GO) composites using a 'click' reaction is demonstrated. This method affords a facile means of anchoring of nanoparticles with various shapes and sizes on the GO. CuPt nanorods with controlled size, aspect ratio (from 1 to 11), and uniformity are synthesized. Transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy measurements are made to monitor the formation and characterize the properties of the CuPt nanorod-grafted GO composites. Their catalytic properties in the water phase are investigated using an o-phenylenediamine oxidation reaction. The results of this study clearly demonstrate that nonpolar CuPt nanorods immobilized on GO can function as a catalyst in an aqueous solution and that GO can be used as a catalytic nanorod support.


Assuntos
Química Click/métodos , Grafite/química , Compostos Organometálicos/química , Piridinas/química , Água/química , Catálise
8.
Sci Rep ; 11(1): 2447, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510234

RESUMO

Herein, we present simulations of conductive filament formation in resistive random-access memory using a finite element solver. We consider the switching material, which is typically an oxide, as a two-phase material comprising low- and high-resistance phases. The low-resistance phase corresponds to a defective and conducting region with a high anion vacancy concentration, whereas the high-resistance phase corresponds to a non-defective and insulating region with a low anion-vacancy concentration. We adopt a phase variable corresponding to 0 and 1 in the insulating and conducting phases, respectively, and we change the phase variable suitably when new defects are introduced during voltage ramp-up for forming. Initially, some defects are embedded in the switching material. When the applied voltage is ramped up, the phase variable changes from 0 to 1 at locations wherein the electric field exceeds a critical value, which corresponds to the introduction of new defects via vacancy generation. The applied voltage at which the defects percolate to form a filament is considered as the forming voltage. Here, we study the forming-voltage uniformity using simulations, and we find that for typical planar-electrode devices, the forming voltage varies significantly owing to the stochastic location of the initial defects at which the electric field is "crowded." On the other hand, a protruding electrode can improve the switching uniformity drastically via facilitating the deterministic location of electric-field crowding, which also supported by the reported experimental results.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(2 Pt 1): 021120, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17358326

RESUMO

Coarsening subsequent to phase separations occurs in many two-phase mixtures. While unique scaled particle size distributions have been determined for highly asymmetric mixtures in which spherical particles form in a matrix, it is not known if a unique scaled structure exists for symmetric mixtures, which yield bicontinuous structures having intricately interpenetrating phase domains. Using large-scale simulations, we have established that unique scaled microstructures exist in symmetric mixtures evolving via nonconserved and conserved dynamics. We characterize their morphologies by the interfacial shape distribution, a counterpart to the particle size distribution, and their topologies by the genus. We find that the two dynamics result in unique, but different, scaled interfacial shape distributions, with conserved dynamics yielding a narrower distribution around zero mean curvature. In contrast, the two scaled structures are topologically similar, having nearly equal values of the scaled genus.

10.
ACS Appl Mater Interfaces ; 9(36): 30764-30771, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28825292

RESUMO

It was demonstrated that organolead halide perovskites (OHPs) show a resistive switching behavior with an ultralow electric field of a few kilovolts per centimeter. However, a slow switching time and relatively short endurance remain major obstacles for the realization of the next-generation memory. Here, we report a performance-enhanced OHP resistive switching device. To fabricate topologically and electronically improved OHP thin films, we added hydroiodic acid solution (for an additive) in the precursor solution of the OHP. With drastically improved morphology such as small grain size, low peak-to-valley depth, and precise thickness, the OHP thin films showed an excellent performance as insulating layers in Ag/CH3NH3PbI3/Pt cells, with an endurance of over 103 cycles, a high on/off ratio of 106, and an operation speed of 640 µs and without electroforming. We suggest plausible resistive switching and conduction mechanisms with current-voltage characteristics measured at various temperatures and with different top electrodes and device structures. Beyond the extended endurance, highly flexible resistive switching devices with a minimum bending radius of 5 mm create opportunities for use in flexible and wearable electronic devices.

11.
Nat Commun ; 8(1): 2157, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255208

RESUMO

Thick biological tissues give rise to not only the multiple scattering of incoming light waves, but also the aberrations of remaining signal waves. The challenge for existing optical microscopy methods to overcome both problems simultaneously has limited sub-micron spatial resolution imaging to shallow depths. Here we present an optical coherence imaging method that can identify aberrations of waves incident to and reflected from the samples separately, and eliminate such aberrations even in the presence of multiple light scattering. The proposed method records the time-gated complex-field maps of backscattered waves over various illumination channels, and performs a closed-loop optimization of signal waves for both forward and phase-conjugation processes. We demonstrated the enhancement of the Strehl ratio by more than 500 times, an order of magnitude or more improvement over conventional adaptive optics, and achieved a spatial resolution of 600 nm up to an imaging depth of seven scattering mean free paths.

12.
Chem Commun (Camb) ; 52(32): 5641-4, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27034092

RESUMO

Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles.


Assuntos
Irídio/química , Nanopartículas Metálicas/química , Níquel/química , Oxigênio/química , Microscopia Eletrônica de Transmissão , Espectroscopia por Absorção de Raios X
13.
Chem Commun (Camb) ; 51(61): 12316-9, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26138663

RESUMO

Ag-Ni binary nanoparticles with different shapes (snowman and core-shell) were synthesized by modulating the lattice strain. In the catalytic hydrogenation of 4-nitrophenol, a significant enhancement of the reaction rate was observed for the snowman shape in comparison with the core-shell shape under light irradiation.

14.
ACS Nano ; 8(5): 4893-901, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24758609

RESUMO

Green CdSe@ZnS quantum dots (QDs) of 9.5 nm size with a composition gradient shell are first prepared by a single-step synthetic approach, and then 12.7 nm CdSe@ZnS/ZnS QDs, the largest among ZnS-shelled visible-emitting QDs available to date, are obtained through the overcoating of an additional 1.6 nm thick ZnS shell. Two QDs of CdSe@ZnS and CdSe@ZnS/ZnS are incorporated into the solution-processed hybrid QD-based light-emitting diode (QLED) structure, where the QD emissive layer (EML) is sandwiched by poly(9-vinlycarbazole) and ZnO nanoparticles as hole and electron-transport layers, respectively. We find that the presence of an additional ZnS shell makes a profound impact on device performances such as luminance and efficiencies. Compared to CdSe@ZnS QD-based devices the efficiencies of CdSe@ZnS/ZnS QD-based devices are overwhelmingly higher, specifically showing unprecedented values of peak current efficiency of 46.4 cd/A and external quantum efficiency of 12.6%. Such excellent results are likely attributable to a unique structure in CdSe@ZnS/ZnS QDs with a relatively thick ZnS outer shell as well as a well-positioned intermediate alloyed shell, enabling the effective suppression of nonradiative energy transfer between closely packed EML QDs and Auger recombination at charged QDs.

15.
ACS Nano ; 8(7): 6701-12, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24895838

RESUMO

Origins of the irreversible capacity loss were addressed through probing changes in the electronic and structural properties of hollow-structured Co3O4 nanoparticles (NPs) during lithiation and delithiation using electrochemical Co3O4 transistor devices that function as a Co3O4 Li-ion battery. Additive-free Co3O4 NPs were assembled into a Li-ion battery, allowing us to isolate and explore the effects of the Co and Li2O formation/decomposition conversion reactions on the electrical and structural degradation within Co3O4 NP films. NP films ranging between a single monolayer and multilayered film hundreds of nanometers thick prepared with blade-coating and electrophoretic deposition methods, respectively, were embedded in the transistor devices for in situ conduction measurements as a function of battery cycles. During battery operation, the electronic and structural properties of Co3O4 NP films in the bulk, Co3O4/electrolyte, and Co3O4/current collector interfaces were spatially mapped to address the origin of the initial irreversible capacity loss from the first lithiation process. Further, change in carrier injection/extraction between the current collector and the Co3O4 NPs was explored using a modified electrochemical transistor device with multiple voltage probes along the electrical channel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA