Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 384, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053034

RESUMO

BACKGROUND: Administering probiotic strains of Limosilactobacillus reuteri to poultry has been shown to improve poultry performance and health. Some strains of L. reuteri taxa can produce reuterin, a broad-spectrum antimicrobial compound from glycerol conversion, with high inhibitory activity against enterobacteria. However, little is known about the metabolism of glycerol in the complex chicken cecal microbiota nor the effect of glycerol, either alone or combined with L. reuteri on the microbiota. In this study, we investigated the effect of L. reuteri PTA5_F13, a high-reuterin-producing chicken strain and glycerol, alone or combined, on broiler chicken cecal microbiota composition and activity using the continuous PolyFermS model recently developed to mimic chicken cecal fermentation. METHODS: Three independent PolyFermS chicken cecal microbiota models were inoculated with immobilized cecal microbiota from different animals and operated continuously. The effects of two additional levels of glycerol (50 and 100 mM) with or without daily supplementation of chicken-derived L. reuteri PTA5_F13 (107 CFU/mL final concentration) were tested in parallel second-stage reactors continuously inoculated with the same microbiota. We analyzed the complex chicken gut microbiota structure and dynamics upon treatment using 16S rRNA metabarcoding and qPCR. Microbiota metabolites, short-chain and branched-chain fatty acids, and glycerol and reuterin products were analyzed by HPLC in effluent samples from stabilized reactors. RESULTS: Supplementation with 100 mM glycerol alone and combined with L. reuteri PTA5_F13 resulted in a reproducible increase in butyrate production in the three modelled microbiota (increases of 18 to 25%). Glycerol alone resulted also in a reduction of Enterobacteriaceae in two of the three microbiota, but no effect was detected for L. reuteri alone. When both treatments were combined, all microbiota quantitatively inhibited Enterobacteriaceae, including in the last model that had very high initial concentrations of Enterobacteriaceae. Furthermore, a significant 1,3-PDO accumulation was measured in the effluent of the combined treatment, confirming the conversion of glycerol via the reuterin pathway. Glycerol supplementation, independent of L. reuteri addition, did not affect the microbial community diversity. CONCLUSIONS: Glycerol induced a stable and reproducible butyrogenic activity for all tested microbiota and induced an inhibitory effect against Enterobacteriaceae that was strengthened when reuterin-producing L. reuteri was spiked daily. Our in vitro study suggests that co-application of L. reuteri PTA5_F13 and glycerol could be a useful approach to promote chicken gut health by enhancing metabolism and protection against Enterobacteriaceae.


Assuntos
Limosilactobacillus reuteri , Microbiota , Animais , Enterobacteriaceae , Glicerol , Galinhas , Butiratos , RNA Ribossômico 16S/genética
2.
BMC Microbiol ; 23(1): 174, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403024

RESUMO

BACKGROUND: The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. METHODS: Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. RESULTS: High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. CONCLUSIONS: Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.


Assuntos
Microbiota , Humanos , Lactente , Quênia , Leite Humano , Bactérias/genética , Fezes/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise
3.
Chem Res Toxicol ; 35(10): 1840-1850, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36116084

RESUMO

Bacteria harboring glycerol/diol dehydratase (GDH) encoded by the genes pduCDE metabolize glycerol and release acrolein during growth. Acrolein has antimicrobial activity, and exposure of human cells to acrolein gives rise to toxic and mutagenic responses. These biological responses are related to acrolein's high reactivity as a chemical electrophile that can covalently bind to cellular nucleophiles including DNA and proteins. Various food microbes and gut commensals transform glycerol to acrolein, but there is no direct evidence available for bacterial glycerol metabolism giving rise to DNA adducts. Moreover, it is unknown whether pathogens, such as Salmonella Typhymurium, catalyze this transformation. We assessed, therefore, acrolein formation by four GDH-competent strains of S. Typhymurium grown under either aerobic or anaerobic conditions in the presence of 50 mM glycerol. On the basis of analytical derivatization with a heterocyclic amine, all wild-type strains were observed to produce acrolein, but to different extents, and acrolein production was not detected in fermentations of a pduC-deficient mutant strain. Furthermore, we found that, in the presence of calf thymus DNA, acrolein-DNA adducts were formed as a result of bacterial glycerol metabolism by two strains of Limosilactobacillus reuteri, but not a pduCDE mutant strain. The quantification of the resulting adducts with increasing levels of glycerol up to 600 mM led to the production of up to 1.5 mM acrolein and 3600 acrolein-DNA adducts per 108 nucleosides in a model system. These results suggest that GDH-competent food microbes, gut commensals, and pathogens alike have the capacity to produce acrolein from glycerol. Further, the acrolein production can lead to DNA adduct formation, but requires high glycerol concentrations that are not available in the human gut.


Assuntos
Anti-Infecciosos , Propanodiol Desidratase , Acroleína/toxicidade , Aminas , Bactérias/genética , Bactérias/metabolismo , DNA , Adutos de DNA , Glicerol/metabolismo , Humanos , Propanodiol Desidratase/metabolismo
4.
Cell Microbiol ; 23(1): e13269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975882

RESUMO

Endogenous carbohydrates released from the intestinal mucus represent a constant source of nutrients to the intestinal microbiota. Mucus-derived carbohydrates can also be used as building blocks in the biosynthesis of bacterial cell wall components, thereby influencing host mucosal immunity. To assess the uptake of endogenous carbohydrates by gut microbes in healthy mice and during intestinal inflammation, we applied azido-monosaccharides that can be tracked on bacterial cell walls after conjugation with fluorophores. In interleukin-10 deficient mice, changes in the gut microbiota were accompanied by decreased carbohydrate hydrolase activities and increased lumenal concentrations of host glycan-derived monosaccharides. Tracking of the monosaccharide N-azidoacetylglucosamine (GlcNAz) in caecum bacteria revealed a preferential incorporation of this carbohydrate by Xanthomonadaceae in healthy mice and by Bacteroidaceae in interleukin-10 deficient mice. These GlcNAz-positive Bacteroidaceae fractions mainly belonged to the species B. acidifaciens and B. vulgatus. Growth of Bacteroides species in the presence of specific monosaccharides changed their stimulatory activity toward CD11c+ dendritic cells. Expression of activation markers and cytokine production was highest after stimulation of dendritic cells with B. vulgatus. The variable incorporation of monosaccharides by related Bacteroides species underline the necessity to investigate intestinal bacteria down to the species level when addressing microbiota-host interactions.


Assuntos
Células Dendríticas/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Monossacarídeos/metabolismo , Polissacarídeos/metabolismo , Animais , Bacteroides/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Interações entre Hospedeiro e Microrganismos , Hidrolases/metabolismo , Imunidade nas Mucosas , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Xanthomonadaceae/metabolismo
5.
Environ Microbiol ; 23(3): 1765-1779, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587772

RESUMO

Glycerol/diol dehydratases (GDH) are enzymes that catalyse the production of propionate from 1,2-propanediol, and acrolein from glycerol. Acrolein reacts with dietary carcinogenic heterocyclic amines (HCA), reducing HCA mutagenicity, but is itself also an antimicrobial agent and toxicant. Gut microbial GDH activity has been suggested as an endogenous acrolein source; however, there is limited information on the potential of the intestinal microbiota to have GDH activity, and what impact it can have on the intestinal ecosystem and host health. We hypothesized that GDH activity of gut microbiota is determined by the abundance and distribution of GDH-active taxa and can be enhanced by supplementation of the GDH active Anaerobutyricum hallii, and tested this hypothesis combining quantitative profiling of gdh, model batch fermentations, microbiota manipulation, and kinetic modelling of acrolein formation. Our results suggest that GDH activity is a common trait of intestinal microbiota shared by a few taxa, which was dependent on overall gdh abundance. Anaerobutyricum hallii was identified as a key taxon in GDH metabolism, and its supplementation increased the rate of GDH activity and acrolein release, which enhanced the transformation of HCA and reduced fermentation activity. The findings of this first systematic study on acrolein release by intestinal microbiota indicate that dietary and microbial modulation might impact GDH activity, which may influence host health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Propanodiol Desidratase , Clostridiales , Glicerol
6.
BMC Microbiol ; 21(1): 268, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610822

RESUMO

BACKGROUND: Auto-aggregation is a desired property for probiotic strains because it is suggested to promote colonization of the human intestine, to prevent pathogen infections and to modulate the colonic mucosa. We recently reported the generation of adapted mutants of Lactiplantibacillus plantarum NZ3400, a derivative of the model strain WCFS1, for colonization under adult colonic conditions of PolyFermS continuous intestinal fermentation models. Here we describe and characterize the emerge of an auto-aggregating phenotype in L. plantarum NZ3400 derivatives recovered from the modelled gut microbiota. RESULTS: L. plantarum isolates were recovered from reactor effluent of four different adult microbiota and from spontaneously formed reactor biofilms. Auto-aggregation was observed in L. plantarum recovered from all microbiota and at higher percentage when recovered from biofilm than from effluent. Further, auto-aggregation percentage increased over time of cultivation in the microbiota. Starvation of the gut microbiota by interrupting the inflow of nutritive medium enhanced auto-aggregation, suggesting a link to nutrient availability. Auto-aggregation was lost under standard cultivation conditions for lactobacilli in MRS medium. However, it was reestablished during growth on sucrose and maltose and in a medium that simulates the abiotic gut environment. Remarkably, none of these conditions resulted in an auto-aggregation phenotype in the wild type strain NZ3400 nor other non-aggregating L. plantarum, indicating that auto-aggregation depends on the strain history. Whole genome sequencing analysis did not reveal any mutation responsible for the auto-aggregation phenotype. Transcriptome analysis showed highly significant upregulation of LP_RS05225 (msa) at 4.1-4.4 log2-fold-change and LP_RS05230 (marR) at 4.5-5.4 log2-fold-change in all auto-aggregating strains compared to non-aggregating. These co-expressed genes encode a mannose-specific adhesin protein and transcriptional regulator, respectively. Mapping of the RNA-sequence reads to the promoter region of the msa-marR operon reveled a DNA inversion in this region that is predominant in auto-aggregating but not in non-aggregating strains. This strongly suggests a role of this inversion in the auto-aggregation phenotype. CONCLUSIONS: L. plantarum NZ3400 adapts to the in vitro colonic environment by developing an auto-aggregation phenotype. Similar aggregation phenotypes may promote gut colonization and efficacy of other probiotics and should be further investigated by using validated continuous models of gut fermentation such as PolyFermS.


Assuntos
Microbioma Gastrointestinal/genética , Lactobacillaceae/fisiologia , Adaptação Fisiológica/genética , Biofilmes , Perfilação da Expressão Gênica , Humanos , Mutação , Fenótipo , Transcriptoma/genética
7.
Environ Microbiol ; 22(9): 3909-3921, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686173

RESUMO

The acquisition of the infant gut microbiota is key to establishing a host-microbiota symbiosis. Microbially produced metabolites tightly interact with the immune system, and the fermentation-derived short-chain fatty acid butyrate is considered an important mediator linked to chronic diseases later in life. The intestinal butyrate-forming bacterial population is taxonomically and functionally diverse and includes endospore formers with high transmission potential. Succession, and contribution of butyrate-producing taxa during infant gut microbiota development have been little investigated. We determined the abundance of major butyrate-forming groups and fermentation metabolites in faeces, isolated, cultivated and characterized the heat-resistant cell population, which included endospores, and compared butyrate formation efficiency of representative taxa in batch cultures. The endospore community contributed about 0.001% to total cells, and was mainly composed of the pioneer butyrate-producing Clostridium sensu stricto. We observed an increase in abundance of Faecalibacterium prausnitzii, butyrate-producing Lachnospiraceae and faecal butyrate levels with age that is likely explained by higher butyrate production capacity of contributing taxa compared with Clostridium sensu stricto. Our data suggest that a successional arrangement and an overall increase in abundance of butyrate forming populations occur during the first year of life, which is associated with an increase of intestinal butyrate formation capacity.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Butiratos/metabolismo , Microbioma Gastrointestinal/fisiologia , Bactérias/classificação , Bactérias/genética , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Fermentação , Humanos , Lactente , Intestinos/crescimento & desenvolvimento , Intestinos/microbiologia , Esporos Bacterianos/classificação , Esporos Bacterianos/genética , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/metabolismo
8.
Gut ; 68(4): 645-653, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30448776

RESUMO

OBJECTIVE: Many African infants receiving iron fortificants also receive antibiotics. Antibiotic efficacy against enteropathogens may be modified by high colonic iron concentrations. In this study, we evaluated the effect of antibiotics on the infant gut microbiome and diarrhoea when given with or without iron-containing micronutrient powders (MNPs). DESIGN: In a controlled intervention trial, four groups of community-dwelling infants (n=28; aged 8-10 months) received either: (A) antibiotics for 5 days and iron-MNPs for 40 days (Fe+Ab+); (B) antibiotics and no-iron-MNPs (Fe-Ab+); (C) no antibiotics and iron-MNPs (Fe+Ab-); or (D) no antibiotics and no-iron-MNPs (Fe-Ab-). We collected a faecal sample before the first antibiotic dose (D0) and after 5, 10, 20 and 40 days (D5-D40) to assess the gut microbiome composition by 16S profiling, enteropathogens by quantitative PCR, faecal calprotectin and pH and assessed morbidity over the 40-day study period. RESULTS: In Fe+Ab+, there was a decrease in Bifidobacterium abundances (p<0.05), but no decrease in Fe-Ab+. In Fe-Ab+, there was a decrease in abundances of pathogenic Escherichia coli (p<0.05), but no decrease in Fe+Ab+. In Fe-Ab+, there was a decrease in pH (p<0.05), but no decrease in Fe+Ab+. Longitudinal prevalence of diarrhoea was higher in Fe+Ab+ (19.6%) compared with Fe-Ab+ (12.4%) (p=0.04) and compared with Fe+Ab- (5.2%) (p=0.00). CONCLUSION: Our findings need confirmation in a larger study but suggest that, in African infants, iron fortification modifies the response to broad-spectrum antibiotics: iron may reduce their efficacy against potential enteropathogens, particularly pathogenic E. coli, and may increase risk for diarrhoea. TRIAL REGISTRATION NUMBER: NCT02118402; Pre-results.


Assuntos
Antibacterianos/efeitos adversos , Diarreia/microbiologia , Diarreia/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/farmacologia , Micronutrientes/farmacologia , Bifidobacterium/isolamento & purificação , Escherichia coli/isolamento & purificação , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lactente , Quênia , Complexo Antígeno L1 Leucocitário/análise , Masculino , Reação em Cadeia da Polimerase , Pós , Resultado do Tratamento
9.
BMC Microbiol ; 19(1): 99, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096909

RESUMO

BACKGROUND: Consuming red and processed meat has been associated with an increased risk of colorectal cancer (CRC), which is partly attributed to exposure to carcinogens such as heterocyclic amines (HCA) formed during cooking and preservation processes. The interaction of gut microbes and HCA can result in altered bioactivities and it has been shown previously that human gut microbiota can transform mutagenic HCA to a glycerol conjugate with reduced mutagenic potential. However, the major form of HCA in the colon are glucuronides (HCA-G) and it is not known whether these metabolites, via stepwise microbial hydrolysis and acrolein conjugation, are viable precursors for glycerol conjugated metabolites. We hypothesized that such a process could be concurrently catalyzed by bacterial beta-glucuronidase (B-GUS) and glycerol/diol dehydratase (GDH) activity. We therefore investigated how the HCA-G PhIP-N2-ß-D-glucuronide (PhIP-G), a representative liver metabolite of PhIP (2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyridine), which is the most abundant carcinogenic HCA in well-cooked meat, is transformed by enzymatic activity of human gut microbial representatives of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. RESULTS: We employed a combination of growth and enzymatic assays, and a bioanalysis approach combined with metagenomics. B-GUS of Faecalibacterium prausnitzii converted PhIP-G to PhIP and GDH of Flavonifractor plautii, Blautia obeum, Eubacterium hallii, and Lactobacillus reuteri converted PhIP to PhIP-M1 in the presence of glycerol. In addition, B-GUS- and GDH-positive bacteria cooperatively converted PhIP-G to PhIP-M1. A screen of genes encoding B-GUS and GDH was performed for fecal microbiome data from healthy individuals (n = 103) and from CRC patients (n = 53), which revealed a decrease in abundance of taxa with confirmed GDH and HCA transformation activity in CRC patients. CONCLUSIONS: This study for the first time demonstrates that gut microbes mediate the stepwise transformation of PhIP-G to PhIP-M1 via the intermediate production of PhIP. Findings from this study suggest that targeted manipulation with gut microbes bearing specific functions, or dietary glycerol supplementation might modify gut microbial activity to reduce HCA-induced CRC risk.


Assuntos
Bactérias/enzimologia , Dieta , Microbioma Gastrointestinal , Glucuronidase/metabolismo , Glucuronídeos/metabolismo , Propanodiol Desidratase/metabolismo , Bactérias/genética , Bacteroidetes/enzimologia , Bacteroidetes/genética , Biotransformação , Carcinógenos/metabolismo , Neoplasias Colorretais , Fezes/química , Fezes/microbiologia , Firmicutes/enzimologia , Firmicutes/genética , Glicerol/química , Humanos , Imidazóis/metabolismo , Carne/análise , Metagenômica , Proteobactérias/enzimologia , Proteobactérias/genética
10.
Allergy ; 74(4): 799-809, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30390309

RESUMO

BACKGROUND: Dietary changes are suggested to play a role in the increasing prevalence of allergic diseases and asthma. Short-chain fatty acids (SCFAs) are metabolites present in certain foods and are produced by microbes in the gut following fermentation of fibers. SCFAs have been shown to have anti-inflammatory properties in animal models. Our objective was to investigate the potential role of SCFAs in the prevention of allergy and asthma. METHODS: We analyzed SCFA levels by high-performance liquid chromatography (HPLC) in fecal samples from 301 one-year-old children from a birth cohort and examined their association with early life exposures, especially diet, and allergy and asthma later in life. Data on exposures and allergic diseases were collected by questionnaires. In addition, we treated mice with SCFAs to examine their effect on allergic airway inflammation. RESULTS: Significant associations between the levels of SCFAs and the infant's diet were identified. Children with the highest levels of butyrate and propionate (≥95th percentile) in feces at the age of one year had significantly less atopic sensitization and were less likely to have asthma between 3 and 6 years. Children with the highest levels of butyrate were also less likely to have a reported diagnosis of food allergy or allergic rhinitis. Oral administration of SCFAs to mice significantly reduced the severity of allergic airway inflammation. CONCLUSION: Our results suggest that strategies to increase SCFA levels could be a new dietary preventive option for allergic diseases in children.


Assuntos
Asma/prevenção & controle , Butiratos/análise , Hipersensibilidade Imediata/prevenção & controle , Propionatos/análise , Animais , Asma/etiologia , Cromatografia Líquida de Alta Pressão , Dieta , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Humanos , Hipersensibilidade Imediata/etiologia , Lactente , Masculino , Camundongos
11.
Microb Ecol ; 75(1): 228-238, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28721502

RESUMO

Mucus production is initiated before birth and provides mucin glycans to the infant gut microbiota. Bifidobacteria are the major bacterial group in the feces of vaginally delivered and breast milk-fed infants. Among the bifidobacteria, only Bifidobacterium bifidum is able to degrade mucin and to release monosaccharides which can be used by other gut microbes colonizing the infant gut. Eubacterium hallii is an early occurring commensal that produces butyrate and propionate from fermentation metabolites but that cannot degrade complex oligo- and polysaccharides. We aimed to demonstrate that mucin cross-feeding initiated by B. bifidum enables growth and metabolite formation of E. hallii leading to short-chain fatty acid (SCFA) formation. Growth and metabolite formation of co-cultures of B. bifidum, of Bifidobacterium breve or Bifidobacterium infantis, which use mucin-derived hexoses and fucose, and of E. hallii were determined. Growth of E. hallii in the presence of lactose and mucin monosaccharides was tested. In co-culture fermentations, the presence of B. bifidum enabled growth of the other strains. B. bifidum/B. infantis co-cultures yielded acetate, formate, and lactate while co-cultures of B. bifidum and E. hallii formed acetate, formate, and butyrate. In three-strain co-cultures, B. bifidum, E. hallii, and B. breve or B. infantis produced up to 16 mM acetate, 5 mM formate, and 4 mM butyrate. The formation of propionate (approximately 1 mM) indicated cross-feeding on fucose. Lactose, galactose, and GlcNAc were identified as substrates of E. hallii. This study shows that trophic interactions of bifidobacteria and E. hallii lead to the formation of acetate, butyrate, propionate, and formate, potentially contributing to intestinal SCFA formation with potential benefits for the host and for microbial colonization of the infant gut. The ratios of SCFA formed differed depending on the microbial species involved in mucin cross-feeding.


Assuntos
Bifidobacterium/metabolismo , Eubacterium/metabolismo , Mucinas/metabolismo , Adulto , Animais , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Aleitamento Materno , Eubacterium/crescimento & desenvolvimento , Eubacterium/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Fermentação , Microbioma Gastrointestinal , Humanos , Lactente , Intestinos/microbiologia , Masculino
12.
Gut ; 66(11): 1956-1967, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28774885

RESUMO

OBJECTIVE: Iron-containing micronutrient powders (MNPs) reduce anaemia in African infants, but the current high iron dose (12.5 mg/day) may decrease gut Bifidobacteriaceae and Lactobacillaceae, and increase enteropathogens, diarrhoea and respiratory tract infections (RTIs). We evaluated the efficacy and safety of a new MNP formula with prebiotic galacto-oligosaccharides (GOS) combined with a low dose (5 mg/day) of highly bioavailable iron. DESIGN: In a 4-month, controlled, double-blind trial, we randomised Kenyan infants aged 6.5-9.5 months (n=155) to receive daily (1) a MNP without iron (control); (2) the identical MNP but with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) (Fe group); or (3) the identical MNP as the Fe group but with 7.5 g GOS (FeGOS group). RESULTS: Anaemia decreased by ≈50% in the Fe and FeGOS groups (p<0.001). Compared with the control or FeGOS group, in the Fe group there were (1) lower abundances of Bifidobacterium and Lactobacillus and higher abundances of Clostridiales (p<0.01); (2) higher abundances of virulence and toxin genes (VTGs) of pathogens (p<0.01); (3) higher plasma intestinal fatty acid-binding protein (a biomarker of enterocyte damage) (p<0.05); and (4) a higher incidence of treated RTIs (p<0.05). In contrast, there were no significant differences in these variables comparing the control and FeGOS groups, with the exception that the abundance of VTGs of all pathogens was significantly lower in the FeGOS group compared with the control and Fe groups (p<0.01). CONCLUSION: A MNP containing a low dose of highly bioavailable iron reduces anaemia, and the addition of GOS mitigates most of the adverse effects of iron on the gut microbiome and morbidity in African infants. TRIAL REGISTRATION NUMBER: NCT02118402.


Assuntos
Anemia Ferropriva/prevenção & controle , Compostos Férricos/efeitos adversos , Compostos Ferrosos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Micronutrientes/efeitos adversos , Oligossacarídeos , Prebióticos , Método Duplo-Cego , Ácido Edético/efeitos adversos , Ácido Edético/uso terapêutico , Feminino , Compostos Férricos/uso terapêutico , Compostos Ferrosos/uso terapêutico , Humanos , Lactente , Quênia , Masculino , Micronutrientes/uso terapêutico , Oligossacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Prebióticos/microbiologia
13.
BMC Genomics ; 18(1): 41, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061804

RESUMO

BACKGROUND: Bifidobacteria are among the first anaerobic bacteria colonizing the gut. Bifidobacteria require iron for growth and their iron-sequestration mechanisms are important for their fitness and possibly inhibit enteropathogens. Here we used combined genomic and proteomic analyses to characterize adaptations to low iron conditions of B. kashiwanohense PV20-2 and B. pseudolongum PV8-2, 2 strains isolated from the feces of iron-deficient African infants and selected for their high iron-sequestering ability. RESULTS: Analyses of the genome contents revealed evolutionary adaptation to low iron conditions. A ferric and a ferrous iron operon encoding binding proteins and transporters were found in both strains. Remarkably, the ferric iron operon of B. pseudolongum PV8-2 is not found in other B. pseudolongum strains and likely acquired via horizontal gene transfer. The genome B. kashiwanohense PV20-2 harbors a unique region encoding genes putatively involved in siderophore production. Additionally, the secretomes of the two strains grown under low-iron conditions were analyzed using a combined genomic-proteomic approach. A ferric iron transporter was found in the secretome of B. pseudolongum PV8-2, while ferrous binding proteins were detected in the secretome of B. kashiwanohense PV20-2, suggesting different strategies to take up iron in the strains. In addition, proteins such as elongation factors, a glyceraldehyde-3-phosphate dehydrogenase, and the stress proteins GroEL and DnaK were identified in both secretomes. These proteins have been previously associated with adhesion of lactobacilli to epithelial cells. CONCLUSION: Analyses of the genome and secretome of B. kashiwanohense PV20-2 and B. pseudolongum PV8-2 revealed different adaptations to low iron conditions and identified extracellular proteins for iron transport. The identified extracellular proteins might be involved in competition for iron in the gastrointestinal tract.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Bifidobacterium/citologia , Bifidobacterium/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Ferro/farmacologia , Proteômica , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/fisiologia , Relação Dose-Resposta a Droga , Evolução Molecular , Especificidade da Espécie
14.
Plasmid ; 92: 43-48, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28712958

RESUMO

Bifidobacterium thermophilum is encountered in the GI-tract of pigs and infants. Here we provide a transformation protocol for B. thermophilum and a novel expression vector for this species. The protocol resulted in transformation rates of 1×103 transformed cells per µg DNA. Transformation was shown to be dependent on the presence of fructo-oligosaccharides during growth, polyethylene glycol in the electroporation buffer, and on methylation of the vector. The Escherichia coli - B. thermophilum shuttle vector pLFB1012 for heterologous gene expression was constructed harbouring the glyceraldehyde 3-phosphate dehydrogenase promoter from Bifidobacterium longum (Pgap). Activity of the ß-glucoronidase gene gusA under control of Pgap could be detected at a 20-fold higher rate compared to the wild type, showing activity of the promoter in B. thermophilum. Thereafter, the B. longum gene bl_1404, previously proposed to be involved in oxidative stress resistance, was cloned under control of the Pgap. The wild type cell numbers of B. thermophilum RBL 67 decreased at least 9 log after a 20-mM H2O2 treatment for 60min whereas the mutant strain expressing bl_1404 showed an increased survival of 2 logs compared to the wild type strain. To our knowledge this is the first report on transformation of B. thermophilum. Further, it is shown that pLFB1002 is suitable for engineering B. thermophilum and that bl_1404 from B. longum is involved in peroxide resistance in bifidobacteria.


Assuntos
Bifidobacterium/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana/genética , Expressão Gênica , Vetores Genéticos , Glucuronidase/genética , Glucuronidase/metabolismo , Testes de Sensibilidade Microbiana , Estresse Oxidativo , Plasmídeos/genética , Transformação Bacteriana
15.
Environ Microbiol ; 18(7): 2246-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059115

RESUMO

The colonization of the infant gut is crucial for early life development. Although the composition and diversity of the infant gut microbiota (GM) has been well described at a taxonomic level, functional aspects of this ecosystem remain unexplored. In the infant gut, lactate is produced by a number of bacteria and plays an important role in the trophic chain of the fermentation process. However, little is known about the lactate-utilizing bacteria (LUB) community in infants and their impact on gut health. By combining culture-based and molecular methods, we intensively studied LUB in fecal samples of 40 healthy infants on both taxonomic and functional levels. We demonstrated metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization. The interactions of such species and their metabolic outcome could have direct impacts on infant health, either beneficial (production of short chain fatty acids) or detrimental (accumulation of hydrogen or hydrogen sulfide). We identified mode of delivery as a strong determinant for lactate-producing and -utilizing bacteria levels. These findings present the early establishment of GM with a novel perspective and emphasize the importance of lactate utilization in infancy.


Assuntos
Microbioma Gastrointestinal , Intestinos/microbiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Fermentação , Humanos , Lactente , Recém-Nascido , Mucosa Intestinal/metabolismo , Masculino , Filogenia
16.
BMC Microbiol ; 16(1): 248, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782805

RESUMO

BACKGROUND: Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and ß-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2'-fucosyllactose (2'-FL), 3'-fucosyllactose (3'-FL), 3'-sialyl-lactose (3'-SL), 6'-sialyl-lactose (6'-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. RESULTS: Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2'-FL and 3'- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95-99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78-80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95-99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. CONCLUSION: Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.


Assuntos
Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Fucose/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Sequência de Bases , Bifidobacterium/enzimologia , Bifidobacterium/genética , Bifidobacterium longum/enzimologia , Bifidobacterium longum/genética , DNA Bacteriano/genética , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Genoma Bacteriano , Humanos , Lactente , Intestinos/microbiologia , Lactose/análogos & derivados , Lactose/metabolismo , Redes e Vias Metabólicas , Propilenoglicol/metabolismo , RNA Ribossômico 16S/genética , Ácidos Siálicos/metabolismo , Trissacarídeos/metabolismo , alfa-L-Fucosidase/classificação , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , beta-Galactosidase/metabolismo
17.
BMC Microbiol ; 16: 46, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26988691

RESUMO

BACKGROUND: Bifidobacterium thermophilum RBL67 (RBL67), a human fecal isolate and health promoting candidate shows antagonistic and protective effects against Salmonella and Listeria spec. in vitro. However, the underlying mechanisms fostering these effects remain unknown. In this study, the interactions of RBL67 and Salmonella enterica subsp. enterica serovar Typhimurium N-15 (N-15) were explored by global transcriptional analysis. RESULTS: Growth experiments were performed in a complex nutritive medium with controlled pH of 6.0 and suitable for balanced growth of both RBL67 and N-15. RBL67 growth was slightly enhanced in presence of N-15. Conversely, N-15 showed reduced growth in the presence of RBL67. Transcriptional analyses revealed higher expression of stress genes and amino acid related function in RBL67 in co-culture with N-15 when compared to mono-culture. Repression of the PhoP regulator was observed in N-15 in presence of RBL67. Further, RBL67 activated virulence genes located on the Salmonella pathogenicity islands 1 and 2. Flagellar genes, however, were repressed by RBL67. Sequential expression of flagellar, SPI 1 and fimbrial genes is essential for Salmonella infection. Our data revealed that RBL67 triggers expression of SPI 1 and fimbrial determinants prematurely, potentially leading to redundant energy expenditure. In the competitive environment of the gut such energy expenditure could lead to enhanced clearing of Salmonella. CONCLUSION: Our study provides first insights into probiotic-pathogen interactions on global transcriptional level and suggests that deregulation of virulence gene expression might be an additional protective mechanism of probiotica against infections of the host.


Assuntos
Antibiose , Proteínas de Bactérias/genética , Bifidobacterium/fisiologia , Regulação Bacteriana da Expressão Gênica , Infecções por Salmonella/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Fezes/microbiologia , Humanos , Salmonella typhimurium/fisiologia , Virulência , Fatores de Virulência/metabolismo
18.
BMC Microbiol ; 16(1): 117, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27329036

RESUMO

BACKGROUND: The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). RESULTS: Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. CONCLUSION: Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and establish the basis to elucidate (zoonotic-) transmission, host specificity, virulence mechanisms and enhanced risk assessment as pathobionts in an overarching One Health approach.


Assuntos
Infecções Estreptocócicas/epidemiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Animais , Aderência Bacteriana , Sequência de Bases , Chaperonina 60/genética , DNA Bacteriano/genética , Suco Gástrico/microbiologia , Genes Essenciais , Humanos , Tipagem de Sequências Multilocus/métodos , NF-kappa B/imunologia , Filogenia , RNA Ribossômico 16S/genética , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/microbiologia , Streptococcus bovis/genética , Streptococcus bovis/isolamento & purificação , Streptococcus gallolyticus/genética , Streptococcus gallolyticus/isolamento & purificação
19.
Gut ; 64(5): 731-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25143342

RESUMO

BACKGROUND: In-home iron fortification for infants in developing countries is recommended for control of anaemia, but low absorption typically results in >80% of the iron passing into the colon. Iron is essential for growth and virulence of many pathogenic enterobacteria. We determined the effect of high and low dose in-home iron fortification on the infant gut microbiome and intestinal inflammation. METHODS: We performed two double-blind randomised controlled trials in 6-month-old Kenyan infants (n=115) consuming home-fortified maize porridge daily for 4 months. In the first, infants received a micronutrient powder (MNP) containing 2.5 mg iron as NaFeEDTA or the MNP without iron. In the second, they received a different MNP containing 12.5 mg iron as ferrous fumarate or the MNP without the iron. The primary outcome was gut microbiome composition analysed by 16S pyrosequencing and targeted real-time PCR (qPCR). Secondary outcomes included faecal calprotectin (marker of intestinal inflammation) and incidence of diarrhoea. We analysed the trials separately and combined. RESULTS: At baseline, 63% of the total microbial 16S rRNA could be assigned to Bifidobacteriaceae but there were high prevalences of pathogens, including Salmonella Clostridium difficile, Clostridium perfringens, and pathogenic Escherichia coli. Using pyrosequencing, +FeMNPs increased enterobacteria, particularly Escherichia/Shigella (p=0.048), the enterobacteria/bifidobacteria ratio (p=0.020), and Clostridium (p=0.030). Most of these effects were confirmed using qPCR; for example, +FeMNPs increased pathogenic E. coli strains (p=0.029). +FeMNPs also increased faecal calprotectin (p=0.002). During the trial, 27.3% of infants in +12.5 mgFeMNP required treatment for diarrhoea versus 8.3% in -12.5 mgFeMNP (p=0.092). There were no study-related serious adverse events in either group. CONCLUSIONS: In this setting, provision of iron-containing MNPs to weaning infants adversely affects the gut microbiome, increasing pathogen abundance and causing intestinal inflammation. TRIAL REGISTRATION NUMBER: NCT01111864.


Assuntos
Enterocolite/induzido quimicamente , Alimentos Fortificados/efeitos adversos , Intestinos/microbiologia , Ferro da Dieta/efeitos adversos , Microbiota/efeitos dos fármacos , Anemia Ferropriva/prevenção & controle , Bactérias/isolamento & purificação , Diarreia Infantil/induzido quimicamente , Diarreia Infantil/microbiologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Enterocolite/microbiologia , Fezes/química , Humanos , Lactente , Ferro da Dieta/administração & dosagem , Ferro da Dieta/farmacologia , Complexo Antígeno L1 Leucocitário/metabolismo , Micronutrientes/administração & dosagem , Micronutrientes/efeitos adversos , Micronutrientes/farmacologia
20.
BMC Microbiol ; 15: 3, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25591860

RESUMO

BACKGROUND: Bifidobacteria is one of the major gut commensal groups found in infants. Their colonization is commonly associated with beneficial effects to the host through mechanisms like niche occupation and nutrient competition against pathogenic bacteria. Iron is an essential element necessary for most microorganisms, including bifidobacteria and efficient competition for this micronutrient is linked to proliferation and persistence. For this research we hypothesized that bifidobacteria in the gut of iron deficient infants can efficiently sequester iron. The aim of the present study was to isolate bifidobacteria in fecal samples of iron deficient Kenyan infants and to characterize siderophore production and iron internalization capacity. RESULTS: Fifty-six bifidobacterial strains were isolated by streaking twenty-eight stool samples from Kenyan infants, in enrichment media. To target strains with high iron sequestration mechanisms, a strong iron chelator 2,2-dipyridyl was supplemented to the agar media. Bifidobacterial isolates were first identified to species level by 16S rRNA sequencing, yielding B. bifidum (19 isolates), B. longum (15), B. breve (11), B. kashiwanohense (7), B. pseudolongum (3) and B. pseudocatenulatum (1). While most isolated bifidobacterial species are commonly encountered in the infantile gut, B. kashiwanohense was not frequently reported in infant feces. Thirty strains from culture collections and 56 isolates were characterized for their siderophore production, tested by the CAS assay. Siderophore activity ranged from 3 to 89% siderophore units, with 35 strains (41%) exhibiting high siderophore activity, and 31 (36%) and 20 (23%) showing intermediate or low activity. The amount of internalized iron of 60 bifidobacteria strains selected for their siderophore activity, was in a broad range from 8 to118 µM Fe. Four strains, B. pseudolongum PV8-2, B. kashiwanohense PV20-2, B. bifidum PV28-2a and B. longum PV5-1 isolated from infant stool samples were selected for both high siderophore activity and iron internalization. CONCLUSIONS: A broad diversity of bifidobacteria were isolated in infant stools using iron limited conditions, with some strains exhibiting high iron sequestration properties. The ability of bifidobacteria to efficiently utilize iron sequestration mechanism such as siderophore production and iron internalization may confer an ecological advantage and be the basis for enhanced competition against enteropathogens.


Assuntos
Bifidobacterium/isolamento & purificação , Bifidobacterium/metabolismo , Fezes/microbiologia , Deficiências de Ferro , Ferro/metabolismo , Sideróforos/análise , Bifidobacterium/classificação , Bifidobacterium/crescimento & desenvolvimento , Meios de Cultura/química , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Lactente , Quênia , Masculino , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA