Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biometals ; 37(3): 697-719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319451

RESUMO

Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Cádmio , Cádmio/metabolismo , Humanos , Animais , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico
2.
Arch Toxicol ; 98(4): 1043-1059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289529

RESUMO

Levels and chemical species of reactive oxygen/nitrogen species (ROS/RNS) determine oxidative eustress and distress. Abundance of uptake pathways and high oxygen consumption for ATP-dependent transport makes the renal proximal tubule particularly susceptible to cadmium (Cd2+)-induced oxidative stress by targeting ROS/RNS generation or antioxidant defence mechanisms, such as superoxide dismutase (SOD) or H2O2-metabolizing catalase (CAT). Though ROS/RNS are well-evidenced, the role of distinct ROS profiles in Cd2+ concentration-dependent toxicity is not clear. In renal cells, Cd2+ (10-50 µM) oxidized dihydrorhodamine 123, reaching a maximum at 2-3 h. Increases (up to fourfold) in lipid peroxidation by TBARS assay and H2O2 by Amplex Red were evident within 30 min. ROS and loss in cell viability by MTT assay with 50 µM Cd2+ could not be fully reversed by SOD mimetics Tempol and MnTBAP nor by SOD1 overexpression, whereas CAT expression and α-tocopherol were effective. SOD and CAT activities were attenuated below controls only with >6 h 50 µM Cd2+, yet augmented by up to 1.5- and 1.2-fold, respectively, by 10 µM Cd2+. Moreover, 10 µM, but not 25-50 µM Cd2+, caused 1.7-fold increase in superoxide anion (O2•-), detected by dihydroethidium, paralled by loss in cell viability, that was abolished by Tempol, MnTBAP, α-tocopherol and SOD1 or CAT overexpression. H2O2-generating NADPH oxidase 4 (NOX4) was attenuated by ~50% with 10 µM Cd2+ at 3 h compared to upregulation by 50 µM Cd2+ (~1.4-fold, 30 min), which was sustained for 24 h. In summary, O2•- predominates with low-moderate Cd2+, driving an adaptive response, whereas oxidative stress by elevated H2O2 at high Cd2+ triggers cell death signaling pathways.Highlights Different levels of reactive oxygen species are generated, depending on cadmium concentration. Superoxide anion predominates and H2O2 is suppressed with low cadmium representing oxidative eustress. High cadmium fosters H2O2 by inhibiting catalase and increasing NOX4 leading to oxidative distress. Superoxide dismutase mimetics and overexpression were less effective with high versus low cadmium. Oxidative stress profile could dictate downstream signalling pathways.


Assuntos
Cádmio , Óxidos N-Cíclicos , Metaloporfirinas , Marcadores de Spin , Superóxidos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cádmio/toxicidade , Catalase/metabolismo , Catalase/farmacologia , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Rim , Superóxido Dismutase/metabolismo , Linhagem Celular
3.
J Biol Chem ; 298(2): 101492, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915026

RESUMO

Oncogenic multidrug resistance is commonly intrinsic to renal cancer based on the physiological expression of detoxification transporters, particularly ABCB1, thus hampering chemotherapy. ABCB1 activity is directly dependent on its lipid microenvironment, localizing to cholesterol- and sphingomyelin (SM)-rich domains. As ceramides are the sole source for SMs, we hypothesized that ceramide synthase (CerS)-derived ceramides regulate ABCB1 activity. Using data from RNA-Seq databases, we found that patient kidney tumors exhibited increased CerS2 mRNA, which was inversely correlated with CerS6 mRNA in ABCB1+ clear cell carcinomas. Endogenous elevated CerS2 and lower CerS5/6 mRNA and protein resulted in disproportionately higher CerS2 to CerS5/6 activities (approximately twofold) in chemoresistant ABCB1high (A498, Caki-1) compared with chemosensitive ABCB1low (ACHN, normal human proximal convoluted tubule cell) cells. In addition, lipidomics analyses by HPLC-MS/MS showed bias toward CerS2-associated C20:0/C20:1-ceramides compared with CerS5/6-associated C14:0/C16:0-ceramides (2:1). SMs were similarly altered. We demonstrated that chemoresistance to doxorubicin in ABCB1high cells was partially reversed by inhibitors of de novo ceramide synthesis (l-cycloserine) and CerS (fumonisin B1) in cell viability assays. Downregulation of CerS2/6, but not CerS5, attenuated ABCB1 mRNA, protein, plasma membrane localization, rhodamine 123+ efflux transport activity, and doxorubicin resistance. Similar findings were observed with catalytically inactive CerS6-H212A. Furthermore, CerS6-targeting siRNA shifted ceramide and SM composition to ultra long-chain species (C22-C26). Inhibitors of endoplasmic reticulum-associated degradation (eeyarestatin I) and the proteasome (MG132, bortezomib) prevented ABCB1 loss induced by CerS2/6 downregulation. We conclude that a critical balance in ceramide/SM species is prerequisite to ABCB1 expression and functionalization, which could be targeted to reverse multidrug resistance in renal cancers.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Neoplasias Renais , Proteínas de Membrana , Esfingolipídeos , Esfingosina N-Aciltransferase , Proteínas Supressoras de Tumor , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Ceramidas/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Degradação Associada com o Retículo Endoplasmático , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Proteínas de Membrana/metabolismo , RNA Mensageiro/genética , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Espectrometria de Massas em Tandem , Microambiente Tumoral
4.
Am J Physiol Renal Physiol ; 325(5): F564-F577, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589051

RESUMO

The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.


Assuntos
Metaloproteínas , Nefrose , Humanos , Lipocalina-2/metabolismo , Metaloproteínas/metabolismo , Cádmio/metabolismo , Ferro/metabolismo , Metalotioneína/metabolismo , Túbulos Renais Proximais/metabolismo , Proteinúria/metabolismo , Nefrose/metabolismo , Endocitose , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo
5.
Arch Toxicol ; 96(6): 1573-1607, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445830

RESUMO

The kidney is the main organ that senses changes in systemic oxygen tension, but it is also the key detoxification, transit and excretion site of transition metals (TMs). Pivotal to oxygen sensing are prolyl-hydroxylases (PHDs), which hydroxylate specific residues in hypoxia-inducible factors (HIFs), key transcription factors that orchestrate responses to hypoxia, such as induction of erythropoietin (EPO). The essential TM ion Fe is a key component and regulator of the hypoxia-PHD-HIF-EPO (HPHE) signaling axis, which governs erythropoiesis, angiogenesis, anaerobic metabolism, adaptation, survival and proliferation, and hence cell and body homeostasis. However, inadequate concentrations of essential TMs or entry of non-essential TMs in organisms cause toxicity and disrupt health. Non-essential TMs are toxic because they enter cells and displace essential TMs by ionic and molecular mimicry, e. g. in metalloproteins. Here, we review the molecular mechanisms of HPHE interactions with TMs (Fe, Co, Ni, Cd, Cr, and Pt) as well as their implications in renal physiology, pathophysiology and toxicology. Some TMs, such as Fe and Co, may activate renal HPHE signaling, which may be beneficial under some circumstances, for example, by mitigating renal injuries from other causes, but may also promote pathologies, such as renal cancer development and metastasis. Yet some other TMs appear to disrupt renal HPHE signaling, contributing to the complex picture of TM (nephro-)toxicity. Strikingly, despite a wealth of literature on the topic, current knowledge lacks a deeper molecular understanding of TM interaction with HPHE signaling, in particular in the kidney. This precludes rationale preventive and therapeutic approaches to TM nephrotoxicity, although recently activators of HPHE signaling have become available for therapy.


Assuntos
Eritropoetina , Nefropatias , Eritropoetina/metabolismo , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Nefropatias/patologia , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
6.
Pneumologie ; 76(12): 908-923, 2022 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-36377133

RESUMO

The specialist field of "pneumology" is still underrepresented in university clinics in Germany, but this is not the case at the newly founded medical faculty Ostwestfalen-Lippe (OWL) in Bielefeld. This is linked to representing pneumology and internal intensive care medicine in patient care, teaching and research across the board and the opportunity to actively help shape the development of the human medicine faculty in an exciting environment.The early anchoring of the subject "Pneumology" in the model degree program of medical school in OWL (begin winter semester 2021/22) contributes to further visibility and a university medical orientation. In this overview various issues of Pneumology in the Model Degree Program are explored by basic scientists, clinical teachers, members of the medical faculty and a student.In today's Evangelisches Klinikum Bethel (EvKB), pulmonary medicine has a long tradition. The hospital's first lung and infection center was opened in 1927. The EvKB's department for internal medicine, pneumology and intensive care medicine, which has been independent since 2009, is becoming a university clinic for pneumology within the medical faculty OWL. Relevant translational and interdisciplinary research can be intensified.There are 30 "Pneumology" teaching units in the model degree program, which are divided into two study sections using different formats, such as lectures, seminars, hands on courses and skills lab. It is represented in particular in the module complex "Circulation and Respiration". The content of the first phase of teaching was carried out by a module commission, with members representing the subjects involved in the module.Knowledge of the basics from, for example, physiology, pathophysiology, anatomy and pathology are taught to the students in the run-up to the pneumology course. Using the example of physiology, the presentation of the learning content of a basic subject is elaborated in this article.Half of all teaching units on pneumology of the entire course took place in the 2nd semester (in March and April 2022), so that students experienced the clinical relevance of the content at an early stage. There was a particular focus on obstructive airway and restrictive lung diseases. After imparting the basic knowledge of the physical examination of the lungs in the Skills Lab, the most important pathological findings in the above-mentioned diseases on inspection, palpation, auscultation and percussion are demonstrated and practised in patients as part of bedside teaching under supervision.Communication training is also longitudinally integrated into the modular teaching, with a total of more than 200 teaching hours and is performed interdisciplinary. In the "Circulation and Breathing" module eight hours are devoted to this with simulated patients, the anamnesis and therapy advice on classic cardiopulmonary diseases. For the students, integrating the teaching of basic theory and its clinical application for each organ systems represents a challenge in the model degree program, the advantages outweigh from today's perspective.


Assuntos
Docentes de Medicina , Pneumologia , Humanos , Alemanha
7.
Arch Toxicol ; 95(8): 2719-2735, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181029

RESUMO

The liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5-5 µmol/l) and/or Fe2+ (50-100 µmol/l) for 4-24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.


Assuntos
Cádmio/toxicidade , Hepcidinas/genética , Ferro/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva , Cádmio/administração & dosagem , Morte Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Desferroxamina/farmacologia , Feminino , Inativação Gênica , Ferro/administração & dosagem , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298880

RESUMO

BACKGROUND: The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.


Assuntos
Cádmio/metabolismo , Endocitose/fisiologia , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metalotioneína/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/metabolismo
9.
J Biol Chem ; 294(17): 7025-7036, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30833328

RESUMO

Receptor-mediated endocytosis is responsible for reabsorption of transferrin (Tf) in renal proximal tubules (PTs). Although the role of the megalin-cubilin receptor complex (MCRC) in this process is unequivocal, modalities independent of this complex are evident but as yet undefined. Here, using immunostaining and Tf-flux assays, FACS analysis, and fluorescence imaging, we report localization of Tf receptor 1 (TfR1), the cognate Tf receptor mediating cellular holo-Tf (hTf) acquisition, to the apical brush border of the PT, with expression gradually declining along the PT in mouse and rat kidneys. In functional studies, hTf uptake across the apical membrane of cultured PT epithelial cell (PTEC) monolayers increased in response to decreased cellular iron after desferrioxamine (DFO) treatment. We also found that apical hTf uptake under basal conditions is receptor-associated protein (RAP)-sensitive and therefore mediated by the MCRC but becomes RAP-insensitive under DFO treatment, with concomitantly decreased megalin and cubilin expression levels and increased TfR1 expression. Thus, as well as the MCRC, TfR1 mediates hTf uptake across the PT apical brush border, but in conditions of decreased cellular iron, hTf uptake is predominated by augmented apical TfR1. In conclusion, both the MCRC and TfR1 mediate hTf uptake across apical brush border membranes of PTECs and reciprocally respond to decreased cellular iron. Our findings have implications for renal health, whole-body iron homeostasis, and pathologies arising from disrupted iron balance.


Assuntos
Ferro/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Animais , Linhagem Celular Transformada , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos WKY
10.
Arch Toxicol ; 94(4): 1017-1049, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32206829

RESUMO

Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Organelas/efeitos dos fármacos , Animais , Humanos , Mamíferos , Organelas/fisiologia , Plásticos , Transdução de Sinais
11.
Biometals ; 32(3): 469-489, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30701379

RESUMO

Cadmium (Cd2+) is a toxic and non-essential divalent metal ion in eukaryotic cells. Cells can only be targeted by Cd2+ if it hijacks physiological high-affinity entry pathways, which transport essential divalent metal ions in a process termed "ionic and molecular mimicry". Hence, "free" Cd2+ ions and Cd2+ complexed with small organic molecules are transported across cellular membranes via ion channels, carriers and ATP hydrolyzing pumps, whereas receptor-mediated endocytosis (RME) internalizes Cd2+-protein complexes. Only Cd2+ transport pathways validated by stringent methodology, namely electrophysiology, 109Cd2+ tracer studies, inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, Cd2+-sensitive fluorescent dyes, or specific ligand binding and internalization assays for RME are reviewed whereas indirect correlative studies are excluded. At toxicologically relevant concentrations in the submicromolar range, Cd2+ permeates voltage-dependent Ca2+ channels ("T-type" CaV3.1, CatSper), transient receptor potential (TRP) channels (TRPA1, TRPV5/6, TRPML1), solute carriers (SLCs) (DMT1/SLC11A2, ZIP8/SLC39A8, ZIP14/SLC39A14), amino acid/cystine transporters (SLC7A9/SLC3A1, SLC7A9/SLC7A13), and Cd2+-protein complexes are endocytosed by the lipocalin-2/NGAL receptor SLC22A17. Cd2+ transport via the mitochondrial Ca2+ uniporter, ATPases ABCC1/2/5 and transferrin receptor 1 is likely but requires further evidence. Cd2+ flux occurs through the influx carrier OCT2/SLC22A2, efflux MATE proteins SLC47A1/A2, the efflux ATPase ABCB1, and RME of Cd2+-metallothionein by the receptor megalin (low density lipoprotein receptor-related protein 2, LRP2):cubilin albeit at high concentrations thus questioning their relevance in Cd2+ loading. Which Cd2+-protein complexes are internalized by megalin:cubilin in vivo still needs to be determined. A stringent conservative and reductionist approach is mandatory to verify relevance of transport pathways for Cd2+ toxicity and to overcome dissemination of unsubstantiated conjectures.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Cádmio/metabolismo , Complexos de Coordenação/metabolismo , Células Eucarióticas/metabolismo , Canais Iônicos/metabolismo , Receptores de Superfície Celular/metabolismo , Cádmio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Complexos de Coordenação/farmacologia , Células Eucarióticas/efeitos dos fármacos , Humanos
13.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671521

RESUMO

The rodent collecting duct (CD) expresses a 24p3/NGAL/lipocalin-2 (LCN2) receptor (SLC22A17) apically, possibly to mediate high-affinity reabsorption of filtered proteins by endocytosis, although its functions remain uncertain. Recently, we showed that hyperosmolarity/-tonicity upregulates SLC22A17 in cultured mouse inner-medullary CD cells, whereas activation of toll-like receptor 4 (TLR4), via bacterial lipopolysaccharides (LPS), downregulates SLC22A17. This is similar to the upregulation of Aqp2 by hyperosmolarity/-tonicity and arginine vasopressin (AVP), and downregulation by TLR4 signaling, which occur via the transcription factors NFAT5 (TonEBP or OREBP), cAMP-responsive element binding protein (CREB), and nuclear factor-kappa B, respectively. The aim of the study was to determine the effects of osmolarity/tonicity and AVP, and their associated signaling pathways, on the expression of SLC22A17 and its ligand, LCN2, in the mouse (m) cortical collecting duct cell line mCCD(cl.1). Normosmolarity/-tonicity corresponded to 300 mosmol/L, whereas the addition of 50-100 mmol/L NaCl for up to 72 h induced hyperosmolarity/-tonicity (400-500 mosmol/L). RT-PCR, qPCR, immunoblotting and immunofluorescence microscopy detected Slc22a17/SLC22A17 and Lcn2/LCN2 expression. RNAi silenced Nfat5, and the pharmacological agent 666-15 blocked CREB. Activation of TLR4 was induced with LPS. Similar to Aqp2, hyperosmotic/-tonic media and AVP upregulated Slc22a17/SLC22A17, via activation of NFAT5 and CREB, respectively, and LPS/TLR4 signaling downregulated Slc22a17/SLC22A17. Conversely, though NFAT5 mediated the hyperosmolarity/-tonicity induced downregulation of Lcn2/LCN2 expression, AVP reduced Lcn2/LCN2 expression and predominantly apical LCN2 secretion, evoked by LPS, through a posttranslational mode of action that was independent of CREB signaling. In conclusion, the hyperosmotic/-tonic upregulation of SLC22A17 in mCCD(cl.1) cells, via NFAT5, and by AVP, via CREB, suggests that SLC22A17 contributes to adaptive osmotolerance, whereas LCN2 downregulation could counteract increased proliferation and permanent damage of osmotically stressed cells.


Assuntos
Arginina Vasopressina/farmacologia , Córtex Renal/citologia , Túbulos Renais Coletores/citologia , Lipocalina-2/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Ligantes , Camundongos , Concentração Osmolar , Ratos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
14.
Int J Mol Sci ; 20(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091675

RESUMO

Cadmium (Cd2+) in the environment is a significant health hazard. Chronic low Cd2+ exposure mainly results from food and tobacco smoking and causes kidney damage, predominantly in the proximal tubule. Blood Cd2+ binds to thiol-containing high (e.g., albumin, transferrin) and low molecular weight proteins (e.g., the high-affinity metal-binding protein metallothionein, ß2-microglobulin, α1-microglobulin and lipocalin-2). These plasma proteins reach the glomerular filtrate and are endocytosed at the proximal tubule via the multiligand receptor complex megalin:cubilin. The current dogma of chronic Cd2+ nephrotoxicity claims that Cd2+-metallothionein endocytosed via megalin:cubilin causes renal damage. However, a thorough study of the literature strongly argues for revision of this model for various reasons, mainly: (i) It relied on studies with unusually high Cd2+-metallothionein concentrations; (ii) the KD of megalin for metallothionein is ~105-times higher than (Cd2+)-metallothionein plasma concentrations. Here we investigated the uptake and toxicity of ultrafiltrated Cd2+-binding protein ligands that are endocytosed via megalin:cubilin in the proximal tubule. Metallothionein, ß2-microglobulin, α1-microglobulin, lipocalin-2, albumin and transferrin were investigated, both as apo- and Cd2+-protein complexes, in a rat proximal tubule cell line (WKPT-0293 Cl.2) expressing megalin:cubilin at low passage, but is lost at high passage. Uptake was determined by fluorescence microscopy and toxicity by MTT cell viability assay. Apo-proteins in low and high passage cells as well as Cd2+-protein complexes in megalin:cubilin deficient high passage cells did not affect cell viability. The data prove Cd2+-metallothionein is not toxic, even at >100-fold physiological metallothionein concentrations in the primary filtrate. Rather, Cd2+-ß2-microglobulin, Cd2+-albumin and Cd2+-lipocalin-2 at concentrations present in the primary filtrate are taken up by low passage proximal tubule cells and cause toxicity. They are therefore likely candidates of Cd2+-protein complexes damaging the proximal tubule via megalin:cubilin at concentrations found in the ultrafiltrate.


Assuntos
Albuminas/metabolismo , Cádmio/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Lipocalina-2/metabolismo , Microglobulina beta-2/metabolismo , Animais , Cádmio/farmacologia , Intoxicação por Cádmio , Linhagem Celular , Túbulos Renais Proximais/citologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metalotioneína/metabolismo , Ligação Proteica , Ratos , Receptores de Superfície Celular/metabolismo
15.
J Biol Chem ; 291(6): 2917-30, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26635366

RESUMO

The neutrophil gelatinase-associated lipocalin (NGAL, also known as LCN2) and its cellular receptor (LCN2-R, SLC22A17) are involved in many physiological and pathological processes such as cell differentiation, apoptosis, and inflammation. These pleiotropic functions mainly rely on NGAL's siderophore-mediated iron transport properties. However, the molecular determinants underlying the interaction between NGAL and its cellular receptor remain largely unknown. Here, using solution-state biomolecular NMR in conjunction with other biophysical methods, we show that the N-terminal domain of LCN2-R is a soluble extracellular domain that is intrinsically disordered and interacts with NGAL preferentially in its apo state to form a fuzzy complex. The relatively weak affinity (≈10 µm) between human LCN2-R-NTD and apoNGAL suggests that the N terminus on its own cannot account for the internalization of NGAL by LCN2-R. However, human LCN2-R-NTD could be involved in the fine-tuning of the interaction between NGAL and its cellular receptor or in a biochemical mechanism allowing the receptor to discriminate between apo- and holo-NGAL.


Assuntos
Proteínas de Fase Aguda/química , Lipocalinas/química , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas Proto-Oncogênicas/química , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Lipocalina-2 , Lipocalinas/genética , Lipocalinas/metabolismo , Camundongos , Ressonância Magnética Nuclear Biomolecular , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
16.
Arch Toxicol ; 89(12): 2273-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25388156

RESUMO

Cadmium (Cd(2+)) induces oxidative stress that ultimately defines cell fate and pathology. Mitochondria are the main energy-producing organelles in mammalian cells, but they also have a central role in formation of reactive oxygen species, cell injury, and death signaling. As the kidney is the major target in Cd(2+) toxicity, the roles of oxidative signature and mitochondrial function and biogenesis in Cd(2+)-related stress outcomes were investigated in vitro in cultured rat kidney proximal tubule cells (PTCs) (WKPT-0293 Cl.2) for acute Cd(2+) toxicity (1-30 µM, 24 h) and in vivo in Fischer 344 rats for sub-chronic Cd(2+) toxicity (1 mg/kg CdCl2 subcutaneously, 13 days). Whereas 30 µM Cd(2+) caused ~50 % decrease in cell viability, apoptosis peaked at 10 µM Cd(2+) in PTCs. A steep, dose-dependent decline in reduced glutathione (GSH) content occurred after acute exposure and an increase of the oxidized glutathione (GSSG)/GSH ratio. Quantitative PCR analyses evidenced increased antioxidative enzymes (Sod1, Gclc, Gclm), proapoptotic Bax, metallothioneins 1A/2A, and decreased antiapoptotic proteins (Bcl-xL, Bcl-w). The positive regulator of mitochondrial biogenesis Pparγ and mitochondrial DNA was increased, and cellular ATP was unaffected with Cd(2+) (1-10 µM). In vivo, active caspase-3, and hence apoptosis, was detected by FLIVO injection in the kidney cortex of Cd(2+)-treated rats together with an increase in Bax mRNA. However, antiapoptotic genes (Bcl-2, Bcl-xL, Bcl-w) were also upregulated. Both GSSG and GSH increased with chronic Cd(2+) exposure with no change in GSSG/GSH ratio and augmented expression of antioxidative enzymes (Gpx4, Prdx2). Mitochondrial DNA, mitofusin 2, and Pparα were increased indicating enhanced mitochondrial biogenesis and fusion. Hence, these results demonstrate a clear involvement of higher mitochondria copy numbers or mass and mitochondrial function in acute defense against oxidative stress induced by Cd(2+) in renal PTCs as well as in adaptive processes associated with chronic renal Cd(2+) toxicity.


Assuntos
Cloreto de Cádmio/toxicidade , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cloreto de Cádmio/administração & dosagem , Caspase 3/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo
17.
Arch Toxicol ; 88(4): 881-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24448832

RESUMO

Nickel and nickel compounds are carcinogens that target the lungs and kidneys causing cell death or cell survival adaptation. The multidrug resistance P-glycoprotein ABCB1 protects cells against toxic metabolites and xenobiotics and is upregulated in many cancer cell types. Here, we investigated the role of ABCB1 in nickel-induced stress signaling mediated by reactive oxygen species (ROS) and ceramides. In renal proximal tubule cells, nickel chloride (0.1-0.25 mM) increased both ROS formation, detected by 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and cellular ceramides, which were determined by lipid dot blot and surface immunostaining, culminating in decreased cell viability, increased DNA fragmentation, augmented PARP-1 cleavage, and increased ABCB1 mRNA and protein. Inhibitors of the de novo ceramide synthesis pathway (fumonisin B1, L-cycloserine) and an antioxidant (α-tocopherol) attenuated nickel-induced toxicity as well as induction of ABCB1. ABCB1 protects against nickel toxicity as PSC833, an ABCB1 blocker, augmented the decrease in cell viability by nickel. Moreover, nickel toxicity was attenuated in renal MDCK cells stably overexpressing ABCB1. In agreement with previous data that demonstrated extrusion of (glucosyl)ceramides by ABCB1 (Lee et al. in Toxicol Sci 121:343, 2011), PSC833 increased total cellular ceramides by >2-fold after nickel treatment. Further, glucosylceramide synthase (GCS) mRNA is upregulated by nickel at 3 h by ~1.5-fold but declined with prolonged exposures (6-24 h). Inhibition of GCS with C9DGJ or knockdown of GCS with siRNA significantly attenuated nickel toxicity. In conclusion, nickel induces a ROS-ceramide pathway to cause apoptotic cell death as well as activate adaptive survival responses, including upregulation of ABCB1, which improves cell survival by extruding proapoptotic (glucosyl)ceramides.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Glucosilceramidas/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Níquel/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Células Madin Darby de Rim Canino , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Regulação para Cima
18.
J Biol Chem ; 287(1): 159-169, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22084236

RESUMO

In the kidney, bulk reabsorption of filtered proteins occurs in the proximal tubule via receptor-mediated endocytosis (RME) through the multiligand receptor complex megalin-cubilin. Other mechanisms and nephron sites for RME of proteins are unclear. Recently, the secreted protein 24p3 (lipocalin-2, neutrophil gelatinase-associated lipocalin (NGAL)), which is expressed in the distal nephron, has been identified as a sensitive biomarker of kidney damage. A high-affinity receptor for 24p3 (24p3R) that is involved in endocytotic iron delivery has also been cloned. We investigated the localization of 24p3R in rodent kidney and its role in RME of protein-metal complexes and albumin. Immunostaining of kidney tissue showed expression of 24p3R in apical membranes of distal tubules and collecting ducts, but not of proximal tubule. The differential expression of 24p3R in these nephron segments was confirmed in the respective cell lines. CHO cells transiently transfected with 24p3R or distal tubule cells internalized submicromolar concentrations of fluorescence-coupled proteins transferrin, albumin, or metallothionein (MT) as well as the toxic cadmium-MT (Cd2+(7)-MT) complex, which caused cell death. Uptake of MT or transferrin and Cd2+(7)-MT toxicity were prevented by picomolar concentrations of 24p3. An EC50 of 123±50 nM was determined for binding of MT to 24p3R by microscale thermophoresis. Hence, 24p3R binds proteins filtered by the kidney with high affinity and may contribute to RME of proteins, including 24p3, and to Cd2+(7)-MT toxicity in distal nephron segments.


Assuntos
Proteínas de Fase Aguda/metabolismo , Endocitose , Regulação da Expressão Gênica , Túbulos Renais Distais/metabolismo , Lipocalinas/metabolismo , Proteínas Oncogênicas/metabolismo , Albuminas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Endocitose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Medula Renal/citologia , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Túbulos Renais Distais/citologia , Túbulos Renais Distais/efeitos dos fármacos , Lipocalina-2 , Masculino , Metalotioneína/toxicidade , Compostos de Quinolínio/metabolismo , Ratos , Transferrina/metabolismo
19.
Biochim Biophys Acta ; 1823(10): 1864-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22705154

RESUMO

Upon endoplasmic reticulum (ER) stress induction, cells endeavor to survive by engaging the adaptive stress response known as the unfolded protein response or by removing aggregated proteins via autophagy. Chronic ER stress culminates in apoptotic cell death, which involves induction of pro-apoptotic CHOP. Here, we show that bestrophin-3 (Best-3), a protein previously associated with Ca(2+)-activated Cl(-) channel activity, is upregulated by the ER stressors, thapsigargin (TG), tunicamycin (TUN) and the toxic metal Cd(2+). In cultured rat kidney proximal tubule cells, ER stress, CHOP and cell death were induced after 6h by Cd(2+) (25µM), TG (3µM) and TUN (6µM), were associated with increased cytosolic Ca(2+) and downstream formation of reactive oxygen species and attenuated by the Ca(2+) chelator BAPTA-AM (10µM), the antioxidant α-tocopherol (100µM), or overexpression of catalase (CAT). Immunofluorescence staining showed Best-3 expression in the plasma membrane, nuclei and intracellular compartments, though not in the ER, in cultured cells and rat kidney cortex sections. Best-3 mRNA was augmented by ER stress and signaled through increased Ca(2+), oxidative stress and ERK1/2 phosphorylation, because it was attenuated by α-tocopherol, CAT expression, BAPTA-AM, calmodulin kinase inhibitor calmidazolium (40µM), ERK1/2 inhibitor U0126 (10µM), and ERK1/2 RNAi. Knockdown of Best-3 resulted in decreased cell number consequentially of cell death, as determined by nuclear staining and PARP-1 cleavage. Furthermore, reduced ER stress-cell death by Best-3 overexpression is attributed to diminished CHOP. Since Best-3 overexpression did not affect upstream signaling pathways, we hypothesize that Best-3 possibly interferes with CHOP transcription. From our novel observations, we conclude that ERK1/2-dependent Best-3 activation regulates cell fate decisions during ER stress by suppressing CHOP induction and death.


Assuntos
Canais de Cloreto/metabolismo , Estresse do Retículo Endoplasmático , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Bestrofinas , Cádmio/toxicidade , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Canais de Cloreto/genética , Citoproteção/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Rim , Cinética , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
Int J Cancer ; 133(3): 556-67, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23354914

RESUMO

The multidrug resistance (MDR) P-glycoprotein ABCB1 plays a major role in MDR of malignant cells and is regulated by various transcription factors, including Wnt/ß-catenin/TCF4. The transcription factor PITX2 (Pituitary homeobox-2) is essential for embryonic development. PITX2 operates by recruiting and interacting with ß-catenin to increase the expression of growth-regulating genes, such as cyclin D1/2 and c-Myc. The importance of PITX2 in malignancy is not yet known. Here we demonstrate that in the renal cancer cell lines ACHN and A498, the level of ABCB1 expression and function correlate with nuclear PITX2 localization and PITX2-luciferase reporter gene activity (A498 > ACHN). In A498 cells, doxorubicin toxicity is augmented by the ABCB1 inhibitor, PSC833. PITX2 overexpression increases ABCB1 expression and cell survival in ACHN cells. Silencing of PITX2 by siRNA downregulates ABCB1 and induces a greater chemotherapeutic response to doxorubicin in A498 cells, as determined by MTT cell viability and clonogenic survival assays. Two PITX2 binding sequences were identified in the ABCB1 promoter sequence. PITX2 binding was confirmed by chromatin immunoprecipitation. ß-Catenin is not required for PITX2 upregulation of ABCB1 because ABCB1 mRNA increased and doxorubicin toxicity decreased upon PITX2 overexpression in ß-catenin(-/-) cells. The data show for the first time that ABCB1 is a target gene of PITX2 transcriptional activity, promoting MDR and cell survival of cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Doxorrubicina/farmacologia , Proteínas de Homeodomínio/metabolismo , Neoplasias Renais/tratamento farmacológico , Fatores de Transcrição/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular , Imunoprecipitação da Cromatina , Ciclosporinas/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Transdução de Sinais/genética , Fatores de Transcrição/genética , Ativação Transcricional , beta Catenina/genética , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA