Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(11): e23718, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847487

RESUMO

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.


Assuntos
Estrogênios , Camundongos Endogâmicos mdx , Músculo Esquelético , Proteínas de Ligação a RNA , Animais , Feminino , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Camundongos Endogâmicos C57BL , Ovariectomia , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos
2.
Neurobiol Dis ; 162: 105559, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774794

RESUMO

Skeletal muscle dysfunction may contribute to the progression and severity of amyotrophic lateral sclerosis (ALS). In the present study, we characterized the skeletal muscle pathophysiology in an inducible transgenic mouse model (rNLS8) that develops a TAR-DNA binding protein (TDP-43) proteinopathy and ALS-like neuropathology and disease progression; representative of >90% of all familial and sporadic ALS cases. As we previously observed elevated levels of miR-23a in skeletal muscle of patients with familial and sporadic ALS, we also investigated the effect of miR-23a suppression on skeletal muscle pathophysiology and disease severity in rNLS8 mice. Five weeks after disease onset TDP-43 protein accumulation was observed in tibialis anterior (TA), quadriceps (QUAD) and diaphragm muscle lysates and associated with skeletal muscle atrophy. In the TA muscle TDP-43 was detected in muscle fibres that appeared atrophied and angular in appearance and that also contained ß-amyloid aggregates. These fibres were also positive for neural cell adhesion molecule (NCAM), but not embryonic myosin heavy chain (eMHC), indicating TDP-43/ ß-amyloid localization in denervated muscle fibres. There was an upregulation of genes associated with myogenesis and NMJ degeneration and a decrease in the MURF1 atrophy-related protein in skeletal muscle. Suppression of miR-23a impaired rotarod performance and grip strength and accelerated body weight loss during early stages of disease progression. This was associated with increased AchRα mRNA expression and decreased protein levels of PGC-1α. The TDP-43 proteinopathy-induced impairment of whole body and skeletal muscle functional performance is associated with muscle wasting and elevated myogenic and NMJ stress markers. Suppressing miR-23a in the rNLS8 mouse model of ALS contributes to an early acceleration of disease progression as measured by decline in motor function.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , MicroRNAs , Proteinopatias TDP-43 , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Proteinopatias TDP-43/genética
3.
FASEB J ; 35(12): e22034, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34780665

RESUMO

Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.


Assuntos
Comportamento Animal , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Condicionamento Físico Animal , Estresse Psicológico/complicações , Animais , Modelos Animais de Doenças , Distrofina/deficiência , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/etiologia , Distrofia Muscular Animal/psicologia , Distrofia Muscular de Duchenne/etiologia , Distrofia Muscular de Duchenne/psicologia , Fatores Sexuais
4.
FASEB J ; 35(4): e21489, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734502

RESUMO

Psychosocial stressors can cause physical inactivity, cardiac damage, and hypotension-induced death in the mdx mouse model of Duchenne muscular dystrophy (DMD). Because repeated exposure to mild stress can lead to habituation in wild-type mice, we investigated the response of mdx mice to a mild, daily stress to determine whether habituation occurred. Male mdx mice were exposed to a 30-sec scruff restraint daily for 12 weeks. Scruff restraint induced immediate physical inactivity that persisted for at least 60 minutes, and this inactivity response was just as robust after 12 weeks as it was after one day. Physical inactivity in the mdx mice was not associated with acute skeletal muscle contractile dysfunction. However, skeletal muscle of mdx mice that were repeatedly stressed had slow-twitch and tetanic relaxation times and trended toward high passive stiffness, possibly due to a small but significant increase in muscle fibrosis. Elevated urinary corticosterone secretion, adrenal hypertrophy, and a larger adrenal cortex indicating chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis were measured in 12-week stressed mdx mice relative to those unstressed. However, pharmacological inhibition of the HPA axis did not affect scruff-induced physical inactivity and acute corticosterone injection did not recapitulate the scruff-induced phenotype, suggesting the HPA axis is not the driver of physical inactivity. Our results indicate that the response of mdx mice to an acute mild stress is non-habituating and that when that stressor is repeated daily for weeks, it is sufficient to exacerbate some phenotypes associated with dystrophinopathy in mdx mice.


Assuntos
Distrofina/deficiência , Sistema Hipotálamo-Hipofisário/fisiopatologia , Fenótipo , Animais , Modelos Animais de Doenças , Coração/fisiopatologia , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Sistema Hipófise-Suprarrenal/fisiopatologia
5.
Hum Mol Genet ; 28(6): 942-951, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30476171

RESUMO

Duchenne muscular dystrophy is a deadly muscle-wasting disorder caused by loss of dystrophin protein. Studies suggest that metabolic alterations are important to disease pathogenesis. Because muscle accounts for ~40% of body mass, we hypothesized that dystrophy-mediated metabolic changes would be measurable in biofluids and that a metabolomic analysis of urine would provide insight into the metabolic status of dystrophic muscle. Using the mdx mouse model, we performed a large-scale metabolomic screen at 1 and 3 months. While 10% of metabolites were altered at age 1 month, 40% were changed at 3 months. Principal component analysis distinguished wild-type from mdx animals, with the greatest separation at 3 months. A critical distinguishing pathway was Krebs cycle metabolite depletion in mdx urine. Five of seven detected Krebs cycle metabolites were depleted in mdx urine, with succinate being the most robustly affected metabolite. Using selected reaction monitoring mass spectrometry, we demonstrated that muscle-specific dystrophin expression corrects mdx succinate depletion. When subjected to downhill treadmill running, wild-type and mdx mice expressing recombinant dystrophin in skeletal muscle displayed significant increases in urinary succinate levels. However, mdx succinate levels were unchanged, suggesting urinary succinate depletion may reflect an inability to upregulate the Krebs cycle following exercise. Finally, we show that supplementing the Krebs cycle in an ex vivo fatigue/recovery assay significantly impacts mdx muscle performance but has no effect on wild-type muscle. Our results suggest that global metabolic impairment is associated with mdx disease progression and that Krebs cycle deficiencies are a downstream consequence of dystrophin loss.


Assuntos
Ciclo do Ácido Cítrico , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Metabolismo Energético , Masculino , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Mutação , Condicionamento Físico Animal
6.
Exp Physiol ; 106(7): 1597-1611, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963617

RESUMO

NEW FINDINGS: What is the central question of this study? Striated muscle activator of rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis, processes that are impaired in dystrophic muscle: what is the regulation of the STARS pathway in Duchenne muscular dystrophy (DMD)? What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation pathways. Regulating STARS may be a therapeutic approach to enhance muscle health. ABSTRACT: Duchenne muscular dystrophy (DMD) is characterised by impaired cytoskeleton organisation, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The striated muscle activator of rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway, a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (P < 0.05). This was not associated with changes in muscle mass, fibre cross-sectional area, fibre type, centralised nuclei or collagen deposition. Proteomics screening followed by pathway enrichment analysis identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production.


Assuntos
Distrofia Muscular de Duchenne , Fosforilação Oxidativa , Citoesqueleto de Actina/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Proteínas dos Microfilamentos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
7.
Muscle Nerve ; 64(2): 190-198, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974714

RESUMO

INTRODUCTION/AIMS: Clinical trials addressing treatments for Duchenne muscular dystrophy (DMD) require reliable and valid measurement of muscle contractile function across all disease severity levels. In this work we aimed to evaluate a protocol combining voluntary and evoked contractions to measure strength and excitability of wrist extensor muscles for safety, feasibility, reliability, and discriminant validity between males with DMD and controls. METHODS: Wrist extensor muscle strength and excitability were assessed in males with DMD (N = 10; mean ± standard deviation: 15.4 ± 5.9 years of age), using the Brooke Upper Extremity Rating Scale (scored 1-6), and age-matched healthy male controls (N = 15; 15.5 ± 5.0 years of age). Torque and electromyographic (EMG) measurements were analyzed under maximum voluntary and stimulated conditions at two visits. RESULTS: A protocol of multiple maximal voluntary contractions (MVCs) and evoked twitch contractions was feasible and safe, with 96% of the participants completing the protocol and having a less than 7% strength decrement on either measure for both DMD patients and controls (P ≥ .074). Reliability was excellent for voluntary and evoked measurements of torque and EMG (intraclass correlation coefficient [ICC] over 0.90 and over 0.85 within and between visits, respectively). Torque, EMG, and timing of twitch-onset measurements discriminated between DMD and controls (P < .001). Twitch contraction time did not differ significantly between groups (P = .10). DISCUSSION: Findings from this study show that the protocol is a safe, feasible, reliable, and a valid method to measure strength and excitability of wrist extensors in males with DMD.


Assuntos
Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Adolescente , Adulto , Criança , Eletromiografia/métodos , Estudos de Viabilidade , Humanos , Contração Isométrica/fisiologia , Masculino , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 115(31): 7973-7978, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012594

RESUMO

The highly similar cytoplasmic ß- and γ-actins differ by only four functionally similar amino acids, yet previous in vitro and in vivo data suggest that they support unique functions due to striking phenotypic differences between Actb and Actg1 null mouse and cell models. To determine whether the four amino acid variances were responsible for the functional differences between cytoplasmic actins, we gene edited the endogenous mouse Actb locus to translate γ-actin protein. The resulting mice and primary embryonic fibroblasts completely lacked ß-actin protein, but were viable and did not present with the most overt and severe cell and organismal phenotypes observed with gene knockout. Nonetheless, the edited mice exhibited progressive high-frequency hearing loss and degeneration of actin-based stereocilia as previously reported for hair cell-specific Actb knockout mice. Thus, ß-actin protein is not required for general cellular functions, but is necessary to maintain auditory stereocilia.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Modelos Biológicos , Actinas/genética , Animais , Linhagem Celular , Citoplasma/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Camundongos , Camundongos Knockout
9.
J Strength Cond Res ; 35(2): 576-584, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337696

RESUMO

ABSTRACT: Lindsay, A, Abbott, G, Ingalls, CP, and Baumann, CW. Muscle strength does not adapt from a second to third bout of eccentric contractions: A systematic review and meta-analysis of the repeated bout effect. J Strength Cond Res 35(2): 576-584, 2021-The greatest muscle strength adaptations to repeated bouts of eccentric contractions (ECC) occur after the initial injury, with little to no change in subsequent bouts. However, because of the disparity in injury models, it is unknown whether three or more bouts provide further adaptation. Therefore, we performed a systematic review of the literature to evaluate whether a third bout of skeletal muscle ECC impacts immediate strength loss and rate of strength recovery compared with a second bout. A search of the literature in Web of Science, SCOPUS, Medline, and the American College of Sports Medicine database was conducted between May and September 2019 using the keywords eccentric contraction or lengthening contraction and muscle and repeated or multiple, and bout. Eleven studies with 12 experimental groups, using 72 human subjects, 48 mice, and 11 rabbits, met the inclusion criteria. A meta-analysis using a random effects model and effect sizes (ESs; Hedges' g) calculated from the standardized mean differences was completed. Calculated ESs for immediate strength loss provided no evidence that a third bout of ECC results in greater loss of strength compared with a second bout (ES = -0.12, 95% confidence interval [CI] = -0.41 to 0.17). Furthermore, the rate of strength recovery was not different between a second and third bout (ES = -0.15, 95% CI = -1.01 to 0.70). These results indicate a third bout of skeletal muscle ECC does not improve indices of strength loss or rate of strength recovery compared with a second bout. Therefore, coaches and athletes should expect some level of persistent weakness after each of their initial training sessions involving ECC, and the faster recovery of strength deficits in the second bout documented by previous research is not different from a third bout.


Assuntos
Músculo Esquelético , Esportes , Adaptação Fisiológica , Animais , Camundongos , Contração Muscular , Força Muscular , Coelhos
10.
Am J Physiol Endocrinol Metab ; 319(6): E1008-E1018, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954829

RESUMO

Skeletal muscle is sensitive to environmental cues that are first present in utero. Maternal overnutrition is a model of impaired muscle development leading to structural and metabolic dysfunction in adult life. In this study, we investigated the effect of an obesogenic maternal environment on growth and postnatal myogenesis in the offspring. Male C57BL/6J mice born to chow- or high-fat-diet-fed mothers were allocated to four different groups at the end of weaning. For the following 10 wk, half of the pups were maintained on the same diet as their mother and half of the pups were switched to the other diet (chow or high-fat). At 12 wk of age, muscle injury was induced using an intramuscular injection of barium chloride. Seven days later, mice were humanely killed and muscle tissue was harvested. A high-fat maternal diet impaired offspring growth patterns and downregulated satellite cell activation and markers of postnatal myogenesis 7 days after injury without altering the number of newly synthetized fibers over the whole 7-day period. Importantly, a healthy postnatal diet could not reverse any of these effects. In addition, we demonstrated that postnatal myogenesis was associated with a diet-independent upregulation of three miRNAs, mmu-miR-31-5p, mmu-miR-136-5p, and mmu-miR-296-5p. Furthermore, in vitro analysis confirmed the role of these miRNAs in myocyte proliferation. Our findings are the first to demonstrate that maternal overnutrition impairs markers of postnatal myogenesis in the offspring and are particularly relevant to today's society where the incidence of overweight/obesity in women of childbearing age is increasing.


Assuntos
Dieta Hiperlipídica , Crescimento e Desenvolvimento/fisiologia , Desenvolvimento Muscular/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Células Satélites de Músculo Esquelético/fisiologia , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Hipernutrição/complicações , Hipernutrição/fisiopatologia , Gravidez , Complicações na Gravidez/etiologia , Complicações na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
11.
Hum Mol Genet ; 27(12): 2090-2100, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618008

RESUMO

Delivery of miniaturized dystrophin genes via adeno-associated viral vectors is one leading approach in development to treat Duchenne muscular dystrophy. Here we directly compared the functionality of five mini- and micro-dystrophins via skeletal muscle-specific transgenic expression in dystrophin-deficient mdx mice. We evaluated their ability to rescue defects in the microtubule network, passive stiffness and contractility of skeletal muscle. Transgenic mdx mice expressing the short dystrophin isoform Dp116 served as a negative control. All mini- and micro-dystrophins restored elevated detyrosinated α-tubulin and microtubule density of mdx muscle to values not different from C57BL/10, however, only mini-dystrophins restored the transverse component of the microtubule lattice back to C57BL/10. Passive stiffness values in mdx muscles expressing mini- or micro-dystrophins were not different from C57BL/10. While all mini- and micro-dystrophins conferred significant protection from eccentric contraction-induced force loss in vivo and ex vivo compared to mdx, removal of repeats two and three resulted in less protection from force drop caused by eccentric contraction ex vivo. Our data reveal subtle yet significant differences in the relative functionalities for different therapeutic constructs of miniaturized dystrophin in terms of protection from ex vivo eccentric contraction-induced force loss and restoration of an organized microtubule lattice.


Assuntos
Distrofina/genética , Microtúbulos/genética , Distrofia Muscular de Duchenne/genética , Tubulina (Proteína)/genética , Animais , Modelos Animais de Doenças , Distrofina/deficiência , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos mdx/genética , Camundongos Transgênicos , Microtúbulos/patologia , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia
12.
Hum Mol Genet ; 27(3): 451-462, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194514

RESUMO

Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo.


Assuntos
Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Mutação de Sentido Incorreto/genética , Animais , Western Blotting , Linhagem Celular , DNA Complementar/genética , Imunofluorescência , Membro Anterior/metabolismo , Membro Anterior/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Distrofia Muscular de Duchenne/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Exp Physiol ; 103(7): 995-1009, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29791760

RESUMO

NEW FINDINGS: What is the central question of this study? We examined whether the macrophage-synthesized antioxidant 7,8-dihydroneopterin was elevated in Duchenne muscular dystrophy (DMD) patients. We then examined whether 7,8-dihydroneopterin could protect dystrophic skeletal mouse muscle from eccentric contraction-induced force loss and improve recovery. What is the main finding and its importance? Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients. 7,8-Dihydroneopterin attenuated eccentric contraction-induced force loss of dystrophic skeletal mouse muscle and accelerated recovery of force. These results suggest that eccentric contraction-induced force loss is mediated, in part, by an oxidative component and provides a potential protective role for 7,8-dihydroneopterin in DMD. ABSTRACT: Macrophage infiltration is a hallmark of dystrophin-deficient muscle. We tested the hypothesis that Duchenne muscular dystrophy (DMD) patients would have elevated levels of the macrophage-synthesized pterins, neopterin and 7,8-dihydroneopterin, compared with unaffected age-matched control subjects. Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients, and 7,8-dihydroneopterin/creatinine was associated with patient age and ambulation. Urinary 7,8-dihydroneopterin corrected for specific gravity was also elevated in DMD patients. Given that 7,8-dihydroneopterin is an antioxidant, we then identified a potential role for 7,8-dihydroneopterin in disease pathology. We assessed whether 7,8-dihydroneopterin could: (i) protect against isometric force loss in wild-type skeletal muscle exposed to various pro-oxidants; and (ii) protect wild-type and mdx muscle from eccentric contraction-induced force loss, which has an oxidative component. Force loss was elicited in isolated extensor digitorum longus (EDL) muscles by 10 eccentric contractions, and recovery of force after the contractions was measured in the presence of exogenous 7,8-dihydroneopterin. 7,8-Dihydroneopterin attenuated isometric force loss by wild-type EDL muscles when challenged by H2 O2 and HOCl, but exacerbated force loss when challenged by SIN-1 (NO• , O2• , ONOO- ). 7,8-Dihydroneopterin attenuated eccentric contraction-induced force loss in mdx muscle. Isometric force production by EDL muscles of mdx mice also recovered to a greater degree after eccentric contractions in the presence of 7,8-dihydroneopterin. The results corroborate macrophage activation in DMD patients, provide a potential protective role for 7,8-dihydroneopterin in the susceptibility of dystrophic muscle to eccentric contractions and indicate that oxidative stress contributes to eccentric contraction-induced force loss in mdx skeletal muscle.


Assuntos
Contração Muscular/fisiologia , Distrofia Muscular de Duchenne/urina , Neopterina/análogos & derivados , Neopterina/urina , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia
14.
Exp Physiol ; 101(7): 851-65, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27094349

RESUMO

What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance.


Assuntos
Exercício Físico/fisiologia , Leucócitos Mononucleares/fisiologia , Adulto , Atletas , Células Cultivadas , Temperatura Baixa , Crioterapia/métodos , Fadiga/metabolismo , Fadiga/fisiopatologia , Humanos , Leucócitos Mononucleares/metabolismo , Neopterina/análogos & derivados , Neopterina/metabolismo , Linfócitos T/metabolismo , Linfócitos T/fisiologia
16.
Anal Biochem ; 491: 37-42, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26363103

RESUMO

This study investigated a means of quantifying urinary myoglobin using a novel reverse-phase high-performance liquid chromatography (RP-HPLC) method that is an alternative measure of exercise-induced muscle damage. It also investigated the effect of storage and alkalization on urinary myoglobin stability issues. An RP-HPLC method was validated by precision and repeatability experiments. Myoglobin stability was determined through spiked urine samples stored at various temperatures over an 8-week period using alkalization and dilution in a pH 7.0 buffer. The method was validated with urine collected from mixed martial arts fighters during a competition and training session. The method produced linearity from 5 to 1000 µg/ml (R(2) = 0.997), intra- and inter-assay coefficients of variation from 0.32 to 2.94%, and a lower detection limit of 0.2 µg/ml in the final dilution and 2 µg/ml in the original urine sample. Recovery ranged from 96.4 to 102.5%, myoglobin remained stable at 4 °C when diluted in a pH 7.0 buffer after 20 h, and a significant increase (P < 0.01) and an identifiable peak were observed following a mixed martial arts contest and training session. Storage length and conditions had significant effects (P < 0.05) on stability. The method's simplicity and noninvasive nature means it can be used as an alternative muscle damage assay following exercise and trauma.


Assuntos
Cromatografia Líquida de Alta Pressão , Músculo Esquelético/metabolismo , Mioglobina/análise , Urinálise/métodos , Adulto , Cromatografia de Fase Reversa , Exercício Físico , Humanos , Adulto Jovem
17.
J Sports Sci ; 33(9): 882-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25358055

RESUMO

Rugby union is a sport governed by the impacts of high force and high frequency. Analysis of physiological markers following a game can provide an understanding of the physiological response of an individual and the time course changes in response to recovery. Urine and saliva were collected from 11 elite amateur rugby players 24 h before, immediately after, and at 17, 25, 38, 62 and 86 h post-game. Myoglobin, salivary immunoglobulin A and cortisol were analysed by ELISA, whereas neopterin and total neopterin were analysed by high-performance liquid chromatography. There was a significant post-game increase of all four markers. The increases were cortisol 4-fold, myoglobin 2.85-fold, neopterin 1.75-fold and total neopterin 2.3-fold when corrected with specific gravity. All significant changes occurred post-game only, with markers returning to and remaining at baseline within 17 h. The intensity of the game caused significant changes in key physiological markers of stress. They provide an understanding of the stress experienced during a single game of rugby and the time course changes associated with player recovery. Neopterin provides a new marker of detecting an acute inflammatory response in physical exercise, while specific gravity should be considered for urine volume correction post-exercise.


Assuntos
Biomarcadores/metabolismo , Inflamação/metabolismo , Futebol/fisiologia , Estresse Fisiológico , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Humanos , Hidrocortisona/metabolismo , Imunoglobulina A/metabolismo , Masculino , Músculo Esquelético/lesões , Mioglobinúria/metabolismo , Neopterina/urina , Nova Zelândia , Saliva/imunologia , Saliva/metabolismo
19.
Prog Neurobiol ; 235: 102590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484964

RESUMO

Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Distrofina/genética , Medo , Distrofia Muscular de Duchenne/genética , Mutação , Vertebrados
20.
Artigo em Inglês | MEDLINE | ID: mdl-39008617

RESUMO

Exercise training is considered a non-pharmacological therapeutic approach for many diseases. Mild-to-moderate endurance exercise training is suggested to improve the mental and physical state of people with Amyotrophic Lateral Sclerosis (ALS). The aim of the present study was to determine the capacity of symptomatic rNLS8 mice, which develop ALS-reminiscent TAR DNA-binding protein 43 (TDP-43) pathology and motor dysfunction, to perform mild-to-moderate intensity treadmill exercise training and to evaluate the effects of this training on skeletal muscle health and disease progression. Symptomatic rNLS8 mice were able to complete four weeks of mild-to-moderate treadmill running (30 min at 6-13 m/min, 3 days a week). Exercise training induced an increase in the percentage of type IIA fibers in the tibialis anterior muscle as well as minor adaptations in molecular markers of myogenic, mitochondrial and neuromuscular junction health in some forelimb and hindlimb muscles. However, this exercise training protocol did not attenuate the loss in motor function or delay disease progression. Alternative exercise regimes need to be investigated to better understand the role exercise training may play in alleviating symptoms of ALS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA