Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(2): 965-989, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392180

RESUMO

Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.

2.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396890

RESUMO

Klinefelter syndrome (KS) is a male genetic disease caused by the presence of an extra X chromosome, causing endocrine disorders mainly responsible for a high rate of infertility and metabolic disorders in adulthood. Scientific research is interested in identifying new biomarkers that can be predictive or prognostic of alterations strictly connected to KS. Lipocalin-2 (LCN-2, also known as NGAL) is a small protein initially identified within neutrophils as a protein related to innate immunity. Serum LCN-2 estimation seems to be a useful tool in predicting the metabolic complications caused by several pathological conditions. However, little is known about its potential role in infertility conditions. The present pilot study aims to investigate the presence of LCN-2 in the serum of a group of pre-pubertal and post-pubertal children affected by KS, compared to healthy controls. We demonstrated for the first time the presence of elevated levels of LCN-2 in the serum of KS patients, compared to controls. This increase was accompanied, in pre-pubertal KS patients, by the loss of correlation with LH and HDL, which instead was present in the healthy individuals. Moreover, in all KS individuals, a positive correlation between LCN-2 and inhibin B serum concentration was found. Despite the limited size of the sample analyzed, our preliminary data encourage further studies to confirm the findings and to extend the study to KS adult patients, to verify the predictive/prognostic value of LCN-2 as new biomarker for metabolic diseases and infertility associated with the pathology.


Assuntos
Infertilidade , Síndrome de Klinefelter , Lipocalina-2 , Adulto , Criança , Humanos , Masculino , Biomarcadores , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/genética , Lipocalina-2/sangue , Lipocalina-2/química , Projetos Piloto
3.
Curr Issues Mol Biol ; 45(11): 8950-8973, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998739

RESUMO

NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.

4.
Respir Res ; 24(1): 217, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674160

RESUMO

Cystic fibrosis (CF) is caused by defects of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR-modulating drugs may overcome specific defects, such as the case of Trikafta, which is a clinically approved triple combination of Elexacaftor, Tezacaftor and Ivacaftor (ETI) that exhibited a strong ability to rescue the function of the most frequent F508del pathogenic variant even in genotypes with the mutated allele in single copy. Nevertheless, most rare genotypes lacking the F508del allele are still not eligible for targeted therapies. Via the innovative approach of using nasal conditionally reprogrammed cell (CRC) cell-based models that mimic patient disease in vitro, which are obtainable from each patient due to the 100% efficiency of the cell culture establishment, we theratyped orphan CFTR mutation L1077P. Protein studies, Forskolin-induced organoid swelling, and Ussing chamber assays congruently proved the L1077P variant function rescue by ETI. Notably, this rescue takes place even in the context of a single-copy L1077P allele, which appears to enhance its expression. Thus, the possibility of single-allele treatment also arises for rare genotypes, with an allele-specific modulation as part of the mechanism. Of note, besides providing indication of drug efficacy with respect to specific CFTR pathogenic variants or genotypes, this approach allows the evaluation of the response of single-patient cells within their genetic background. In this view, our studies support in vitro guided personalized CF therapies also for rare patients who are nearly excluded from clinical trials.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética
5.
Cell Mol Life Sci ; 79(5): 257, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462606

RESUMO

The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients' treatment by epigenetic targeting.


Assuntos
Fibrose Cística , Curcumina/farmacologia , Curcumina/uso terapêutico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo/genética , Epigênese Genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia
6.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511434

RESUMO

DNA methylation, the main epigenetic modification regulating gene expression, plays a role in the pathophysiology of neurodegeneration. Previous evidence indicates that 5'-flanking hypomethylation of PSEN1, a gene involved in the amyloidogenic pathway in Alzheimer's disease (AD), boosts the AD-like phenotype in transgenic TgCRND8 mice. Supplementation with S-adenosylmethionine (SAM), the methyl donor in the DNA methylation reactions, reverts the pathological phenotype. Several studies indicate that epigenetic signatures, driving the shift between normal and diseased aging, can be acquired during the first stages of life, even in utero, and manifest phenotypically later on in life. Therefore, we decided to test whether SAM supplementation during the perinatal period (i.e., supplementing the mothers from mating to weaning) could exert a protective role towards AD-like symptom manifestation. We therefore compared the effect of post-weaning vs. perinatal SAM treatment in TgCRND8 mice by assessing PSEN1 methylation and expression and the development of amyloid plaques. We found that short-term perinatal supplementation was as effective as the longer post-weaning supplementation in repressing PSEN1 expression and amyloid deposition in adult mice. These results highlight the importance of epigenetic memory and methyl donor availability during early life to promote healthy aging and stress the functional role of non-CpG methylation.


Assuntos
Doença de Alzheimer , S-Adenosilmetionina , Gravidez , Feminino , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Memória Epigenética , Metilação de DNA , Camundongos Transgênicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Suplementos Nutricionais
7.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674527

RESUMO

The evaluation of morpho-functional sperm characteristics alone is not enough to explain infertility or to predict the outcome of Assisted Reproductive Technologies (ART): more sensitive diagnostic tools are needed in clinical practice. The aim of the present study was to analyze Sperm DNA Fragmentation (SDF) and sperm-borne miR-34c-5p and miR-449b-5p levels in men of couples undergoing ART, in order to investigate any correlations with fertilization rate, embryo quality and development. Male partners (n = 106) were recruited. Semen analysis, SDF evaluation and molecular profiling analysis of miR-34c-5p and miR-449b-5p (in 38 subjects) were performed. Sperm DNA Fragmentation evaluation- a positive correlation between SDF post sperm selection and the percentage of low-quality embryos and a negative correlation with viable embryo were found. SDF > 2.9% increased the risk of obtaining a non-viable embryo by almost 4-fold. Sperm miRNAs profile­we found an association with both miRNAs and sperm concentration, while miR-449b-5p is positively associated with SDF. Moreover, the two miRNAs are positively correlated. Higher levels of miR-34c-5p compared to miR-449b-5p increases by 14-fold the probability of obtaining viable embryos. This study shows that SDF, sperm miR-34c-5p, and miR-449b-5p have a promising role as biomarkers of semen quality and ART outcome.


Assuntos
MicroRNAs , Humanos , Masculino , MicroRNAs/genética , Fertilização in vitro , Fragmentação do DNA , Análise do Sêmen , Injeções de Esperma Intracitoplásmicas , Sêmen , Desenvolvimento Embrionário/genética , Espermatozoides , Biomarcadores
8.
Anal Chem ; 94(45): 15558-15563, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36318963

RESUMO

The development of electrochemical strips, as extremely powerful diagnostic tools, has received much attention in the field of sensor analysis and, in particular, the detection of nucleic acids in complex matrixes is a hot topic in the electroanalytical area, especially when directed toward the development of emerging technologies, for the purpose of facilitating personal healthcare. One of the major diseases for which early diagnosis is crucial is represented by Alzheimer's disease (AD). AD is a progressive neurodegenerative disease, and it is the most common cause of dementia worldwide. In this context microRNAs (miRNAs), which are small noncoding RNAs, have recently been highlighted for their promising role as biomarkers for early diagnosis. In particular, miRNA-29 represents a class of miRNAs known to regulate pathogenesis of AD. In this work we developed an electrochemical printed strip for the detection of miRNA-29a at low levels. The architecture was characterized by the presence of gold nanoparticles (AuNPs) and an anti-miRNA-29a probe labeled with a redox mediator. The novel analytical tool has been characterized with microscale thermophoresis and electrochemical methods, and it has been optimized by selection of the most appropriate probe density to detect low target concentration. The present tool was capable to detect miRNA-29a both in standard solution and in serum, respectively, down to 0.15 and 0.2 nM. The platform highlighted good repeatability (calculated as the relative standard deviation) of ca. 10% and satisfactory selectivity in the presence of interfering species. This work has the objective to open a way for the study and possible early diagnosis of a physically and socially devastating disease such as Alzheimer's. The results demonstrate the suitability of this approach in terms of ease of use, time of production, sensitivity, and applicability.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Doenças Neurodegenerativas , Humanos , Ouro/química , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Nanopartículas Metálicas/química , Biomarcadores , MicroRNAs/análise , Técnicas Biossensoriais/métodos
9.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555317

RESUMO

Both physiological and pathological aging processes induce brain alterations especially affecting the speed of processing, working memory, conceptual reasoning and executive functions. Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly contributed by free radical reactions, it has been proposed that exogenous antioxidants could have a positive impact on both aging and its associated manifestations. The aim of this report is to provide a summary and a subsequent review of the literature evidence on the role of antioxidants in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular defense mechanisms through nutritional antioxidants or pharmacological compounds represents an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are well standardized.


Assuntos
Antioxidantes , Encéfalo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Encéfalo/metabolismo , Cognição , Estresse Oxidativo
10.
Eur Respir J ; 58(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413153

RESUMO

QUESTION: Cystic fibrosis (CF) is due to pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Recent improvements have enabled pharmacological therapy aiming at restoring mutated CFTR expression and function. CFTR "modulators" have revolutionised the CF therapeutic landscape, particularly the last approved, Trikafta. This drug combination is indicated by the United States Food and Drug Administration and very recently by the European Medicines Agency for genotypes carrying at least one copy of CFTR with the F508del pathogenic variant. However, several genotypes are not yet eligible for Trikafta treatment. MATERIALS/PATIENTS AND METHODS: We exploited an innovative cellular approach allowing highly efficient in vitro expansion of airway epithelial stem cells (AESCs) through conditional reprogramming from nasal brushing of CF patients. This approach, coupled to the development of AESC-derived personalised disease models, as organoids and air-liquid interface (ALI) cultures, revealed highly suitable for CFTR pharmacological testing. RESULTS AND ANSWER TO THE QUESTION: We fully validated the experimental models and implemented the CFTR functional assays and biochemical CFTR protein characterisation, which allowed the evaluation of the efficacy of clinically available modulators in restoring CFTR maturation and function of each patient-derived "avatar" (theratyping). F508del homozygous genotypes, used as controls, confirmed the higher clinical activity of Trikafta in comparison with older modulators. In addition, Trikafta showed its efficacy on three rare genotypes previously not eligible for treatment with modulators, opening the way to clinical translation. Finally, encouraging results for innovative drug combinations were obtained.


Assuntos
Fibrose Cística , Aminofenóis/farmacologia , Benzodioxóis , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais , Humanos , Mutação , Organoides , Células-Tronco
11.
Int J Mol Sci ; 22(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916525

RESUMO

The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, ß and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.


Assuntos
Metilação de DNA , Canais Epiteliais de Sódio/biossíntese , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Humanos
12.
Molecules ; 25(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941080

RESUMO

Urinary tract infections (UTIs) are mainly caused by uropathogenic Escherichia coli (UPEC). Acute and recurrent UTIs are commonly treated with antibiotics, the efficacy of which is limited by the emergence of antibiotic resistant strains. The natural sugar d-mannose is considered as an alternative to antibiotics due to its ability to mask the bacterial adhesin FimH, thereby preventing its binding to urothelial cells. Despite its extensive use, the possibility that d-mannose exerts "antibiotic-like" activity by altering bacterial growth and metabolism or selecting FimH variants has not been investigated yet. To this aim, main bacterial features of the prototype UPEC strain CFT073 treated with d-mannose were analyzed by standard microbiological methods. FimH functionality was analyzed by yeast agglutination and human bladder cell adhesion assays. Our results indicate that high d-mannose concentrations have no effect on bacterial growth and do not interfere with the activity of different antibiotics. d-mannose ranked as the least preferred carbon source to support bacterial metabolism and growth, in comparison with d-glucose, d-fructose, and l-arabinose. Since small glucose amounts are physiologically detectable in urine, we can conclude that the presence of d-mannose is irrelevant for bacterial metabolism. Moreover, d-mannose removal after long-term exposure did not alter FimH's capacity to bind to mannosylated proteins. Overall, our data indicate that d-mannose is a good alternative in the prevention and treatment of UPEC-related UTIs.


Assuntos
Adesinas de Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Manose/farmacologia , Infecções Urinárias/metabolismo , Escherichia coli Uropatogênica/metabolismo , Linhagem Celular , Humanos , Saccharomyces cerevisiae/metabolismo
13.
Biochem Biophys Res Commun ; 508(2): 487-493, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30503498

RESUMO

Tangier disease is a rare disorder of lipoprotein metabolism that presents with extremely low levels of HDL cholesterol and apoprotein A-I. It is caused by mutations in the ATP-binding cassette transporter A1 (ABCA1) gene. Clinical heterogeneity and mutational pattern of Tangier disease are poorly characterized. Moreover, also familial HDL deficiency may be caused by mutations in ABCA1 gene. ATP-binding cassette transporter A1 (ABCA1) gene mutations in a patient with Tangier disease, who presented an uncommon clinical history, and in his family were found and characterized. He was found to be compound heterozygous for two intronic mutations of ABCA1 gene, causing abnormal pre-mRNAs splicing. The novel c.1510-1G > A mutation was located in intron 12 and caused the activation of a cryptic splice site in exon 13, which determined the loss of 22 amino acids of exon 13 with the introduction of a premature stop codon. Five heterozygous carriers of this mutation were also found in proband's family, all presenting reduced HDL cholesterol and ApoAI (0.86 ±â€¯0.16 mmol/L and 92.2 ±â€¯10.9 mg/dL respectively), but not the typical features of Tangier disease, a phenotype compatible with the diagnosis of familial HDL deficiency. The other known mutation c.1195-27G > A was confirmed to cause aberrant retention of 25 nucleotides of intron 10 leading to the insertion of a stop codon after 20 amino acids of exon 11. Heterozygous carriers of this mutation also showed the clinical phenotype of familial HDL deficiency. Our study extends the catalog of pathogenic intronic mutations affecting ABCA1 pre-mRNA splicing. In a large family, a clear demonstration that the same mutations may cause Tangier disease (if in compound heterozygosis) or familial HDL deficiency (if in heterozygosis) is provided.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Hipoalfalipoproteinemias/genética , Mutação , Splicing de RNA/genética , Doença de Tangier/genética , Códon sem Sentido , Família , Feminino , Heterozigoto , Humanos , Íntrons/genética , Masculino , Linhagem , Sítios de Splice de RNA/genética
14.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842376

RESUMO

The functional role of cytosine methylation in the CpG moieties of DNA, is well established in several biological functions. The interplay between CpG methylation and hypomethylation is a well-known mechanism of modulation of gene expression. However, the role of non-CpG methylation and active dynamics of demethylation is not clearly recognized. Although some evidence exists of a role of active non-CpG demethylation in the fast dynamics of transcriptional activation in animals, few studies deal with this topic. At present, active demethylation of non-CpG moieties is a neglected research area, in spite of the promise of significant novelties.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Animais , Desmetilação , Regulação da Expressão Gênica
15.
J Cell Physiol ; 233(4): 3093-3104, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28802016

RESUMO

We previously demonstrated that the nuclear form of Glutathione peroxidase 4 (nGPx4) has a peculiar distribution in sperm head, being localized to nuclear matrix and acrosome and that sperm lacking nGPx4 are more prone to decondensation in vitro. In this study we have hypothesized that sperm retained acetylated histones and nGPx4 are implicated in paternal chromatin decondensation and male pronucleus formation at fertilization. Indeed, significant higher amounts of acetylated histone H4 and acetylated histone H3 were observed by both immunofluorescence and western blotting in nGPx4-KO sperm vs WT ones. In vitro fertilization of zona pellucida-deprived oocytes by WT sperm in the presence of trichostatin (TSA) also demonstrated that paternal histone acetylation was inversely related to the timing of sperm nucleus decondensation at fertilization. In contrast, TSA had no effect on nGPx4-KO sperm, indicating they had a maximal level of histone acetylation. Moreover the paternally imprinted gene Igf2/H19 was hypomethylated in KO sperm compared to WT ones. The lack of nGPx4 negatively affected male fertility, causing a marked decrease in total pups and pregnancies with delivery, a significant reduction in pronuclei (PN) embryos in in vitro fertilization assays and an approximately 2 h delay in egg fertilization in vivo. Because the zona pellucida binding and fusion to oolemma of nGPx4-KO and WT sperm were similar, the subfertility of nGPx4 sperm reflected a decreased sperm progression through egg cumulus/zona pellucida, pinpointing a defective acrosome in line with acrosomal nGPx4 localization. We conclude that paternal acetylated histones and acrosomal nGPx4 are directly involved in fertilization.


Assuntos
Núcleo Celular/metabolismo , Fertilização , Glutationa Peroxidase/metabolismo , Histonas/metabolismo , Espermatozoides/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Epididimo/metabolismo , Fertilidade , Fertilização in vitro , Impressão Genômica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Isoformas de Proteínas/metabolismo , Zona Pelúcida/metabolismo
16.
Mol Med ; 24(1): 38, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30134826

RESUMO

BACKGROUND: Recurrent (RP) and chronic pancreatitis (CP) may complicate Cystic Fibrosis (CF). It is still unknown if mutations in genes involved in the intrapancreatic activation of trypsin (IPAT) or in the pancreatic secretion pathway (PSP) may enhance the risk for RP/CP in patients with CF. METHODS: We enrolled: 48 patients affected by CF complicated by RP/CP and, as controls 35 patients with CF without pancreatitis and 80 unrelated healthy subjects. We tested a panel of 8 genes involved in the IPAT, i.e. PRSS1, PRSS2, SPINK1, CTRC, CASR, CFTR, CTSB and KRT8 and 23 additional genes implicated in the PSP. RESULTS: We found 14/48 patients (29.2%) with mutations in genes involved in IPAT in the group of CF patients with RP/CP, while mutations in such genes were found in 2/35 (5.7%) patients with CF without pancreatitis and in 3/80 (3.8%) healthy subjects (p < 0.001). Thus, we found mutations in 12 genes of the PSP in 11/48 (22.9%) patients with CF and RP/CP. Overall, 19/48 (39.6%) patients with CF and RP/CP showed one or more mutations in the genes involved in the IPAT and in the PSP while such figure was 4/35 (11.4%) for patients with CF without pancreatitis and 11/80 (13.7%) for healthy controls (p < 0.001). CONCLUSIONS: The trans-heterozygous association between CFTR mutations in genes involved in the pathways of pancreatic enzyme activation and the pancreatic secretion may be risk factors for the development of recurrent or chronic pancreatitis in patients with CF.


Assuntos
Fibrose Cística/genética , Pancreatite Crônica/genética , Adolescente , Adulto , Criança , Pré-Escolar , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Mutação , Pâncreas/metabolismo , Recidiva , Risco , Tripsina/metabolismo , Adulto Jovem
18.
J Med Genet ; 54(4): 224-235, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27738188

RESUMO

BACKGROUND: The effect of complex alleles in cystic fibrosis (CF) is poorly defined for the lack of functional studies. OBJECTIVES: To describe the genotype-phenotype correlation and the results of either in vitro and ex vivo studies performed on nasal epithelial cells (NEC) in a cohort of patients with CF carrying cystic fibrosis transmembrane conductance regulator (CFTR) complex alleles. METHODS: We studied 70 homozygous, compound heterozygous or heterozygous for CFTR mutations: p.[Arg74Trp;Val201Met;Asp1270Asn], n=8; p.[Ile148Thr;Ile1023_Val1024del], n=5; p.[Arg117Leu;Leu997Phe], n=6; c.[1210-34TG[12];1210-12T[5];2930C>T], n=3; p.[Arg74Trp;Asp1270Asn], n=4; p.Asp1270Asn, n=2; p.Ile148Thr, n=6; p.Leu997Phe, n=36. In 39 patients, we analysed the CFTR gating activity on NEC in comparison with patients with CF (n=8) and carriers (n=4). Finally, we analysed in vitro the p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele. RESULTS: The p.[Ile148Thr;Ile1023_Val1024del] caused severe CF in five compound heterozygous with a class I-II mutation. Their CFTR activity on NEC was comparable with patients with two class I-II mutations (mean 7.3% vs 6.9%). The p.[Arg74Trp;Asp1270Asn] and the p.Asp1270Asn have scarce functional effects, while p.[Arg74Trp;Val201Met;Asp1270Asn] caused mild CF in four of five subjects carrying a class I-II mutation in trans, or CFTR-related disorders (CFTR-RD) in three having in trans a class IV-V mutation. The p.[Arg74Trp;Val201Met;Asp1270Asn] causes significantly (p<0.001) higher CFTR activity compared with compound heterozygous for class I-II mutations. Furthermore, five of six compounds heterozygous with the p.[Arg117Leu;Leu997Phe] had mild CF, whereas the p.Leu997Phe, in trans with a class I-II CFTR mutation, caused CFTR-RD or a healthy status (CFTR activity: 21.3-36.9%). Finally, compounds heterozygous for the c.[1210-34TG[12];1210-12T[5];2930C>T] and a class I-II mutation had mild CF or CFTR-RD (gating activity: 18.5-19.0%). CONCLUSIONS: The effect of complex alleles partially depends on the mutation in trans. Although larger studies are necessary, the CFTR activity on NEC is a rapid contributory tool to classify patients with CFTR dysfunction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Fibrose Cística/patologia , Feminino , Genótipo , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Fenótipo , Adulto Jovem
19.
BMC Pulm Med ; 18(1): 196, 2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577776

RESUMO

BACKGROUND: A clinical heterogeneity was reported in patients with Cystic Fibrosis (CF) with the same CFTR genotype and between siblings with CF. METHODS: We investigated all clinical aspects in a cohort of 101 pairs of siblings with CF (including 6 triplets) followed since diagnosis. RESULTS: Severe lung disease had a 22.2% concordance in sib-pairs, occurred early and the FEV1% at 12 years was predictive of the severity of lung disease in the adulthood. Similarly, CF liver disease occurred early (median: 15 years) and showed a concordance of 27.8% in sib-pairs suggesting a scarce contribution of genetic factors; in fact, only 2/15 patients with liver disease in discordant sib-pairs had a deficiency of alpha-1-antitrypsin (a known modifier gene of CF liver phenotype). CF related diabetes was found in 22 pairs (in 6 in both the siblings). It occurred later (median: 32.5 years) and is strongly associated with liver disease. Colonization by P. aeruginosa and nasal polyposis that required surgery had a concordance > 50% in sib-pairs and were poorly correlated to other clinical parameters. The pancreatic status was highly concordant in pairs of siblings (i.e., 95.1%) but a different pancreatic status was observed in patients with the same CFTR mutations. This suggests a close relationship of the pancreatic status with the "whole" CFTR genotype, including mutations in regulatory regions that may modulate the levels of CFTR expression. Finally, a severe course of CF was evident in a number of patients with pancreatic sufficiency. CONCLUSIONS: Physicians involved in care of patients with CF and in genetic counseling must be aware of the clinical heterogeneity of CF even in sib-pairs that, at the state of the art, is difficult to explain.


Assuntos
Portador Sadio/microbiologia , Fibrose Cística/fisiopatologia , Diabetes Mellitus/etiologia , Insuficiência Pancreática Exócrina/etiologia , Hepatopatias/etiologia , Íleo Meconial/etiologia , Irmãos , Adolescente , Adulto , Criança , Fibrose Cística/complicações , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Volume Expiratório Forçado , Genótipo , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Pessoa de Meia-Idade , Mutação , Pólipos Nasais/complicações , Pólipos Nasais/cirurgia , Orofaringe/microbiologia , Fenótipo , Pseudomonas aeruginosa , Índice de Gravidade de Doença , Escarro/microbiologia , Adulto Jovem , alfa 1-Antitripsina/genética
20.
Mol Med ; 21: 257-75, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25910067

RESUMO

Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype-phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype-phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype-phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Estudos de Associação Genética , Genótipo , Mutação , Fenótipo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Fibrose Cística/epidemiologia , Éxons , Feminino , Frequência do Gene , Heterogeneidade Genética , Humanos , Lactente , Masculino , Prevalência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA