Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39415037

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a chronic lung disease affecting premature infants who require oxygen supplementation and ventilator therapy to support their underdeveloped lungs. Autotaxin (ATX), an enzyme that generates the bioactive phospholipid lysophosphatidic acid (LPA), which acts via G-protein coupled receptors, has been implicated in numerous pulmonary diseases. In this study, we explored the pathophysiological role of the ATX/LPA signaling pathway in BPD. METHODS: Neonatal mice were exposed to normoxia or hyperoxia (85%) for 14 days from birth while being treated with vehicle, ATX inhibitor or LPA receptor 1 (LPA1) inhibitor. In vitro studies utilized human lung fibroblast (HLF) cells exposed to room air, 85% oxygen, or LPA for varying time periods. Supernatants and cells were collected for assays and Western blotting. RESULTS: Animals exposed to hyperoxia showed elevated expression of ATX, ATX activity, and LPA1. Inhibiting ATX or LPA1 improved alveolarization, reduced inflammation, and mitigated extracellular matrix deposition and lysyl oxidase (LOX) expression. LPA1 inhibition leading to reduced LOX expression was associated with a reduction in phosphorylation of AKT. CONCLUSION: Hyperoxia increases the expression of ATX and LPA1 associated with increased LOX in the lungs. Targeting the ATX/LPA1 pathway could be a potential therapeutic approach to BPD. IMPACT: Exposure to hyperoxia increases the expression and activity of autotaxin (ATX), as well as expression of LPA receptor 1 (LPA1). Increased expression of ATX influences extra cellular matrix (ECM) remodeling. Inhibitors targeting the ATX/LPA pathway could offer a new therapeutic approach to bronchopulmonary dysplasia (BPD), potentially mitigating ECM deposition and improving lung development.

2.
Pediatr Res ; 94(4): 1444-1450, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37188801

RESUMO

BACKGROUND: Intermittent hypoxemia (IH) events are common in preterm neonates and are associated with adverse outcomes. Animal IH models can induce oxidative stress. We hypothesized that an association exists between IH and elevated peroxidation products in preterm neonates. METHODS: Time in hypoxemia, frequency of IH, and duration of IH events were assessed from a prospective cohort of 170 neonates (<31 weeks gestation). Urine was collected at 1 week and 1 month. Samples were analyzed for lipid, protein, and DNA oxidation biomarkers. RESULTS: At 1 week, adjusted multiple quantile regression showed positive associations between several hypoxemia parameters with various individual quantiles of isofurans, neurofurans, dihomo-isoprostanes, dihomo-isofurans, and ortho-tyrosine and a negative correlation with dihomo-isoprostanes and meta-tyrosine. At 1 month, positive associations were found between several hypoxemia parameters with quantiles of isoprostanes, dihomo-isoprostanes and dihomo-isofurans and a negative correlation with isoprostanes, isofurans, neuroprostanes, and meta-tyrosine. CONCLUSIONS: Preterm neonates experience oxidative damage to lipids, proteins, and DNA that can be analyzed from urine samples. Our single-center data suggest that specific markers of oxidative stress may be related to IH exposure. Future studies are needed to better understand mechanisms and relationships to morbidities of prematurity. IMPACT: Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. The mechanisms by which hypoxemia events result in adverse neural and respiratory outcomes may include oxidative stress to lipids, proteins, and DNA. This study begins to explore associations between hypoxemia parameters and products of oxidative stress in preterm infants. Oxidative stress biomarkers may assist in identifying high-risk neonates.


Assuntos
Recém-Nascido Prematuro , Isoprostanos , Lactente , Animais , Humanos , Recém-Nascido , Estudos Prospectivos , Hipóxia , Estresse Oxidativo , Biomarcadores/urina , DNA
3.
Pediatr Res ; 91(6): 1391-1398, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958714

RESUMO

BACKGROUND: Continuous positive airway pressure (CPAP) in preterm infants is initially beneficial, but animal models suggest longer term detrimental airway effects towards asthma. We used a neonatal CPAP mouse model and human fetal airway smooth muscle (ASM) to investigate the role of extracellular calcium-sensing receptor (CaSR) in these effects. METHODS: Newborn wild type and smooth muscle-specific CaSR-/- mice were given CPAP for 7 days via a custom device (mimicking CPAP in premature infants), and recovered in normoxia for another 14 days (representing infants at 3-4 years). Airway reactivity was tested using lung slices, and airway CaSR quantified. Role of CaSR was tested using NPS2143 (inhibitor) or siRNA in WT mice. Fetal ASM cells stretched cyclically with/without static stretch mimicking breathing and CPAP were analyzed for intracellular Ca2+ ([Ca2+]i) responses, role of CaSR, and signaling cascades. RESULTS: CPAP increased airway reactivity in WT but not CaSR-/- mice, increasing ASM CaSR. NPS2143 or CaSR siRNA reversed CPAP effects in WT mice. CPAP increased fetal ASM [Ca2+]I, blocked by NPS2143, and increased ERK1/2 and RhoA suggesting two mechanisms by which stretch increases CaSR. CONCLUSIONS: These data implicate CaSR in CPAP effects on airway function with implications for wheezing in former preterm infants. IMPACT: Neonatal CPAP increases airway reactivity to bronchoconstrictor agonist. CPAP increases smooth muscle expression of the extracellular calcium-sensing receptor (CaSR). Inhibition or absence of CaSR blunts CPAP effects on contractility. These data suggest a causal/contributory role for CaSR in stretch effects on the developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Receptores de Detecção de Cálcio , Animais , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Camundongos , Camundongos Knockout , RNA Interferente Pequeno , Receptores de Detecção de Cálcio/genética , Sons Respiratórios
4.
Pediatr Res ; 92(3): 685-693, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34750521

RESUMO

BACKGROUND: Continuous positive airway pressure (CPAP) is a primary mode of respiratory support for preterm infants. Animal studies have shown long-term detrimental effects on lung/airway development, particularly airway (AW) hyper-reactivity, as an unfortunate consequence of neonatal CPAP. Since the hyaluronan (HA) synthesizing enzyme hyaluronan synthase-3 (HAS3) is involved in various adult pulmonary disorders, the present study used a neonatal mouse model to investigate the role of HAS3 in CPAP-induced AW hyper-reactivity. METHODS: Male and female neonatal mice were fitted with a custom-made mask for delivery of daily CPAP 3 h/day for 7 days. At postnatal day 21 (2 weeks after CPAP ended), airway (AW) hyper-reactivity and HAS3 expression were assessed with and without in vitro HAS3 siRNA treatment. RESULTS: MRIs of 3-day-old mice confirmed that CPAP increased lung volume with incrementing inflation pressures. CPAP increased AW reactivity in both male and female mice, which was associated with increased airway smooth muscle and epithelial HAS3 immunoreactivity. CPAP did not affect HA accumulation, but HAS3 siRNA reversed CPAP-induced AW hyper-reactivity and reduced HAS3 expression. CONCLUSIONS: These data in mice implicate a role for HAS3 in long-term effects of CPAP in the developing airway in the context of preterm birth and CPAP therapy. IMPACT: Neonatal CPAP increases airway smooth muscle and epithelial HAS3 expression in mice. CPAP-induced airway hyper-reactivity is modulated by HAS3. These data enhance our understanding of the role mechanical forces play on lung development. These data are a significance step toward understanding CPAP effects on developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Nascimento Prematuro , Animais , Feminino , Humanos , Hialuronan Sintases , Ácido Hialurônico , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Camundongos , RNA Interferente Pequeno
5.
Am J Respir Cell Mol Biol ; 65(1): 70-80, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780653

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification, airway hyperreactivity, and pulmonary hypertension. In our BPD model, we have investigated the metabolism of the bronchodilator and pulmonary vasodilator GSNO (S-nitrosoglutathione). We have shown the GSNO catabolic enzyme encoded by adh5 (alcohol dehydrogenase-5), GSNO reductase, is epigenetically upregulated in hyperoxia. Here, we investigated the distribution of GSNO reductase expression in human BPD and created an animal model that recapitulates the human data. Blinded comparisons of GSNO reductase protein expression were performed in human lung tissues from infants and children with and without BPD. BPD phenotypes were evaluated in global (adh5-/-) and conditional smooth muscle (smooth muscle/adh5-/-) adh5 knockout mice. GSNO reductase was prominently expressed in the airways and vessels of human BPD subjects. Compared with controls, expression was greater in BPD smooth muscle, particularly in vascular smooth muscle (2.4-fold; P = 0.003). The BPD mouse model of neonatal hyperoxia caused significant alveolar simplification, airway hyperreactivity, and right ventricular and vessel hypertrophy. Global adh5-/- mice were protected from all three aspects of BPD, whereas smooth muscle/adh5-/- mice were only protected from pulmonary hypertensive changes. These data suggest adh5 is required for the development of BPD. Expression in the pulmonary vasculature is relevant to the pathophysiology of BPD-associated pulmonary hypertension. GSNO-mimetic agents or GSNO reductase inhibitors, both of which are currently in clinical trials for other conditions, could be considered for further study in BPD.


Assuntos
Álcool Desidrogenase/metabolismo , Displasia Broncopulmonar/metabolismo , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Álcool Desidrogenase/genética , Animais , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Criança , Pré-Escolar , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Lactente , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia
6.
Pediatr Res ; 90(1): 52-57, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33122799

RESUMO

BACKGROUND: Oxygen and continuous positive airway pressure (CPAP) are primary modes of respiratory support for preterm infants. Animal models, however, have demonstrated adverse unintended effects of hyperoxia and CPAP on lung development. We investigate the effects of combined neonatal hyperoxia and CPAP exposure on airway function and morphology in mice. METHODS: Newborn mice were exposed to hyperoxia (40% O2) 24 h/day for 7 consecutive days with or without daily (3 h/day) concomitant CPAP. Two weeks after CPAP and/or hyperoxia treatment ended, lungs were assessed for airway (AW) hyperreactivity and morphology. RESULTS: CPAP and hyperoxia exposure alone increased airway reactivity compared to untreated control mice. CPAP-induced airway hyperreactivity was associated with epithelial and smooth muscle proliferation. In contrast, combined CPAP and hyperoxia treatment no longer resulted in increased airway reactivity, which was associated with normalization of smooth muscle and epithelial proliferation to values similar to untreated mice. CONCLUSIONS: Our data suggest that the combination of CPAP and hyperoxia decreases the adverse consequences on airway remodeling of either intervention alone. The complex interaction between mechanical stretch (via CPAP) and hyperoxia exposure on development of immature airways has implications for the pathophysiology of airway disease in former preterm infants receiving non-invasive respiratory support. IMPACT: CPAP and mild hyperoxia exposure alone increase airway reactivity in the neonatal mouse model. In contrast, combined CPAP and hyperoxia no longer induce airway hyperreactivity. Combined CPAP and hyperoxia normalize smooth muscle and epithelial proliferation to control values. Interaction between CPAP-induced stretch and mild hyperoxia exposure on immature airways has important implications for airway pathophysiology in former preterm infants.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Hiperóxia/fisiopatologia , Traqueia/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
8.
Adv Exp Med Biol ; 1071: 159-166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357747

RESUMO

Myo-inositol is a highly abundant stereoisomer of the inositol family of sugar alcohols and forms the structural basis for a variety of polyphosphate derivatives including second messengers and membrane phospholipids. These derivatives regulate numerous cell processes including gene transcription, membrane excitability, vesicular trafficking, intracellular calcium signaling, and neuronal growth and development. Myo-inositol can be formed endogenously from the breakdown of glucose, is found in a variety of foods including breastmilk and is commercially available as a nutritional supplement. Abnormal myo-inositol metabolism has been shown to underlie the pathophysiology of a variety of clinical conditions including Down Syndrome, traumatic brain injury, bronchopulmonary dysplasia (BPD), and respiratory distress syndrome (RDS). Several animal studies have shown that myo-inositol may play a critical role in development of both the central and peripheral respiratory neural control system; a notable example is the neonatal apnea and respiratory insufficiency that manifests in a mouse model of myo-inositol depletion, an effect that is also postnatally lethal. This review focuses on myo-inositol (and some of its derivatives) and how it may play a role in respiratory neural control; we also discuss clinical evidence demonstrating a link between serum myo-inositol levels and the incidence of intermittent hypoxemia (IH) events (a surrogate measure of apnea of prematurity (AOP)) in preterm infants. Further, there are both animal and human infant studies that have demonstrated respiratory benefits following supplementation with myo-inositol, which highlights the prospects that nutritional requirements are important for appropriate development and maturation of the respiratory system.


Assuntos
Inositol/metabolismo , Sistema Respiratório , Animais , Suplementos Nutricionais , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Camundongos , Síndrome do Desconforto Respiratório do Recém-Nascido
9.
Pediatr Res ; 81(4): 565-571, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27842056

RESUMO

BACKGROUND: Premature infants are at increased risk for wheezing disorders. Clinically, these neonates experience recurrent episodes of apnea and desaturation often treated by increasing the fraction of inspired oxygen (FIO2). We developed a novel paradigm of neonatal intermittent hypoxia with subsequent hyperoxia overshoots (CIHO/E) and hypothesized that CIHO/E elicits long-term changes on pulmonary mechanics in mice. METHODS: Neonatal C57BL/6 mice received CIHO/E, which consisted of 10% O2 (1 min) followed by a transient exposure to 50% FIO2, on 10-min repeating cycles 24 h/d from birth to P7. Baseline respiratory mechanics, methacholine challenge, RT-PCR for pro and antioxidants, radial alveolar counts, and airway smooth muscle actin were assessed at P21 after 2-wk room air recovery. Control groups were mice exposed to normoxia, chronic intermittent hyperoxia (CIHE), and chronic intermittent hypoxia (CIHO). RESULTS: CIHO/E and CIHE increased airway resistance at higher doses of methacholine and decreased baseline compliance compared with normoxia mice. Lung mRNA for NOX2 was increased by CIHO/E. Radial alveolar counts and airway smooth muscle actin was not different between groups. CONCLUSION: Neonatal intermittent hypoxia/hyperoxia exposure results in long-term changes in respiratory mechanics. We speculate that recurrent desaturation with hyperoxia overshoot may increase oxidative stress and contribute to wheezing in former preterm infants.


Assuntos
Hiperóxia/patologia , Hipóxia/patologia , Mecânica Respiratória , Sistema Respiratório/fisiopatologia , Animais , Animais Recém-Nascidos , Antioxidantes/química , Peso Corporal , Displasia Broncopulmonar/induzido quimicamente , Modelos Animais de Doenças , Feminino , Cloreto de Metacolina/química , Camundongos , Camundongos Endogâmicos C57BL , Oxidantes/química , Estresse Oxidativo , Oxigênio/química , Fenótipo , Alvéolos Pulmonares/metabolismo , Recidiva , Respiração , Fatores de Tempo
10.
Mol Pharmacol ; 90(4): 418-26, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27484068

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by lifelong obstructive lung disease and profound, refractory bronchospasm. It is observed among survivors of premature birth who have been treated with prolonged supplemental oxygen. Therapeutic options are limited. Using a neonatal mouse model of BPD, we show that hyperoxia increases activity and expression of a mediator of endogenous bronchoconstriction, S-nitrosoglutathione (GSNO) reductase. MicroRNA-342-3p, predicted in silico and shown in this study in vitro to suppress expression of GSNO reductase, was decreased in hyperoxia-exposed pups. Both pretreatment with aerosolized GSNO and inhibition of GSNO reductase attenuated airway hyperresponsiveness in vivo among juvenile and adult mice exposed to neonatal hyperoxia. Our data suggest that neonatal hyperoxia exposure causes detrimental effects on airway hyperreactivity through microRNA-342-3p-mediated upregulation of GSNO reductase expression. Furthermore, our data demonstrate that this adverse effect can be overcome by supplementing its substrate, GSNO, or by inhibiting the enzyme itself. Rates of BPD have not improved over the past two decades; nor have new therapies been developed. GSNO-based therapies are a novel treatment of the respiratory problems that patients with BPD experience.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Hipersensibilidade Respiratória/tratamento farmacológico , S-Nitrosoglutationa/uso terapêutico , Aerossóis/farmacologia , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperóxia/complicações , Hiperóxia/tratamento farmacológico , Hiperóxia/genética , Hiperóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Hipersensibilidade Respiratória/complicações , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , S-Nitrosoglutationa/farmacologia , Transfecção
11.
Pediatr Res ; 78(2): 145-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25950451

RESUMO

BACKGROUND: Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. METHODS: We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Unanesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6 cmH2O, 3 h/day) for 7 consecutive days starting at postnatal day 1. AW reactivity to methacholine was assessed using the in vitro living lung slice preparation. RESULTS: One week of CPAP increased AW responsiveness to methacholine in male, but not female mice, compared to untreated control animals. The AW hyper-reactivity of male mice persisted for 2 wk (at P21) after CPAP treatment ended. Four days of CPAP, however, did not significantly increase AW reactivity. Females also exhibited AW hyper-reactivity at P21, suggesting a delayed response to early (7 d) CPAP treatment. The effects of 7 d of CPAP on hyper-reactivity to methacholine were unique to smaller AWs whereas larger ones were relatively unaffected. CONCLUSION: These data may be important to our understanding of the potential long-term consequences of neonatal CPAP therapy used in the intensive care of preterm infants.


Assuntos
Brônquios/fisiologia , Pressão Positiva Contínua nas Vias Aéreas , Modelos Animais , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
12.
Can J Physiol Pharmacol ; 93(2): 119-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25594569

RESUMO

Lung diseases, such as bronchopulmonary dysplasia (BPD), wheezing, and asthma, remain significant causes of morbidity and mortality in the pediatric population, particularly in the setting of premature birth. Pulmonary outcomes in these infants are highly influenced by perinatal exposures including prenatal inflammation, postnatal intensive care unit interventions, and environmental agents. Here, there is strong evidence that perinatal supplemental oxygen administration has significant effects on pulmonary development and health. This is of particular importance in the preterm lung, where premature exposure to room air represents a hyperoxic insult that may cause harm to a lung primed to develop in a hypoxic environment. Preterm infants are also subject to increased episodes of hypoxia, which may also result in pulmonary damage and disease. Here, we summarize the current understanding of the effects of oxygen on the developing lung and how low vs. high oxygen may predispose to pulmonary disease that may extend even into adulthood. Better understanding of the underlying mechanisms will help lead to improved care and outcomes in this vulnerable population.


Assuntos
Pneumopatias/etiologia , Pulmão/crescimento & desenvolvimento , Oxigênio/efeitos adversos , Animais , Feminino , Humanos , Hiperóxia/metabolismo , Hipóxia/metabolismo , Recém-Nascido Prematuro , Inflamação/metabolismo , Pulmão/metabolismo , Pneumopatias/patologia , Lesão Pulmonar/metabolismo , Oxigênio/metabolismo , Gravidez , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 307(4): L295-301, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951774

RESUMO

Wheezing is a major long-term respiratory morbidity in preterm infants with and without bronchopulmonary dysplasia. We hypothesized that mild vs. severe hyperoxic exposure in neonatal mice differentially affects airway smooth muscle hypertrophy and resultant airway reactivity. Newborn mice were exposed to 7 days of mild (40% oxygen) or severe (70% oxygen) hyperoxia vs. room air controls. Respiratory system resistance (Rrs), compliance (Crs), and airway reactivity were measured 14 days after oxygen exposure ended under ketamine/xylazine anesthesia. Baseline Rrs increased and Crs decreased in both treatment groups. Methacholine challenge dose dependently increased Rrs and decreased Crs in 40% oxygen-exposed mice, whereas Rrs and Crs responses were similar between 70% oxygen-exposed and normoxic controls. Airway smooth muscle thickness was increased in 40%- but not 70%-exposed mice, whereas collagen increased and both alveolar number and radial alveolar counts decreased after 40% and 70% oxygen. These data indicate that severity of hyperoxia may differentially affect structural and functional changes in the developing mouse airway that contribute to longer-term hyperreactivity. These findings may be important to our understanding of the complex role of neonatal supplemental oxygen therapy in postnatal development of airway responsiveness.


Assuntos
Hiperóxia/fisiopatologia , Oxigênio/toxicidade , Sistema Respiratório/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/fisiopatologia , Colágeno/metabolismo , Feminino , Complacência Pulmonar/efeitos dos fármacos , Masculino , Cloreto de Metacolina , Camundongos , Sistema Respiratório/fisiopatologia
14.
Neonatology ; 121(3): 327-335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437802

RESUMO

INTRODUCTION: Length of hospitalization varies widely in preterm infants and can be affected by multiple maternal and neonatal factors including respiratory instability. Therefore, we aimed to determine the association between postnatal intermittent hypoxemia (IH) and prolonged hospitalization. METHODS: This prospective single-center cohort study followed infants born at <31 weeks of gestational age through 2 years corrected age with detailed oxygen saturation data captured from days 7 to 30 of age. RESULTS: 51/164 (31%) of infants were discharged after 400/7 weeks of corrected gestational age (CGA). A greater average daily number of IH events (OR per 10 events/day 1.33 [95% CI 1.03-1.72]), duration of events (OR per minute 1.14 [1.07-1.21]), and percent time with oxygen saturation <80% (OR per percent 1.88 [1.25-2.85]) on days 7-30 of age were all significantly associated with prolonged hospitalization past 400/7 weeks CGA. In survival analyses, infants with a greater average daily number of IH events (HR per 10 events/day 0.89 [0.81-0.98]), percent time with oxygen saturation <80% (HR per percent 0.79 [0.67-0.94]), and duration of events (HR per minute 0.93 [0.91-0.95]) on days 7-30 of age all had significantly lower probability of earlier discharge. In addition, there was a significant interaction with gestational age; the association between IH and prolonged hospitalization was stronger in more mature infants (p = 0.024). CONCLUSIONS: Physiological instability on days 7-30 of age, as manifested by IH, is significantly associated with prolonged hospitalization. IH likely represents both a marker of initial severity of illness and the beginning of biological cascades, leading to prematurity-associated morbidities.


Assuntos
Idade Gestacional , Hipóxia , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Tempo de Internação , Humanos , Recém-Nascido , Tempo de Internação/estatística & dados numéricos , Estudos Prospectivos , Feminino , Masculino , Saturação de Oxigênio , Doenças do Prematuro , Lactente , Fatores de Risco
15.
Front Pharmacol ; 15: 1444574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253377

RESUMO

The ability of morphine to decrease cysteine transport into neurons by inhibition of excitatory amino acid transporter 3 (EAA3) may be a key molecular mechanism underlying the acquisition of physical and psychological dependence to morphine. This study examined whether co-administration of the cell-penetrant antioxidant D-thiol ester, D-cysteine ethyl ester (D-CYSee), with morphine, would diminish the development of physical dependence to morphine in male Sprague Dawley rats. Systemic administration of the opioid receptor antagonist, naloxone (NLX), elicited pronounced withdrawal signs (e.g., wet-dog shakes, jumps, rears, circling) in rats that received a subcutaneous depot of morphine (150 mg/kg, SC) for 36 h and continuous intravenous infusion of vehicle (20 µL/h, IV). The NLX-precipitated withdrawal signs were reduced in rats that received an infusion of D-CYSee, but not D-cysteine, (both at 20.8 µmol/kg/h, IV) for the full 36 h. NLX elicited pronounced withdrawal signs in rats treated for 48 h with morphine (150 mg/kg, SC), plus continuous infusion of vehicle (20 µL/h, IV) that began at the 36 h timepoint of morphine treatment. The NLX-precipitated withdrawal signs were reduced in rats that received a 12 h infusion of D-CYSee, but not D-cysteine, (both at 20.8 µmol/kg/h, IV) that began at the 36 h timepoint of morphine treatment. These findings suggest that D-CYSee may attenuate the development of physical dependence to morphine and reverse established dependence to the opioid in male Sprague Dawley rats. Alternatively, D-CYSee may simply suppress the processes responsible for NLX-precipitated withdrawal. Nonetheless, D-CYSee and analogues may be novel therapeutics for the treatment of opioid use disorders.

16.
Sci Rep ; 14(1): 9091, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643270

RESUMO

N-acetyl-L-cysteine (L-NAC) is a proposed therapeutic for opioid use disorder. This study determined whether co-injections of L-NAC (500 µmol/kg, IV) or its highly cell-penetrant analogue, L-NAC methyl ester (L-NACme, 500 µmol/kg, IV), prevent acquisition of acute physical dependence induced by twice-daily injections of fentanyl (125 µg/kg, IV), and overcome acquired dependence to these injections in freely-moving male Sprague Dawley rats. The injection of the opioid receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IV), elicited a series of withdrawal phenomena (i.e. behavioral and cardiorespiratory responses, hypothermia and body weight loss) in rats that received 5 or 10 injections of fentanyl and similar numbers of vehicle co-injections. With respect to the development of dependence, the NLX-precipitated withdrawal phenomena were reduced in rats that received had co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme. In regard to overcoming established dependence, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 µg/kg, IV) were reduced in rats that had received co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme beginning with injection 6 of fentanyl. This study provides compelling evidence that co-injections of L-NAC and L-NACme prevent the acquisition of physical dependence and overcome acquired dependence to fentanyl in male rats. The higher efficacy of L-NACme is likely due to its greater cell penetrability in brain regions mediating dependence to fentanyl and interaction with intracellular signaling cascades, including redox-dependent processes, responsible for the acquisition of physical dependence to fentanyl.


Assuntos
Acetilcisteína/análogos & derivados , Lisina/análogos & derivados , Dependência de Morfina , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Fentanila/farmacologia , Ratos Sprague-Dawley , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia
17.
Front Pharmacol ; 14: 1336440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38645835

RESUMO

We examined whether co-injections of the cell-permeant D-cysteine analogues, D-cysteine ethyl ester (D-CYSee) and D-cysteine ethyl amide (D-CYSea), prevent acquisition of physical dependence induced by twice-daily injections of fentanyl, and reverse acquired dependence to these injections in freely-moving male Sprague Dawley rats. Injection of the opioid receptor antagonist, naloxone HCl (NLX, 1.5 mg/kg, IV), elicited a series of withdrawal phenomena that included cardiorespiratory and behavioral responses, and falls in body weight and body temperature, in rats that received 5 or 10 injections of fentanyl (125 µg/kg, IV), and the same number of vehicle co-injections. Regarding the development of physical dependence, the NLX-precipitated withdrawal phenomena were markedly reduced in fentanyl-injected rats that had received co-injections of D-CYSee (250 µmol/kg, IV) or D-CYSea (100 µmol/kg, IV), but not D-cysteine (250 µmol/kg, IV). Regarding reversal of established dependence to fentanyl, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 µg/kg, IV) was markedly reduced in rats that received co-injections of D-CYSee (250 µmol/kg, IV) or D-CYSea (100 µmol/kg, IV), but not D-cysteine (250 µmol/kg, IV), starting with injection 6 of fentanyl. This study provides evidence that co-injections of D-CYSee and D-CYSea prevent the acquisition of physical dependence, and reverse acquired dependence to fentanyl in male rats. The lack of effect of D-cysteine suggests that the enhanced cell-penetrability of D-CYSee and D-CYSea into cells, particularly within the brain, is key to their ability to interact with intracellular signaling events involved in acquisition to physical dependence to fentanyl.

18.
Front Pharmacol ; 14: 1303207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111383

RESUMO

The molecular mechanisms underlying the acquisition of addiction/dependence on morphine may result from the ability of the opioid to diminish the transport of L-cysteine into neurons via inhibition of excitatory amino acid transporter 3 (EAA3). The objective of this study was to determine whether the co-administration of the cell-penetrant L-thiol ester, L-cysteine ethyl ester (L-CYSee), would reduce physical dependence on morphine in male Sprague Dawley rats. Injection of the opioid-receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IP), elicited pronounced withdrawal phenomena in rats which received a subcutaneous depot of morphine (150 mg/kg) for 36 h and were receiving a continuous infusion of saline (20 µL/h, IV) via osmotic minipumps for the same 36 h period. The withdrawal phenomena included wet-dog shakes, jumping, rearing, fore-paw licking, 360° circling, writhing, apneas, cardiovascular (pressor and tachycardia) responses, hypothermia, and body weight loss. NLX elicited substantially reduced withdrawal syndrome in rats that received an infusion of L-CYSee (20.8 µmol/kg/h, IV) for 36 h. NLX precipitated a marked withdrawal syndrome in rats that had received subcutaneous depots of morphine (150 mg/kg) for 48 h) and a co-infusion of vehicle. However, the NLX-precipitated withdrawal signs were markedly reduced in morphine (150 mg/kg for 48 h)-treated rats that began receiving an infusion of L-CYSee (20.8 µmol/kg/h, IV) at 36 h. In similar studies to those described previously, neither L-cysteine nor L-serine ethyl ester (both at 20.8 µmol/kg/h, IV) mimicked the effects of L-CYSee. This study demonstrates that 1) L-CYSee attenuates the development of physical dependence on morphine in male rats and 2) prior administration of L-CYSee reverses morphine dependence, most likely by intracellular actions within the brain. The lack of the effect of L-serine ethyl ester (oxygen atom instead of sulfur atom) strongly implicates thiol biochemistry in the efficacy of L-CYSee. Accordingly, L-CYSee and analogs may be a novel class of therapeutics that ameliorate the development of physical dependence on opioids in humans.

19.
Handb Clin Neurol ; 189: 43-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36031315

RESUMO

Apnea is a frequent occurrence in prematurity and its prevalence in the most severely preterm population is indicative of an immature respiratory neural control system. Preterm infants are also at increased risk of Sudden Infant Death Syndrome (SIDS), which has been associated with similar respiratory neural control dysfunction seen in prematurity. Generally, abnormalities in both central and peripheral mechanisms of respiratory control are thought to be key underlying features of abnormal respiratory system development. Numerous factors contribute to the etiology of apnea and respiratory control dysfunction including the environment (e.g., substance use/misuse), sex, genetics, a vulnerable neonate, and various underlying comorbidities. However, there are major gaps in our understanding of both normal and abnormal respiratory control system development, which highlights the need for continued research using novel and innovative methods.


Assuntos
Doenças do Prematuro , Morte Súbita do Lactente , Apneia , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro
20.
Front Pharmacol ; 13: 880878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662702

RESUMO

Management of acute respiratory distress involves O2 supplementation, which is lifesaving, but causes severe hyperoxic acute lung injury (HALI). NADPH oxidase (NOX) could be a major source of reactive oxygen species (ROS) in hyperoxia (HO). Epithelial cell death is a crucial step in the development of many lung diseases. Alveolar type II (AT2) cells are the metabolically active epithelial cells of alveoli that serve as a source of AT1 cells following lung injury. The aim of this study was to determine the possible role of AT2 epithelial cell NOX4 in epithelial cell death from HALI. Wild type (WT), Nox4 fl/fl (control), and Nox4 -/- Spc-Cre mice were exposed to room air (NO) or 95% O2 (HO) to investigate the structural and functional changes in the lung. C57BL/6J WT animals subjected to HO showed increased expression of lung NOX4 compared to NO. Significant HALI, increased bronchoalveolar lavage cell counts, increased protein levels, elevated proinflammatory cytokines and increased AT2 cell death seen in hyperoxic Nox4 fl/fl control mice were attenuated in HO-exposed Nox4 -/- Spc-Cre mice. HO-induced expression of NOX4 in MLE cells resulted in increased mitochondrial (mt) superoxide production and cell apoptosis, which was reduced in NOX4 siRNA silenced cells. This study demonstrates a novel role for epithelial cell NOX4 in accelerating lung epithelial cell apoptosis from HALI. Deletion of the Nox4 gene in AT2 cells or silencing NOX4 in lung epithelial cells protected the lungs from severe HALI with reduced apoptosis and decreased mt ROS production in HO. These results suggest NOX4 as a potential target for the treatment of HALI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA