Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 22(1): 232, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864494

RESUMO

BACKGROUND: Glioblastoma is a highly aggressive brain tumor. A big effort is required to find novel molecules which can cross the blood-brain barrier and efficiently kill these tumor cells. In this perspective, trehalose (α-glucopyranosyl-[1→1]-α-D-glucopyranoside), found in various dietary sources and used as a safe nutrient supplement, attracted our attention for its pleiotropic effects against tumor cells. METHODS: Human glioblastoma cell lines U373-MG and T98G were exposed to trehalose and analyzed at different time points. Cell proliferation was evaluated at medium term, and clonogenic capacity and cell morphology were evaluated at long term. Western blot was used to evaluate biochemical markers of autophagy (also measured in cells co-treated with EIPA or chloroquine), and mTOR, AMPK and ERK 1/2 signalling. Macropinocytosis was evaluated morphologically by bright-field microscopy; in cells loaded with the fluorescein-conjugated fluid-phase tracer dextran, macropinocytic vacuoles were also visualized by fluorescence microscopy, and the extent of macropinocytosis was quantified by flow cytometry. RESULTS: The long-term effect of trehalose on U373-MG and T98G cell lines was impressive, as indicated by a dramatic reduction in clonogenic efficiency. Mechanistically, trehalose proved to be an efficient autophagy inducer in macropinocytosis-deficient T98G cells and an efficient inducer of macropinocytosis and eventual cell death by methuosis in U373-MG glioblastoma cells, proved to be poorly responsive to induction of autophagy. These two processes appeared to act in a mutually exclusive manner; indeed, co-treatment of U373-MG cells with the macropinocytosis inhibitor, EIPA, significantly increased the autophagic response. mTOR activation and AMPK inhibition occurred in a similar way in the two trehalose-treated cell lines. Interestingly, ERK 1/2 was activated only in macropinocytosis-proficient U373-MG cells harbouring loss-of-function mutations in the negative RAS regulator, NF1, suggesting a key role of RAS signalling. CONCLUSIONS: Our results indicate that trehalose is worthy of further study as a candidate molecule for glioblastoma therapy, due to its capacity to induce a sustained autophagic response, ultimately leading to loss of clonogenic potential, and more interestingly, to force macropinocytosis, eventually leading to cell death by methuosis, particularly in tumor cells with RAS hyperactivity. As a further anticancer strategy, stimulation of macropinocytosis may be exploited to increase intracellular delivery of anticancer drugs.

2.
Bioorg Chem ; 108: 104657, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33556697

RESUMO

Wound healing represents an urgent need from the clinical point of view. Several diseases result in wound conditions which are difficult to treat, such as in the case of diabetic foot ulcer. Starting from there, the medicinal research has focused on various targets over the years, including GPCRs as new wound healing drug targets. In line with this, GPR120, known to be an attractive target in type 2 diabetes drug discovery, was studied to finalize the development of new wound healing agents. Pinocembrin (HW0) was evaluated as a suitable compound for interacting with GPR120, and was hybridized with fatty acids, which are known endogenous GPR120 ligands, to enhance the wound healing potential and GPR120 interactions. HW0 and its 7-linolenoyl derivative (HW3) were found to be innovative wound healing agents. Immunofluorescence and functional assays suggested that their activity was mediated by GPR120, and docking simulations showed that the compounds could share the same pocket occupied by the known GPR120 agonist, TUG-891.


Assuntos
Ésteres/farmacologia , Flavanonas/farmacologia , Ácidos Linolênicos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ésteres/síntese química , Ésteres/química , Flavanonas/síntese química , Flavanonas/química , Humanos , Ácidos Linolênicos/síntese química , Ácidos Linolênicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
3.
Molecules ; 25(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824747

RESUMO

Blood pressure control in hypertensive subjects calls for changes in lifestyle, especially diet. Tomato is widely consumed and rich in healthy components (i.e., carotenoids, vitamins and polyphenols). The aim of this study was to evaluate the chemical composition and antihypertensive effects of locular gel reconstituted in serum of green tomatoes of "Camone" variety. Tomato serum and locular gel were chemically characterised. The antihypertensive effects of the locular gel in serum, pure tomatine, and captopril, administered by oral gavage, were investigated for 4 weeks in male spontaneously hypertensive and normotensive rats. Systolic blood pressure and heart rate were monitored using the tail cuff method. Body and heart weight, serum glucose, triglycerides and inflammatory cytokines, aorta thickness and liver metabolising activity were also assessed. Locular gel and serum showed good tomatine and polyphenols content. Significant reductions in blood pressure and heart rate, as well as in inflammatory blood cytokines and aorta thickness, were observed in spontaneously hypertensive rats treated both with locular gel in serum and captopril. No significant effects were observed in normotensive rats. Green tomatoes locular gel and serum, usually discarded during tomato industrial processing, are rich in bioactive compounds (i.e., chlorogenic acid, caffeic acid and rutin, as well as the glycoalkaloids, α-tomatine and dehydrotomatine) that can lower in vivo blood pressure towards healthier values, as observed in spontaneously hypertensive rats.


Assuntos
Anti-Hipertensivos/farmacologia , Géis/química , Hipertensão/tratamento farmacológico , Extratos Vegetais/farmacologia , Solanum lycopersicum/química , Solanum lycopersicum/classificação , Animais , Pressão Sanguínea , Frequência Cardíaca , Masculino , Ratos , Ratos Endogâmicos SHR
4.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614497

RESUMO

Besides the liver, which has always been considered the major source of endogenous glucose production in all post-absorptive situations, kidneys and intestines can also produce glucose in blood, particularly during fasting and under protein feeding. However, observations gained in different experimental animals have given ambiguous results concerning the presence of the glucose-6-phosphatase system in the small intestine. The aim of this study was to better define the species-related differences of this putative gluconeogenic organ in glucose homeostasis. The components of the glucose-6-phosphatase system (i.e., glucose-6-phosphate transporter and glucose-6-phosphatase itself) were analyzed in homogenates or microsomal fractions prepared from the small intestine mucosae and liver of rats, guinea pigs, and humans. Protein and mRNA levels, as well as glucose-6-phosphatase activities, were detected. The results showed that the glucose-6-phosphatase system is poorly represented in the small intestine of rats; on the other hand, significant expressions of glucose-6-phosphate transporter and of the glucose-6-phosphatase were found in the small intestine of guinea pigs and homo sapiens. The activity of the recently described fructose-6-phosphate transporter-intraluminal hexose isomerase pathway was also present in intestinal microsomes from these two species. The results demonstrate that the gluconeogenic role of the small intestine is highly species-specific and presumably dependent on feeding behavior (e.g., fructose consumption) and the actual state of metabolism.


Assuntos
Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Intestino Delgado/enzimologia , Animais , Frutose/metabolismo , Cobaias , Humanos , Microssomos/enzimologia , Ratos , Especificidade da Espécie
5.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771288

RESUMO

Glucose is a basic nutrient in most of the creatures; its transport through biological membranes is an absolute requirement of life. This role is fulfilled by glucose transporters, mediating the transport of glucose by facilitated diffusion or by secondary active transport. GLUT (glucose transporter) or SLC2A (Solute carrier 2A) families represent the main glucose transporters in mammalian cells, originally described as plasma membrane transporters. Glucose transport through intracellular membranes has not been elucidated yet; however, glucose is formed in the lumen of various organelles. The glucose-6-phosphatase system catalyzing the last common step of gluconeogenesis and glycogenolysis generates glucose within the lumen of the endoplasmic reticulum. Posttranslational processing of the oligosaccharide moiety of glycoproteins also results in intraluminal glucose formation in the endoplasmic reticulum (ER) and Golgi. Autophagic degradation of polysaccharides, glycoproteins, and glycolipids leads to glucose accumulation in lysosomes. Despite the obvious necessity, the mechanism of glucose transport and the molecular nature of mediating proteins in the endomembranes have been hardly elucidated for the last few years. However, recent studies revealed the intracellular localization and functional features of some glucose transporters; the aim of the present paper was to summarize the collected knowledge.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Glucose-6-Fosfatase/metabolismo , Complexo de Golgi/metabolismo , Humanos
6.
J Inherit Metab Dis ; 41(6): 1015-1025, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29967951

RESUMO

BACKGROUND AND AIMS: Glycogen storage disease type Ib (GSD1b) is a rare metabolic and immune disorder caused by a deficiency in the glucose-6-phosphate transporter (G6PT) and characterized by impaired glucose homeostasis, myeloid dysfunction, and long-term risk of hepatocellular adenomas. Despite maximal therapy, based on a strict diet and on granulocyte colony-stimulating factor treatment, long-term severe complications still develop. Understanding the pathophysiology of GSD1b is a prerequisite to develop new therapeutic strategies and depends on the availability of animal models. The G6PT-KO mouse mimics the human disease but is very fragile and rarely survives weaning. We generated a conditional G6PT-deficient mouse as an alternative model for studying the long-term pathophysiology of the disease. We utilized this conditional mouse to develop an inducible G6PT-KO model to allow temporally regulated G6PT deletion by the administration of tamoxifen (TM). METHODS: We generated a conditional G6PT-deficient mouse utilizing the CRElox strategy. Histology, histochemistry, and phenotype analyses were performed at different times after TM-induced G6PT inactivation. Neutrophils and monocytes were isolated and analyzed for functional activity with standard techniques. RESULTS: The G6PT-inducible KO mice display the expected disturbances of G6P metabolism and myeloid dysfunctions of the human disorder, even though with a milder intensity. CONCLUSIONS: TM-induced inactivation of G6PT in these mice leads to a phenotype which mimics that of human GSD1b patients. The conditional mice we have generated represent an excellent tool to study the tissue-specific role of the G6PT gene and the mechanism of long-term complications in GSD1b.


Assuntos
Antiporters/deficiência , Modelos Animais de Doenças , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Homeostase , Proteínas de Transporte de Monossacarídeos/deficiência , Animais , Antiporters/genética , Doença de Depósito de Glicogênio Tipo I/etiologia , Doença de Depósito de Glicogênio Tipo I/patologia , Camundongos , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Neutropenia/etiologia , Tamoxifeno/administração & dosagem
8.
Int J Mol Sci ; 18(8)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829359

RESUMO

GLUT10 belongs to a family of transporters that catalyze the uptake of sugars/polyols by facilitated diffusion. Loss-of-function mutations in the SLC2A10 gene encoding GLUT10 are responsible for arterial tortuosity syndrome (ATS). Since subcellular distribution of the transporter is dubious, we aimed to clarify the localization of GLUT10. In silico GLUT10 localization prediction suggested its presence in the endoplasmic reticulum (ER). Immunoblotting showed the presence of GLUT10 protein in the microsomal, but not in mitochondrial fractions of human fibroblasts and liver tissue. An even cytosolic distribution with an intense perinuclear decoration of GLUT10 was demonstrated by immunofluorescence in human fibroblasts, whilst mitochondrial markers revealed a fully different decoration pattern. GLUT10 decoration was fully absent in fibroblasts from three ATS patients. Expression of exogenous, tagged GLUT10 in fibroblasts from an ATS patient revealed a strict co-localization with the ER marker protein disulfide isomerase (PDI). The results demonstrate that GLUT10 is present in the ER.


Assuntos
Artérias/anormalidades , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Instabilidade Articular/metabolismo , Dermatopatias Genéticas/metabolismo , Malformações Vasculares/metabolismo , Artérias/metabolismo , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Instabilidade Articular/genética , Microssomos/metabolismo , Ligação Proteica , Transporte Proteico , Dermatopatias Genéticas/genética , Malformações Vasculares/genética
9.
Biochim Biophys Acta ; 1843(9): 1909-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907663

RESUMO

Beyond its general role as antioxidant, specific functions of ascorbate are compartmentalized within the eukaryotic cell. The list of organelle-specific functions of ascorbate has been recently expanded with the epigenetic role exerted as a cofactor for DNA and histone demethylases in the nucleus. Compartmentation necessitates the transport through intracellular membranes; members of the GLUT family and sodium-vitamin C cotransporters mediate the permeation of dehydroascorbic acid and ascorbate, respectively. Recent observations show that increased consumption and/or hindered entrance of ascorbate in/to a compartment results in pathological alterations partially resembling to scurvy, thus diseases of ascorbate compartmentation can exist. The review focuses on the reactions and transporters that can modulate ascorbate concentration and redox state in three compartments: endoplasmic reticulum, mitochondria and nucleus. By introducing the relevant experimental and clinical findings we make an attempt to coin the term of ascorbate compartmentation disease.


Assuntos
Ácido Ascórbico/metabolismo , Compartimento Celular , Doença , Animais , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Organelas/metabolismo
10.
Biochim Biophys Acta ; 1830(3): 2608-18, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23266497

RESUMO

BACKGROUND: The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate to glucose and inorganic phosphate. The enzyme is a part of a multicomponent system that includes several integral membrane proteins; the catalytic subunit (G6PC) and transporters for glucose-6-phosphate, inorganic phosphate and glucose. The G6PC gene family presently includes three members, termed as G6PC, G6PC2, and G6PC3. Although the three isoforms show a moderate amino acid sequence homology, their membrane topology and catalytic site are very similar. The isoforms are expressed differently in various tissues. Mutations in all three genes have been reported to be associated with human diseases. SCOPE OF REVIEW: The present review outlines the biochemical features of the G6PC gene family products, the regulation of their expression, their role in the human pathology and the possibilities for pharmacological interventions. MAJOR CONCLUSIONS: G6PCs emerge as integrators of extra- and intracellular glucose homeostasis. Beside the well known key role in blood glucose homeostasis, the members of the G6PC family seem to play a role as sensors of intracellular glucose and of intraluminal glucose/glucose-6-phosphate in the endoplasmic reticulum. GENERAL SIGNIFICANCE: Since mutations in the three G6PC genes can be linked to human pathophysiological conditions, the better understanding of their functioning in connection with genetic alterations, altered expression and tissue distribution has an eminent importance.


Assuntos
Diabetes Mellitus/enzimologia , Retículo Endoplasmático/enzimologia , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Neutropenia/enzimologia , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Retículo Endoplasmático/patologia , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfato/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Neutropenia/congênito , Neutropenia/genética , Neutropenia/fisiopatologia , Fosfatos/metabolismo , Transdução de Sinais
11.
Arch Biochem Biophys ; 538(2): 57-63, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23942054

RESUMO

The involvement of presenilins in the endoplasmic reticulum (ER) related autophagy was investigated by their transient knockdown in HepG2 cells. The silencing of PSEN1 but not of PSEN2 led to cell growth impairment and decreased viability. PSEN1 silencing resulted in ER stress response as evidenced by the elevated levels of glucose regulated protein 78 (Grp78), protein disulfide isomerase (PDI), and CCAAT/enhancer-binding protein homologous protein (CHOP) and by the activation of activating transcription factor 6 (ATF6). The activation of autophagy was indicated by the increased procession of microtubule-associated light chain 3 protein isoform B (LC3B) and by decreased phosphorylation of mammalian target of rapamycin (mTOR) and 70kDa ribosomal protein S6 kinase (p70S6K). Formation of ER-related cytoplasmic vacuolization colocalizing with the autophagic marker LC3B was also observed. The morphological effects and LC3B activation in presenilin-1 knockdown cells could be prevented by using the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin or by calcium chelation. The results show that presenilin-1 hampers the ER stress dependent initiation of macroautophagy.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Células Hep G2/citologia , Presenilina-1/genética , Interferência de RNA , Cálcio/metabolismo , Proliferação de Células , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Células Hep G2/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase
12.
Nutrients ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014793

RESUMO

Hypertension is the leading risk factor for premature death worldwide and significantly contributes to the development of all major cardiovascular disease events. The management of high blood pressure includes lifestyle changes and treatment with antihypertensive drugs. Recently, it was demonstrated that a diet supplemented with Tenebrio molitor (TM) extracts is useful in the management of numerous pathologies, including hypertension. This study is aimed at unveiling the underlying mechanism and the molecular targets of intervention of TM dietary supplementation in hypertension treatment by means of proteomics and metabolomics techniques based on liquid chromatography coupled with high-resolution mass spectrometry. We demonstrate that serum proteome and metabolome of spontaneously hypertensive rats are severely altered with respect to their normotensive counterparts. Additionally, our results reveal that a diet enriched with TM extracts restores the expression of 15 metabolites and 17 proteins mainly involved in biological pathways associated with blood pressure maintenance, such as the renin-angiotensin and kallikrein-kinin systems, serin protease inhibitors, reactive oxygen scavenging, and lipid peroxidation. This study provides novel insights into the molecular pathways that may underlie the beneficial effects of TM, thus corroborating that TM could be proposed as a helpful functional food supplement in the treatment of hypertension.


Assuntos
Hipertensão , Tenebrio , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Metabolômica , Proteômica , Ratos
13.
Minerva Obstet Gynecol ; 73(3): 304-316, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34008385

RESUMO

Endometriosis is a chronic benign disease that affects women of reproductive age. Medical therapy is often the first line of management for women with endometriosis in order to ameliorate symptoms or to prevent post-surgical disease recurrence. Currently, there are several medical options for the management of patients with endometriosis and long-term treatments should balance clinical efficacy (controlling pain symptoms and preventing recurrence of disease after surgery) with an acceptable safety-profile. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of chronic inflammatory conditions, being efficacious in relieving primary dysmenorrhea. Combined oral contraceptives and progestins, available for multiple routes of administration, are commonly administered as first-line hormonal therapies. Several studies demonstrated that they succeed in improving pain symptoms in the majority of patients; moreover, they are well tolerated and not expensive. Gonadotropin-releasing hormone-agonists are prescribed when first line therapies are ineffective, not tolerated or contraindicated. Even if these drugs are efficacious in treating women not responding to COCs or progestins, they are not orally available and have a less favorable tolerability profile (needing an appropriate add-back therapy). Because few data are available on long-term efficacy and safety of aromatase inhibitors they should be reserved only for women with symptoms who are refractory to other treatments only in a research environment. Almost all of the currently available treatment options for endometriosis suppress ovarian function and are not curative. For this reason, research into new drugs is unsurprisingly demanding. Amongst the drugs currently under investigation, gonadotropin-releasing hormone antagonists have shown most promise, currently in late-stage clinical development. There is a number of potential future therapies currently tested only in vitro, in animal models of endometriosis or in early clinical studies with a small sample size. Further studies are necessary to conclude whether these treatments would be of value for the treatment of endometriosis.


Assuntos
Endometriose , Animais , Dismenorreia/tratamento farmacológico , Endometriose/tratamento farmacológico , Feminino , Hormônio Liberador de Gonadotropina , Antagonistas de Hormônios , Humanos , Progestinas/uso terapêutico
14.
Adv Sci (Weinh) ; 8(7): 2002715, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854880

RESUMO

The rise of metabolic disorders in modern times is mainly attributed to the environment. However, heritable effects of environmental chemicals on mammalian offsprings' metabolic health are unclear. Inorganic arsenic (iAs) is the top chemical on the Agency for Toxic Substances and Disease Registry priority list of hazardous substances. Here, we assess cross-generational effects of iAs in an exclusive male-lineage transmission paradigm. The exposure of male mice to 250 ppb iAs causes glucose intolerance and hepatic insulin resistance in F1 females, but not males, without affecting body weight. Hepatic expression of glucose metabolic genes, glucose output, and insulin signaling are disrupted in F1 females. Inhibition of the glucose 6-phosphatase complex masks the intergenerational effect of iAs, demonstrating a causative role of hepatic glucose production. F2 offspring from grandpaternal iAs exposure show temporary growth retardation at an early age, which diminishes in adults. However, reduced adiposity persists into middle age and is associated with altered gut microbiome and increased brown adipose thermogenesis. In contrast, F3 offspring of the male-lineage iAs exposure show increased adiposity, especially on a high-calorie diet. These findings have unveiled sex- and generation-specific heritable effects of iAs on metabolic physiology, which has broad implications in understanding gene-environment interactions.


Assuntos
Arsênio/efeitos adversos , Peso Corporal , Microbioma Gastrointestinal , Intolerância à Glucose/induzido quimicamente , Transtornos do Crescimento/induzido quimicamente , Resistência à Insulina , Exposição Paterna/efeitos adversos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
15.
Pathophysiology ; 28(1): 189-201, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35366276

RESUMO

Behavioral disorders affect millions of people worldwide. Hypertension contributes to both the development and progression of brain damage and cognitive dysfunction and could represent the most powerful modifiable risk factor for cerebral vessel dysfunction and consequent behavioral impairment. Tomato contains antioxidants and bioactive molecules that might play an important role in the prevention of cardiovascular and brain diseases. The effects of the combined gel and serum from Lycopersicum esculentum L. var. "Camone" tomatoes and those of purified tomato glycoalkaloids (tomatine) and an antihypertensive drug (captopril) were investigated in male spontaneously hypertensive rats (SHRs) and compared with normotensive Wistar Kyoto (WKY) rats. Body weight, systolic blood pressure, behavioral parameters, as well as brain susceptibility to oxidative stress and brain cytokine contents, were assessed. Treating hypertensive rats with tomato gel/serum or captopril for four weeks caused a significant reduction in blood pressure, decreased locomotor activity and increased grooming behavior; the last two parameters were also significantly affected by tomatine treatment. Brain slices obtained from hypertensive rats treated with tomato gel/serum were more resistant to oxidative stress and contained lower levels of inflammatory cytokines than vehicle-treated ones. In contrast, tomatine treatment had no effect. In conclusion, the tomato-derived gel/serum can be considered a dietary supplement able to drive in vivo blood pressure towards healthier values and also control some central effects such as behavior and brain oxidative stress.

16.
Mol Genet Metab Rep ; 29: 100813, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712576

RESUMO

Glycogen Storage Disease type 1b (GSDIb) is a genetic disorder with long term severe complications. Accumulation of the glucose analog 1,5-anhydroglucitol-6-phosphate (1,5AG6P) in neutrophils inhibits the phosphorylation of glucose in these cells, causing neutropenia and neutrophil dysfunctions. This condition leads to serious infections and inflammatory bowel disease (IBD) in GSDIb patients. We show here that dapagliflozin, an inhibitor of the renal sodium-glucose co-transporter-2 (SGLT2), improves neutrophil function in an inducible mouse model of GSDIb by reducing 1,5AG6P accumulation in myeloid cells.

17.
Biol Chem ; 391(1): 1-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19804362

RESUMO

Hexose-6-phosphate dehydrogenase (H6PD) is a luminal enzyme of the endoplasmic reticulum that is distinguished from cytosolic glucose-6-phosphate dehydrogenase by several features. H6PD converts glucose-6-phosphate and NADP(+) to 6-phosphogluconate and NADPH, thereby catalyzing the first two reactions of the pentose-phosphate pathway. Because the endoplasmic reticulum has a separate pyridine nucleotide pool, H6PD provides NADPH for luminal reductases. One of these enzymes, 11beta-hydroxysteroid dehydrogenase type 1 responsible for prereceptorial activation of glucocorticoids, has been the focus of much attention as a probable factor in the pathomechanism of several human diseases including insulin resistance and the metabolic syndrome. This review summarizes recent advances related to the functions of H6PD.


Assuntos
Retículo Endoplasmático/enzimologia , Glucosefosfato Desidrogenase/metabolismo , NADP/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Cortisona Redutase/deficiência , Glucosefosfato Desidrogenase/genética , Humanos , Camundongos , Camundongos Knockout , Via de Pentose Fosfato
18.
PLoS One ; 15(5): e0233788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470081

RESUMO

In pre-hypertension, moderate control of blood pressure (BP) can be obtained by a nutritional approach. The effects of a diet enriched with defatted larvae of the mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) (TM) endowed with ACE inhibitory activity was studied in both spontaneously hypertensive rats (SHR) and in the age-matched normotensive Wistar Kyoto strain. These were fed for 4 weeks with standard laboratory rodent chow supplemented with or without TM or captopril. In SHR, the TM diet caused a significant reduction in BP, heart rate and coronary perfusion pressure, as well as an increase in red blood cell glutathione/glutathione disulphide ratio. Rat brain slices of SHR were more resistant to oxidative stress and contained lower levels of inflammatory cytokines, while vascular and liver enzyme-activities were not affected. These results suggest that TM can be considered a new functional food that can lower BP in vivo and thus control cardiovascular-associated risk factors such as hypertension.


Assuntos
Pressão Sanguínea , Suplementos Nutricionais , Frequência Cardíaca , Hipertensão/dietoterapia , Animais , Anti-Hipertensivos/farmacologia , Captopril/farmacologia , Hipertensão/tratamento farmacológico , Larva , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Tenebrio
19.
Fertil Steril ; 112(6): 1150-1159, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31843092

RESUMO

OBJECTIVE: To assess the effect of ulipristal acetate (UPA) on the autophagic process of uterine leiomyoma cells. DESIGN: In vitro study in primary cultures of leiomyoma and myometrial cells isolated from biopsy specimen, and gene expression evaluation in biopsy material. SETTING: Cellular pathology laboratory. PATIENT(S): Premenopausal women (without hormonal treatment) undergoing myomectomy or hysterectomy for symptomatic leiomyomas. INTERVENTION(S): Surgical specimens collected from uterine leiomyomas and matched normal myometria. MAIN OUTCOME MEASURE(S): After treatment of myometrial and leiomyoma cells with UPA, autophagy was evaluated by Western blot analysis of the typical biochemical markers, LC3-II, LC3-II:LC3-I ratio, and p62/SQSTM1. The expression level of Atg7 and Atg4D proteins was also assessed by Western blot. RESULT(S): The increase of LC3-II protein, LC3-II:LC3-I ratio, and p62/SQSTM1 protein indicates that UPA treatment up-regulates the autophagic response in leiomyoma cells, whereas these markers were almost unchanged in myometrial cells. Consistently, an increased level of Atg7 and Atg4D proteins was observed only in UPA-treated leiomyoma cells. The autophagic machinery is put into motion selectively in these cells, despite that the basal messenger RNA levels of LC3, SQSTM1, and ATG7 in leiomyoma biopsy specimen were not significantly different from those found in normal myometrial biopsy material. CONCLUSION(S): In vitro UPA treatment stimulates the autophagic response selectively in leiomyoma cells, which adds a novel indication for the clinical use of this selective P receptor (PR) modulator. Autophagy up-regulation may potentially contribute to the leiomyoma shrinkage occurring in UPA-treated patients and warrants further study.


Assuntos
Antineoplásicos Hormonais/farmacologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Leiomioma/tratamento farmacológico , Norpregnadienos/farmacologia , Neoplasias Uterinas/tratamento farmacológico , Adulto , Feminino , Humanos , Leiomioma/metabolismo , Leiomioma/patologia , Pessoa de Meia-Idade , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
20.
Biochim Biophys Acta ; 1768(6): 1325-41, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17466261

RESUMO

Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Enzimas/metabolismo , Acetilcoenzima A/metabolismo , Transporte Biológico/fisiologia , Metabolismo dos Carboidratos/fisiologia , Carnitina/metabolismo , Cinética , Nucleotídeos/metabolismo , Oligopeptídeos/metabolismo , Fosfatos/metabolismo , Especificidade por Substrato , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA