Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299738

RESUMO

Magnetoelectric thin-film cantilevers consisting of strain-coupled magnetostrictive and piezoelectric layers are promising candidates for magnetic field measurements in biomedical applications. In this study, we investigate magnetoelectric cantilevers that are electrically excited and operated in a special mechanical mode with resonance frequencies above 500 kHz. In this particular mode, the cantilever bends in the short axis, forming a distinctive U-shape and exhibiting high-quality factors and a promising limit of detection of 70pT/Hz1/2 at 10 Hz. Despite this U mode, the sensors show a superimposed mechanical oscillation along the long axis. The induced local mechanical strain in the magnetostrictive layer results in magnetic domain activity. Due to this, the mechanical oscillation may cause additional magnetic noise, deteriorating the limit of detection of such sensors. We compare finite element method simulations with measurements of magnetoelectric cantilevers in order to understand the presence of oscillations. From this, we identify strategies for eliminating the external effects that affect sensor operation. Furthermore, we investigate the influence of different design parameters, in particular the cantilever length, material parameters and the type of clamping, on the amplitude of the undesired superimposed oscillations. We propose design guidelines to minimize the unwanted oscillations.


Assuntos
Eletricidade , Campos Magnéticos , Modalidades de Fisioterapia , Registros , Vibração
2.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960478

RESUMO

For the best possible limit of detection of any thin film-based magnetic field sensor, the functional magnetic film properties are an essential parameter. For sensors based on magnetostrictive layers, the chemical composition, morphology and intrinsic stresses of the layer have to be controlled during film deposition to further control magnetic influences such as crystallographic effects, pinning effects and stress anisotropies. For the application in magnetic surface acoustic wave sensors, the magnetostrictive layers are deposited on rotated piezoelectric single crystal substrates. The thermomechanical properties of quartz can lead to undesirable layer stresses and associated magnetic anisotropies if the temperature increases during deposition. With this in mind, we compare amorphous, magnetostrictive FeCoSiB films prepared by RF and DC magnetron sputter deposition. The chemical, structural and magnetic properties determined by elastic recoil detection, X-ray diffraction, and magneto-optical magnetometry and magnetic domain analysis are correlated with the resulting surface acoustic wave sensor properties such as phase noise level and limit of detection. To confirm the material properties, SAW sensors with magnetostrictive layers deposited with RF and DC deposition have been prepared and characterized, showing comparable detection limits below 200 pT/Hz1/2 at 10 Hz. The main benefit of the DC deposition is achieving higher deposition rates while maintaining similar low substrate temperatures.

3.
Sensors (Basel) ; 21(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451074

RESUMO

Surface acoustic wave (SAW) sensors for the detection of magnetic fields are currently being studied scientifically in many ways, especially since both their sensitivity as well as their detectivity could be significantly improved by the utilization of shear horizontal surface acoustic waves, i.e., Love waves, instead of Rayleigh waves. By now, low-frequency limits of detection (LOD) below 100 pT/Hz can be achieved. However, the LOD can only be further improved by gaining a deep understanding of the existing sensor-intrinsic noise sources and their impact on the sensor's overall performance. This paper reports on a comprehensive study of the inherent noise of SAW delay line magnetic field sensors. In addition to the noise, however, the sensitivity is of importance, since both quantities are equally important for the LOD. Following the necessary explanations of the electrical and magnetic sensor properties, a further focus is on the losses within the sensor, since these are closely linked to the noise. The considered parameters are in particular the ambient magnetic bias field and the input power of the sensor. Depending on the sensor's operating point, various noise mechanisms contribute to f0 white phase noise, f-1 flicker phase noise, and f-2 random walk of phase. Flicker phase noise due to magnetic hysteresis losses, i.e. random fluctuations of the magnetization, is usually dominant under typical operating conditions. Noise characteristics are related to the overall magnetic and magnetic domain behavior. Both calculations and measurements show that the LOD cannot be further improved by increasing the sensitivity. Instead, the losses occurring in the magnetic material need to be decreased.

4.
Sensors (Basel) ; 21(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809318

RESUMO

Magnetoelectric resonators have been studied for the detection of small amplitude and low frequency magnetic fields via the delta-E effect, mainly in fundamental bending or bulk resonance modes. Here, we present an experimental and theoretical investigation of magnetoelectric thin-film cantilevers that can be operated in bending modes (BMs) and torsion modes (TMs) as a magnetic field sensor. A magnetoelastic macrospin model is combined with an electromechanical finite element model and a general description of the delta-E effect of all stiffness tensor components Cij is derived. Simulations confirm quantitatively that the delta-E effect of the C66 component has the promising potential of significantly increasing the magnetic sensitivity and the maximum normalized frequency change Δfr. However, the electrical excitation of TMs remains challenging and is found to significantly diminish the gain in sensitivity. Experiments reveal the dependency of the sensitivity and Δfr of TMs on the mode number, which differs fundamentally from BMs and is well explained by our model. Because the contribution of C11 to the TMs increases with the mode number, the first-order TM yields the highest magnetic sensitivity. Overall, general insights are gained for the design of high-sensitivity delta-E effect sensors, as well as for frequency tunable devices based on the delta-E effect.

5.
Sensors (Basel) ; 19(21)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684054

RESUMO

In recent years the delta-E effect has been used for detecting low frequency and low amplitude magnetic fields. Delta-E effect sensors utilize a forced mechanical resonator that is detuned by the delta-E effect upon application of a magnetic field. Typical frequencies of operation are from several kHz to the upper MHz regime. Different models have been used to describe the delta-E effect in those devices, but the frequency dependency has mainly been neglected. With this work we present a simple description of the delta-E effect as a function of the differential magnetic susceptibility χ of the magnetic material. We derive an analytical expression for χ that permits describing the frequency dependency of the delta-E effect of the Young's modulus and the magnetic sensitivity. Calculations are compared with measurements on soft-magnetic (Fe90Co10)78Si12B10 thin films. We show that the frequency of operation can have a strong influence on the delta-E effect and the magnetic sensitivity of delta-E effect sensors. Overall, the delta-E effect reduces with increasing frequency and results in a stiffening of the Young's modulus above the ferromagnetic resonance frequency. The details depend on the Gilbert damping. Whereas for large Gilbert damping the sensitivity continuously decreases with frequency, typical damping values result in an amplification close to the ferromagnetic resonance frequency.

6.
Sci Rep ; 14(1): 11075, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744882

RESUMO

Magnetoelastic micro-electromechanical systems (MEMS) are integral elements of sensors, actuators, and other devices utilizing magnetostriction for their functionality. Their sensitivity typically scales with the saturation magnetostriction and inversely with magnetic anisotropy. However, large saturation magnetostriction and small magnetic anisotropy make the magnetoelastic layer highly susceptible to minuscule anisotropic stress. It is inevitably introduced during the release of the mechanical structure during fabrication and severely impairs the device's reproducibility, performance, and yield. To avoid the transfer of residual stress to the magnetic layer, we use a shadow mask deposition technology. It is combined with a free-free magnetoelectric microresonator design to minimize the influence of magnetic inhomogeneity on device performance. Magnetoelectric resonators are experimentally and theoretically analyzed regarding local stress anisotropy, magnetic anisotropy, and the ΔE-effect sensitivity in several resonance modes. The results demonstrate an exceptionally small device-to-device variation of the resonance frequency < 0.2% with large sensitivities comparable with macroscopic ΔE-effect magnetic field sensors. This development marks a promising step towards highly reproducible magnetoelastic devices and the feasibility of large-scale, integrated arrays.

7.
Sci Rep ; 13(1): 8446, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231050

RESUMO

Magnetoelastic composites which use surface acoustic waves show great potential as sensors of low frequency and very low amplitude magnetic fields. While these sensors already provide adequate frequency bandwidth for most applications, their detectability has found its limitation in the low frequency noise generated by the magnetoelastic film. Amongst other contributions, this noise is closely connected to domain wall activity evoked by the strain from the acoustic waves propagating through the film. A successful method to reduce the presence of domain walls is to couple the ferromagnetic material with an antiferromagnetic material across their interface and therefore induce an exchange bias. In this work we demonstrate the application of a top pinning exchange bias stack consisting of ferromagnetic layers of (Fe90Co10)78Si12B10 and Ni81Fe19 coupled to an antiferromagnetic Mn80Ir20 layer. Stray field closure and hence prevention of magnetic edge domain formation is achieved by an antiparallel biasing of two consecutive exchange bias stacks. The set antiparallel alignment of magnetization provides single domain states over the complete films. This results in a reduction of magnetic phase noise and therefore provides limits of detection as low as 28 pT/Hz1/2 at 10 Hz and 10 pT/Hz1/2 at 100 Hz.

8.
Lab Chip ; 21(16): 3174-3183, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34190746

RESUMO

The simultaneous separational control of motion of individual objects is vital to achieve high efficiency separation for biological analytes in biomedical applications. Here, we show the selective and directed movement of different populations of microbeads depending on their size in a flowless environment by means of a hexagonally structured soft-magnetic microchip platform. By adjusting strength and asymmetry of a modulated in-plane magnetic field, discrete and switchable movement patterns of two different types of beads above a magnetic surface structure are achieved. Starting from a heterogeneous mixture of bead populations and depending on the type of field sequences, directional forward transport of one type of beads is achieved, while the other bead population is immobilized. Despite significant size and magnetic content distributions within each population of microbeads, high separation efficiencies are demonstrated. The selection and movement processes are supported by full-scale magnetofluidic numerical simulations. The magnetic platform allowing multidirectional and selective microbead movement can greatly contribute to the progress of functional lab-on-chip and future diagnostics devices.


Assuntos
Magnetismo , Imãs , Campos Magnéticos , Microesferas
9.
Adv Mater Technol ; 6(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35558167

RESUMO

Miniaturized piezoelectric/magnetostrictive contour-mode resonators have been shown to be effective magnetometers by exploiting the ΔE effect. With dimensions of ~100-200 µm across and <1 µm thick, they offer high spatial resolution, portability, low power consumption, and low cost. However, a thorough understanding of the magnetic material behavior in these devices has been lacking, hindering performance optimization. This manuscript reports on the strong, nonlinear correlation observed between the frequency response of these sensors and the stress-induced curvature of the resonator plate. The resonance frequency shift caused by DC magnetic fields drops off rapidly with increasing curvature: about two orders of magnitude separate the highest and lowest frequency shift in otherwise identical devices. Similarly, an inverse correlation with the quality factor was found, suggesting a magnetic loss mechanism. The mechanical and magnetic properties are theoretically analyzed using magnetoelastic finite-element and magnetic domain-phase models. The resulting model fits the measurements well and is generally consistent with additional results from magneto-optical domain imaging. Thus, the origin of the observed behavior is identified and broader implications for the design of nano-magnetoelastic devices are derived. By fabricating a magnetoelectric nano-plate resonator with low curvature, a record-high DC magnetic field sensitivity of 5 Hz/nT is achieved.

10.
Sci Rep ; 10(1): 8761, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472020

RESUMO

The manipulation of superparamagnetic microbeads for lab-on-a-chip applications relies on the steering of microbeads across an altering stray field landscape on top of soft magnetic parent structures. Using ab initio principles, we show three-dimensional simulations forecasting the controlled movement of microbeads. Simulated aspects of microbead behaviour include the looping and lifting of microbeads around a magnetic circular structure, the flexible bead movement along symmetrically distributed triangular structures, and the dragging of magnetic beads across an array of exchange biased magnetic microstripes. The unidirectional motion of microbeads across a string of oval elements is predicted by simulations and validated experimentally. Each of the simulations matches the experimental results, proving the robustness and accuracy of the applied numerical method. The computer experiments provide details on the particle motion not accessible by experiments. The simulation capabilities prove to be an essential part for the estimation of future lab-on-chip designs.

11.
Sci Rep ; 9(1): 2086, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765847

RESUMO

Magnetic nanoparticles (MNPs) are a hot topic in the field of medical life sciences, as they are highly relevant in diagnostic applications. In this regard, a large variety of novel imaging methods for MNP in biological systems have been invented. In this proof-of-concept study, a new and novel technique is explored, called Magnetic Particle Mapping (MPM), using resonant magnetoelectric (ME) sensors for the detection of MNPs that could prove to be a cheap and efficient way to localize the magnetic nanoparticles. The simple and straightforward setup and measurement procedure includes the detection of higher harmonic excitations of MNP ensembles. We show the feasibility of this approach by building a measurement setup particularly suited to exploit the inherent sensor properties. We measure the magnetic response from 2D MNP distributions and reconstruct the distribution by solving the inverse problem. Furthermore, biological samples with magnetically labeled cells were measured and reconstruction of the distribution was compared with light microscope images. Measurement results suggest that the approach presented here is promising for MNP localization.

12.
Materials (Basel) ; 12(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337062

RESUMO

The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1-2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems.

13.
Sci Rep ; 8(1): 13871, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224792

RESUMO

We report on the direct observation of spin wave and elastic wave emission from magnetic domain walls in ferromagnetic thin films. Driven by alternating homogeneous magnetic fields the magnetic domain walls act as coherent magnetisation wave sources. Directional and low damped elastic waves below and above the ferromagnetic resonance are excited. The wave vector of the magnetoelastically induced acoustic waves is tuned by varying the excitation frequency. The occurrence of elastic wave emission is proved by a combination of micromagnetic and mechanical finite element simulations. Domain wall emitted magnetostatic surface spin waves occur at higher frequencies, which characteristics are confirmed by micromagnetic simulations. The distinct modes of magnetisation wave excitation from micromagnetic objects are a general physical phenomenon relevant for dynamic magnetisation processes in structured magnetic films. Magnetic domain walls can act as reconfigurable antennas for spin wave and elastic wave generation. The wave orientation can be controlled separately via the domain wall orientation for elastic waves and via magnetization orientation for magnetostatic surface spin waves.

14.
Sci Rep ; 8(1): 278, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321540

RESUMO

We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

15.
Sci Rep ; 6: 30761, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27487941

RESUMO

High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

16.
Adv Mater ; 27(34): 5017-22, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26198287

RESUMO

A new method of imaging of temperature distributions is presented. The method is based on the use of a BiLu2 Fe4 GaO12 ferrimagnetic garnet layer as a pyro-magneto-optical detection layer. Thermal imaging with high sensitivity, with micrometer spatial and with millisecond temporal resolution is demonstrated in a contactless read-out scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA