Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36850371

RESUMO

Stretchable strain sensors that use a liquid metal (eutectic gallium-indium alloy; E-GaIn) and flexible silicone rubber (Ecoflex) as the support and adhesive layers, respectively, are demonstrated. The flexibility of Ecoflex and the deformability of E-GaIn enable the sensors to be stretched by 100%. Ecoflex gel has sufficiently large adhesion force to skin, even though the adhesion force is smaller than that for commercially available adhesives. This enables the sensor to be used for non-invasive monitoring of human motion. The mechanical and electrical properties of the sensor are experimentally evaluated. The effectiveness of the proposed sensors is demonstrated by monitoring joint movements, facial expressions, and respiration.


Assuntos
Índio , Pele , Humanos , Fenômenos Físicos , Movimento (Física) , Respiração
2.
Sensors (Basel) ; 22(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890981

RESUMO

Deducing the input signal for a tactile display to present the target surface (i.e., solving the inverse problem for tactile displays) is challenging. We proposed the encoding and presentation (EP) method in our prior work, where we encoded the target surface by scanning it using an array of piezoelectric devices (encoding) and then drove the piezoelectric devices using the obtained signals to display the surface (presentation). The EP method reproduced the target texture with an accuracy of over 80% for the five samples tested, which we refer to as replicability. Machine learning is a promising method for solving inverse problems. In this study, we designed a neural network to connect the subjective evaluation of tactile sensation and the input signals to a display; these signals are described as time-domain waveforms. First, participants were asked to touch the surface presented by the mechano-tactile display based on the encoded data from the EP method. Then, the participants recorded the similarity of the surface compared to five material samples, which were used as the input. The encoded data for the material samples were used as the output to create a dataset of 500 vectors. By training a multilayer perceptron with the dataset, we deduced new inputs for the display. The results indicate that using machine learning for fine tuning leads to significantly better accuracy in deducing the input compared to that achieved using the EP method alone. The proposed method is therefore considered a good solution for the inverse problem for tactile displays.


Assuntos
Percepção do Tato , Tato , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
3.
Small ; 16(49): e2005550, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191570

RESUMO

An artificial cell membrane is applied to study the pore formation mechanisms of bacterial pore-forming toxins for therapeutic applications. Electrical monitoring of ionic current across the membrane provides information on the pore formation process of toxins at the single pore level, as well as the pore characteristics such as dimensions and ionic selectivity. However, the efficiency of pore formation detection largely depends on the encounter probability of toxin to the membrane and the fragility of the membrane. This study presents a bilayer lipid membrane array that parallelizes 4 or 16 sets of sensing elements composed of pairs of a membrane and a series electrical resistor. The series resistor prevents current overflow attributed to membrane rupture, and enables current monitoring of the parallelized membranes with a single detector. The array system shortens detection time of a pore-forming protein and improves temporal stability. The current signature represents the states of pore formation and rupture at respective membranes. The developed system will help in understanding the toxic activity of pore-forming toxins.


Assuntos
Toxinas Bacterianas , Bicamadas Lipídicas , Membrana Celular
4.
Langmuir ; 34(36): 10550-10559, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30119610

RESUMO

Room-temperature liquid metals such as GaInSn or EGaIn present the most attractive properties for soft and highly stretchable electronics. Recently, several methods have been investigated to functionalize the surface of the liquid metal via coatings and encapsulation. However, most can hardly be extended to other samples than droplets. In this study, we focus on the tunability of the process of galvanic replacement of Ga alloys with gold to form thin-film encapsulation. We characterized in-depth the obtainable composition and structure of a noble metal shell formed on the liquid metal via scanning electron microscopy, energy-dispersive X-ray, and topographic laser microscopy and highlighted the change in mechanism of galvanic replacement in different pH ranges. We showed the tunability of the surface morphology selection of different pH ranges, the solutions concentrations, and the reaction time. The adjustment of the pH of KAuBr4 solution to the preferential Ga2O3-free domain led to the successful formation of a sub-micrometer thin uniform coating with more than 60% of Au and reduced level of oxygen from 30% down to 10%. We finally demonstrated the effect of the coating composition on the electrical properties of the liquid metal using a simple and fast phase-drop measurement setup on the droplet and microchannels. A high correlation between the amount of noble metal deposited and the electrical properties of the droplets was demonstrated.

5.
Biochem Biophys Res Commun ; 471(4): 486-91, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26896767

RESUMO

To investigate comprehensive synaptic connectivity, we examined Ca(2+) responses with quantitative electric current stimulation by indium-tin-oxide (ITO) glass electrode with transparent and high electro-conductivity. The number of neurons with Ca(2+) responses was low during the application of stepwise increase of electric current in short-term cultured neurons (less than 17 days in-vitro (DIV)). The neurons cultured over 17 DIV showed two-type responses: S-shaped (sigmoid) and monotonous saturated responses, and Scatchard plots well illustrated the difference of these two responses. Furthermore, sigmoid like neural network responses over 17 DIV were altered to the monotonous saturated ones by the application of the mixture of AP5 and CNQX, specific blockers of NMDA and AMPA receptors, respectively. This alternation was also characterized by the change of Hill coefficients. These findings indicate that the neural network with sigmoid-like responses has strong synergetic or cooperative synaptic connectivity via excitatory glutamate synapses.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Cálcio/metabolismo , Técnicas de Cultura de Células/métodos , Técnicas de Química Analítica , Estimulação Elétrica/métodos , Eletrodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Rede Nervosa , Neurônios/efeitos dos fármacos , Ratos Wistar , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Compostos de Estanho
6.
Analyst ; 140(16): 5557-62, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26153566

RESUMO

This paper describes a simple microfluidic device that can generate nonlinear concentration gradients. We changed the "width" of channels that can drastically shorten the total microfluidic channel length and simplify the microfluidic network design rather than the "length" of channels. The logarithmic concentration gradients generated by the device were in good agreement with those obtained by simulation. Using this device, we evaluated a probable IC50 value of the ABC transporter proteins by the competitive transport assays at five different logarithmic concentrations. This probable IC50 value was in good agreement with an IC50 value (0.92 µM) obtained at the diluted concentrations of seven points.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Bioensaio/métodos , Concentração Inibidora 50 , Técnicas Analíticas Microfluídicas/métodos , Quinidina/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos
7.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398942

RESUMO

Stent retrievers are medical devices that are designed to physically remove blood clots from within the blood vessels of the brain. This paper focuses on microfabricated nitinol (nickel-titanium alloy) stent retrievers, which feature micro-patterns on their surface to enhance the effectiveness of mechanical thrombectomy. A thick film of nitinol, which was 20 µm in thickness, was sputtered onto a substrate with a micro-patterned surface, using electroplated copper as the sacrificial layer. The nitinol film was released from the substrate and then thermally treated while folded into a cylindrical shape. In vitro experiments with pig blood clots demonstrated that the micro-patterns on the surface improved the efficacy of blood clot retrieval.

8.
Anal Chem ; 85(22): 10913-9, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24134641

RESUMO

This paper describes the rapid and repetitive formation of planar lipid bilayers via a mechanical droplet contact method for high-throughput ion channel analysis. In this method, first, an aqueous droplet delivered in a lipid-in-oil solution is mechanically divided into two small droplets. Second, the two small droplets contact each other, resulting in the lipid bilayer formation. Third, an ion channel is immediately reconstituted into the bilayer and the transmembrane current signals are measured. By repeating this procedure, massive data sets of the channel signals can be obtained. This method allowed us to perform statistical analysis of α-hemolysin conductance (n = 256 within 30 min) and channel inhibition experiments by contacting different types of the droplets in a short time frame.


Assuntos
Membrana Celular/metabolismo , Eletrofisiologia/métodos , Proteínas Hemolisinas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Óleos/química , Proteínas Hemolisinas/química , Humanos , Nanoporos
9.
Micromachines (Basel) ; 14(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838100

RESUMO

To expand the applications of the electroencephalogram (EEG), long-term measurement, a short installation time, and little stress on the participants are needed. In this study, we designed, fabricated, and evaluated an EEG headset with three candle-like microneedle electrodes (CMEs). The user is able to detach and reattach the electrodes, enabling long-term measurement with little stress. The design of the CMEs was experimentally determined by considering the skin-to-electrode impedance and user comfort. An EEG was successfully measured from areas with a high hair density without any preparation. The installation time was shorter than 60 s and the electrodes could be detached and reattached. The headset was designed such that the discomfort caused by its ear pads was higher than that caused by the electrodes. In 1 h experiments, the participants did not feel pain and the detachment of the CMEs was found to improve the comfort level of the participants in most cases. A successful demonstration of the long-term measurement of EEGs while watching a whole movie verified that the developed EEG headset with CMEs is applicable for EEG measurement in a variety of applications.

10.
Biosens Bioelectron ; 237: 115490, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393766

RESUMO

This paper describes a novel signal processing method to characterize the activity of ion channels on a lipid bilayer system in a real-time and quantitative manner. Lipid bilayer systems, which enable single-channel level recordings of ion channel activities against physiological stimuli in vitro, are gaining attention in various research fields. However, the characterization of ion channel activities has heavily relied on time-consuming analyses after recording, and the inability to return the quantitative results in real time has long been a bottleneck to incorporating the system into practical products. Herein, we report a lipid bilayer system that integrates real-time characterization of ion channel activities and real-time response based on the characterization result. Unlike conventional batch processing, an ion channel signal is divided into short segments and processed during the recording. After optimizing the system to maintain the same characterization accuracy as conventional operation, we demonstrated the usability of the system with two applications. One is quantitative control of a robot based on ion channel signals. The velocity of the robot was controlled every second, which was around tens of times faster than the conventional operation, in proportion to the stimulus intensity estimated from changes in ion channel activities. The other is the automation of data collection and characterization of ion channels. By constantly monitoring and maintaining the functionality of a lipid bilayer, our system enabled continuous recording of ion channels over 2 h without human intervention, and the time of manual labor has been reduced from conventional 3 h to 1 min at a minimum. We believe the accelerated characterization and response in the lipid bilayer systems presented in this work will facilitate the transformation of lipid bilayer technology toward a practical level, finally leading to its industrialization.


Assuntos
Técnicas Biossensoriais , Bicamadas Lipídicas , Humanos , Canais Iônicos , Automação
11.
Micromachines (Basel) ; 13(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36296038

RESUMO

The quantitative characterization of tactile perception, which is crucial in the design of tactile devices, requires the tested samples to have individually and precisely controlled properties associated with the senses. In this work, we microfabricated such tactile samples and then quantitatively characterized tactile perception with a focus on roughness and dryness. In the roughness perception experiments, the tactile samples had a stripe pattern with ridge and groove widths that were individually controlled. The experimental results revealed that the feeling of roughness was more dominated by the width of the groove than that of the ridge and that conventionally used roughness parameters such as Sa and Sq were not sufficient for predicting roughness perception. In the dryness perception experiments, the tactile samples had a micropattern formed by dry etching and an array of squares. The experimental results revealed that dry perception had different properties when the feature sizes were below and above 30 µm, which may have been due to the effect of adhesion on friction. The proposed tactile samples were suitable for the quantitative and precise characterization of tactile perception.

12.
Nanomaterials (Basel) ; 12(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159732

RESUMO

Polysulfone ultrafiltration membranes were fabricated using various sizes (20, 40, and 90-210 nm) of silver nanoparticles (nAg) blended in a dope solution. To characterize the performance and properties of the prepared membranes, scanning electron microscopy (SEM), water contact angle, protein separation, water flux, and antibacterial tests were conducted. The characterization results revealed that when nAg particles (20 nm) were blended into the base polymer PSF, the PSF/nAg blended membrane had the lowest contact angle (58.5°) and surface energy (110.7 mN/m). When experimenting with ultrafiltration using protein solutions, bare PSF and PSF/nAg-20 blended membranes gave similar values of protein rejection: 93% of bovine serum albumin (BSA) and 70% of lysozyme rejection. Furthermore, SEM studies showed that the surface pore size was reduced by adding 20 nm nAg particles in the casting solution. Most importantly, the introduction of 40 nm nAg particles reduced the growth of bacterial colonies on the membrane surface by up to 72%. These findings revealed that nAg particles are expected to be a potential modifier for the fabrication of an ultrafiltration membrane.

13.
ACS Appl Mater Interfaces ; 14(5): 7241-7251, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084813

RESUMO

In recent years, wiring and system construction on ultrasoft materials such as biological tissues and hydrogels have been proposed for advanced wearable devices, implantable devices, and soft robotics. Among the soft conductive materials, Ga-based liquid metals (LMs) are both biocompatible and ultrasoft, making them a good match for electrodes on the ultrasoft substrates. However, gels and tissues are softer and less wettable to the LMs than conventional soft substrates such as Ecoflex and polydimethylsiloxane. In this study, we demonstrated the transfer of LM paste composed of Ga-based LM and Ni nanoparticles onto ultrasoft substrates such as biological tissue and gels using sacrificial polyvinyl alcohol (PVA) films. The LM paste pattern fabricated on the PVA film adhered to the ultrasoft substrate along surface irregularities and was transferred without being destroyed by the PVA film before the PVA's dissolution in water. The minimum line width that could be wired was approximately 165 µm. Three-dimensional wiring, such as the helical structure on the gel fiber surface, is also possible. Application of this transfer method to tissues using LM paste wiring allowed the successful stimulation of the vagus nerve in rats. In addition, we succeeded in transferring a temperature measurement system fabricated on a PVA film onto the gel. The connection between the solid-state electrical element and the LM paste was stable and maintained the functionality of the temperature-sensing system. This fundamental study of wiring fabrication and system integration can contribute to the development of advanced electric devices based on ultrasoft substrates.


Assuntos
Metais/química , Álcool de Polivinil/química , Animais , Materiais Biocompatíveis/química , Eletrodos Implantados , Eletrônica/instrumentação , Eletrônica/métodos , Gálio/química , Hidrogéis/química , Masculino , Nanopartículas/química , Níquel/química , Ratos , Ratos Sprague-Dawley , Temperatura , Dispositivos Eletrônicos Vestíveis
14.
Biol Psychol ; 164: 108172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34407425

RESUMO

Research has discovered the modulatory effect of peripheral stimulation simulating altered bodily signals on emotion. Whether such an effect varies depending on one's interoceptive accuracy (IAc) remains unclear. Therefore, we provided haptic stimulation simulating participants' slowed-down heartbeats or no stimulation while they engaged in socially stressful tasks to examine whether participants reacted differently depending on their IAc. Results showed that haptic stimulation exhibited the opposite effect on participants with different levels of IAc for both heart rate and heart rate variability (HRV). When receiving the stimulation, participants with higher IAc showed less increased heart rate and more elevated HF than participants with lower IAc. In contrast, in the absence of stimulation, an opposite pattern of response depending on participants' IAc was observed. The modulatory effect of stimuli and IAc on prosocial behavior was not significant. Individual differences in IAc were shown to affect how one perceives/responds to altered bodily signals.


Assuntos
Altruísmo , Interocepção , Emoções , Frequência Cardíaca , Humanos , Individualidade
15.
Micromachines (Basel) ; 12(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34442614

RESUMO

Hemofiltration removes water and small molecules from the blood via nanoporous filtering membranes. This paper discusses a pump-free hemofiltration device driven by the pressure difference between the artery and the vein. In the design of the filtering device, oncotic pressure needs to be taken into consideration. Transmembrane pressure (TMP) determines the amount and direction of hemofiltration, which is calculated by subtracting the oncotic pressure from the blood pressure. Blood pressure decreases as the channels progress from the inlet to the outlet, while oncotic pressure increases slightly since no protein is removed from the blood to the filtrate in hemofiltration. When TMP is negative, the filtrate returns to the blood, i.e., backfiltration takes place. A small region of the device with negative TMP would thus result in a small amount of or even zero filtrates. First, we investigated this phenomenon using in vitro experiments. We then designed a hemofiltration system taking backfiltration into consideration. We divided the device into two parts. In the first part, the device has channels for the blood and filtrate with a nanoporous membrane. In the second part, the device does not have channels for filtration. This design ensures TMP is always positive in the first part and prevents backfiltration. The concept was verified using in vitro experiments and ex vivo experiments in beagle dogs. Given the simplicity of the device without pumps or electrical components, the proposed pump-free hemofiltration device may prove useful for either implantable or wearable hemofiltration.

16.
Sensors (Basel) ; 10(4): 2946-56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22319281

RESUMO

We have developed a hydraulic displacement amplification mechanism (HDAM) and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS) membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

17.
PLoS One ; 15(11): e0242188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211718

RESUMO

Non-invasive diagnosis on biological liquid samples, such as urine, sweat, saliva, and tears, may allow patients to evaluate their health by themselves. To obtain accurate diagnostic results, target liquid must be precisely sampled. Conventionally, urine sampling using filter paper can be given as an example sampling, but differences in the paper structure can cause variations in sampling volume. This paper describes precise liquid sampling using synthetic microfluidic papers, which are composed of obliquely combined micropillars. Sampling volume accuracy was investigated using different designs and collection methods to determine the optimal design and sample collecting method. The optimized protocol was followed to accurately measure potassium concentration using synthetic microfluidic paper and a commercially available densitometer, which verified the usefulness of the synthetic microfluidic papers for precision sampling.


Assuntos
Microfluídica/métodos , Potássio/análise , Humanos , Membranas Artificiais , Microfluídica/instrumentação , Papel , Testes Imediatos , Urinálise/métodos , Urina/química
18.
Micromachines (Basel) ; 11(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605330

RESUMO

In this study, a new hat-type electroencephalogram (EEG) device with candle-like microneedle electrodes (CMEs), called an EEG-Hat, was designed and fabricated. CMEs are dry EEG electrodes that can measure high-quality EEG signals without skin treatment or conductive gels. One of the challenges in the measurement of high-quality EEG signals is the fixation of electrodes to the skin, i.e., the design of a good EEG headset. The CMEs were able to achieve good contact with the scalp for heads of different sizes and shapes, and the EEG-Hat has a shutter mechanism to separate the hair and ensure good contact between the CMEs and the scalp. Simultaneous measurement of EEG signals from five measurement points on the scalp was successfully conducted after a simple and brief setup process. The EEG-Hat is expected to contribute to the advancement of EEG research.

19.
Micromachines (Basel) ; 11(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486209

RESUMO

We demonstrate capture of event-related potentials (ERPs) using candle-like dry microneedle electrodes (CMEs). CMEs can record an electroencephalogram (EEG) even from hairy areas without any skin preparation, unlike conventional wet electrodes. In our previous research, we experimentally verified that CMEs can measure the spontaneous potential of EEG from the hairy occipital region without preparation with a signal-to-noise ratio as good as that of the conventional wet electrodes which require skin preparation. However, these results were based on frequency-based signals, which are relatively robust compared to noise contamination, and whether CMEs are sufficiently sensitive to capture finer signals remained unclear. Here, we first experimentally verified that CMEs can extract ERPs as good as conventional wet electrodes without preparation. In the auditory oddball tasks using pure tones, P300, which represent ERPs, was extracted with a signal-to-noise ratio as good as that of conventional wet electrodes. CMEs successfully captured perceptual activities. Then, we attempted to investigate cerebral cognitive activity using ERPs. In processing the vowel and prosody in auditory stimuli such as /itta/, /itte/, and /itta?/, laterality was observed that originated from the locations responsible for the process in near-infrared spectroscopy (NIRS) and magnetoencephalography experiments. We simultaneously measured ERPs with CMEs and NIRS in the oddball tasks using the three words. Laterality appeared in NIRS for six of 10 participants, although laterality was not clearly shown in the results, suggesting that EEGs have a limitation of poor spatial resolution. On the other hand, successful capturing of MMN and P300 using CMEs that do not require skin preparation may be readily applicable for real-time applications of human perceptual activities.

20.
Micromachines (Basel) ; 11(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352964

RESUMO

Lipid-bilayer devices have been studied for on-site sensors in the fields of diagnosis, food and environmental monitoring, and safety/security inspection. In this paper, we propose a lipid-bilayer-on-a-cup device for serial sample measurements using a pumpless solution exchange procedure. The device consists of a millimeter-scale cylindrical cup with vertical slits which is designed to steadily hold an aqueous solution and exchange the sample by simply fusing and splitting the solution with an external solution. The slit design was experimentally determined by the capabilities of both the retention and exchange of the solution. Using the optimized slit, a planar lipid bilayer was reconstituted with a nanopore protein at a microaperture allocated to the bottom of the cup, and the device was connected to a portable amplifier. The solution exchangeability was demonstrated by observing the dilution process of a blocker molecule of the nanopore dissolved in the cup. The pumpless solution exchange by the proposed cup-like device presents potential as a lipid-bilayer system for portable sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA