Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 96: 129494, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797804

RESUMO

A new class of benzimidazole derivatives as tubulin polymerization inhibitors has been designed and synthesized in this study. The in vitro anticancer profile of the developed molecules was reconnoitred on selected human cancer cells. The highest cytotoxicity was illustrated by compounds 7n and 7u with IC50 values ranging from 2.55 to 17.89 µM with specificity toward SK-Mel-28 cells. They displayed 5-fold less cytotoxicity towards normal rat kidney epithelial NRK52E cells, which implies that they are not harmful to normal, healthy cells. The cellular staining procedures like AO/EB, DCFDA, and DAPI were applied to comprehend the inherent mechanism of apoptosis which displayed nuclear and morphological alterations. The Annexin V binding and JC-1 studies were executed to evaluate the extent of apoptosis and the decline in mitochondrial transmembrane potential in SK-Mel-28 cell lines. Compound 7n dose-dependently arrested the G2/M phase of the cell cycle and the target-based outcomes proposed tubulin polymerization inhibition by 7n (IC50 of 5.05±0.13 µM). Computational studies were also conducted on the tubulin protein (PDB ID: 3E22) to investigate the stabilized binding interactions of compounds 7n and 7u with tubulin, respectively.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Ratos , Humanos , Animais , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Apoptose , Benzimidazóis/farmacologia , Polimerização
2.
Bioorg Chem ; 131: 106313, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36516521

RESUMO

In a quest for effective cancer targeted drug therapy, a series of new ß-carboline tethered indole-3-glyoxylamide derivatives, conjoining salient pharmacophoric properties with prominent cytotoxicity, were synthesized. The in vitro cytotoxic ability of the compounds was established, and many of the compounds exhibited remarkable cytotoxicity (IC50 < 10 µM) on human cancer cell lines like HCT116, A549, SK-MEL-28, and MCF7. Precisely, compound 12x expressed the best cytotoxic potential against melanoma cancer cell line (SK-MEL-28) with an IC50 value of 4.37 µM. In addition, cytotoxicity evaluation against normal kidney cell line (NRK52E) entrenched the cytospecificity and selectivity index of 12x. The traditional apoptosis assays advised morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented nuclei, and generation of ROS. The flow cytometric analysis revealed significant early and slight late-stage induction of apoptosis. The target-based physiochemical assays indicated the ability of compound 12x to bind with DNA and inhibition of Topoisomerase II. Moreover, molecular modeling studies affirm the excellent DNA intercalation potential and stabilized interactions of 12x with DNA base pairs. In silico prediction of physicochemical parameters revealed the promising drug-like properties of the synthesized derivatives.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , DNA/química , Antineoplásicos/química , Carbolinas/farmacologia , Carbolinas/química , Simulação por Computador , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
3.
Bioorg Chem ; 135: 106478, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958121

RESUMO

Cancer is associated with uncontrolled cell proliferation invading adjoining tissues and organs. Despite the availability of several chemotherapeutic agents, the constant search for newer approaches and drugs is necessitated owing to the ever-growing challenge of resistance. Over the years, DNA has emerged as an important druggable therapeutic drug due to its role in critical cellular processes such as cell division and maintenance. Further, evading apoptosis stands out as a hallmark of cancer. Hence, designing new compounds that would target DNA and induce apoptosis plays an important role in cancer therapy. In the current work, we carried out the synthesis and anticancer evaluation of 1-aryl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-ones/thiones (26 compounds) against selected human cancer cell lines. Among these, compounds 8ae, 8ad, 8cf, 10ad and Kenpaullone have shown good inhibitory properties against HeLa cells (IC50 < 2 µM) with good selectivity over the non-cancerous human embryonic kidney (Hek293T) cells. In cell cycle analysis, the compounds 8ad and 8cf have exhibited G2/M cell cycle arrest in HeLa cells. In addition, the compounds 8ad and 8cf induced apoptosis in a dose-dependent manner in the Annexin-V FITC staining assay. The DAPI staining clearly demonstrated the condensed and fragmented nuclei in 8ad, 8cf, 8ae and Kenpaullone-treated HeLa cells. In addition, these compounds strongly suppressed the healing after 48 h in in vitro cell migration assay. The DNA binding experiments indicated that compounds 8ae, 8cf, and 8ad as well as Kenpaullone interact with double-stranded DNA by binding in grooves which may interrupt the DNA replication and kill fast-growing cells. Molecular docking studies revealed the binding pose of 8ad and Kenpaullone at HT1 binding pocket of double-stranded DNA. Compounds 8ad and 8cf demonstrated moderate topo II inhibition which could be a possible reason for their anticancer properties. Compounds 8ad and 8cf may cause the topo II and DNA covalent complex, which leads to the inhibition of DNA replication and transcription. This eventually increases the DNA damage in cells and promotes cell apoptosis. With the above interesting biological profile, the new 1-aryl-2,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(4H)-one/thione derivatives have emerged as promising leads for the discovery of new anticancer agents.


Assuntos
Antineoplásicos , Tionas , Humanos , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Células HeLa , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tionas/farmacologia , Azepinas/química , Azepinas/farmacologia
4.
Arch Pharm (Weinheim) ; 356(5): e2200449, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807372

RESUMO

A simple "click" protocol was employed in the quest of synthesizing 1,2,3-triazole-linked benzimidazoles as promising anticancer agents on various human cancer cell lines such as A549, HCT116, SK-Mel-28, HT-29, and MCF-7. Compound 12j demonstrated significant cytotoxic potential towards SK-Mel-28 cancer cells (IC50 : 4.17 ± 0.09 µM) and displayed no cytotoxicity (IC50 : > 100 µM) against normal human BEAS-2B cells inferring its safety towards normal healthy cells. Further to comprehend the underlying apoptosis mechanisms, AO/EB, dichlorodihydrofluorescein diacetate (DCFDA), and 4',6-diamidino-2-phenylindole (DAPI) staining were performed, which revealed the nuclear and morphological alterations. Compound 12j displayed impairment in cellular migration and inhibited colony formation. The annexin V binding assay and JC-1 were implemented to evaluate the scope of apoptosis and the loss of the mitochondrial transmembrane potential in SK-Mel-28 cells. Cell-cycle analysis revealed that compound 12j arrested the cells at the G2/M phase in a dose-dependent manner. Target-based assays established the inhibition of tubulin polymerization by 12j at an IC50 value of 5.65 ± 0.05 µM and its effective binding with circulating tumor DNA as a DNA intercalator. The detailed binding interactions of 12j with tubulin and DNA were examined by docking studies on PDB ID: 3E22 and DNA hexamer (PDB ID: 1NAB), respectively.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Substâncias Intercalantes/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Apoptose , DNA , Simulação de Acoplamento Molecular , Polimerização
5.
Bioorg Med Chem Lett ; 65: 128697, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339645

RESUMO

The design and synthesis of a new series of mercaptoacetamide-linked pyrimidine-1,3,4-oxadiazole hybrids was accomplished. The in vitro cytotoxic potential of these new compounds was evaluated against lung cancer (A549), prostate cancer (PC-3, DU-145) and human embryonic kidney (HEK) cell lines. Compound 9p showed the highest potency on A549 cells with an IC50 value of 3.8 ± 0.02 µM. Moreover, 9p was found to be 25-fold more selective towards cancer cell lines than the non-cancerous (HEK) cell line. The target-based assay revealed the inhibition of the topoisomerase II enzyme by compound 9p. UV-visible spectroscopy, fluorescence, circular dichroism (CD), and viscosity studies inferred the intercalative property and effective binding of compound 9p with CT-DNA. Apoptosis induced by the compound 9p was observed by various morphological staining assays, i.e, DAPI, EtBr/AO. Further, the molecular modeling studies revealed the binding of compound 9p at the active site of the DNA-topoisomerase II complex while the physicochemical properties were in the recommended range. Finally, mercaptoacetamide-linked pyrimidine-1,3,4-oxadiazole derivatives can be considered as a promising scaffold for development as effective anticancer agents and topoisomerase II inhibitors.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Antineoplásicos/química , Apoptose , Proliferação de Células , DNA/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis , Pirimidinas , Relação Estrutura-Atividade
6.
Bioorg Chem ; 122: 105706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240414

RESUMO

A series of 17 indolo/pyrroloazepinone-oxindole conjugates was synthesized and evaluated for their antiproliferative activity against a panel of selected human cancer cell lines including A549 (lung cancer), HCT116 (colon cancer), MCF7 (breast cancer), and SK-MEL-28 (melanoma). Among the synthesized molecules (14a-m and 15a-d), compound 14d displayed remarkable activity against A549, HCT116 and SK-MEL-28 cells with IC50 values < 4 µM with the best cytotoxicity and a 13-fold selectivity towards lung cancer cells (IC50 value of 2.33 µM) over the normal rat kidney cells (NRK). Further, 14d-mediated apoptosis affected the cellular and nuclear morphology of the cancer cells in a dose-dependent manner. Wound healing and clonogenic assays inferred the inhibition of cell growth and migration. Target-based studies of compound 14d corroborated its DNA-intercalative capability and Topo I inhibitory activity which have been fortified by molecular modeling studies. Finally, the drug-likeness of the potent compound was determined by performing in silico ADME/T prediction studies.


Assuntos
Antineoplásicos , Animais , Apoptose , Azepinas , Linhagem Celular Tumoral , Proliferação de Células , DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis/farmacologia , Pirróis , Ratos , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 37: 127856, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609663

RESUMO

A new series of benzenesulphonamide linked-1,3,4-oxadiazole hybrids (6a-s) has been synthesized and tested for their carbonic anhydrase inhibition against human (h) carbonic anhydrase (CA) isoforms hCA I, II, IX, and XIII. Fluorescence properties of some of the synthesized molecules were studied. Most of the molecules exhibited significant inhibitory power, comparable or better than the standard drug acetazolamide (AAZ) on hCA XIII. Out of 19 tested molecules, compound 6e (75.8 nM) was 3 times more potent than AAZ (250.0 nM) against hCA I, whereas compound 6e (15.4 nM), 6g (16.2 nM), 6h (16.4 nM) and 6i (17.0 nM) were found to be more potent than AAZ (17.0 nM) against isoform hCA XIII. It is anticipated that these compounds could be taken as the potential leads for the development of selective hCA XIII isoform inhibitors with improved potency.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Desenho de Fármacos , Oxidiazóis/farmacologia , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
8.
Bioorg Med Chem ; 43: 116277, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175586

RESUMO

Efforts towards the development of potential anticancer agents, a new series of imidazo[1,2-a]pyridine-oxadiazole hybrids were synthesized and evaluated for their in vitro anticancer activity against lung cancer (A549) and prostate cancer (PC-3, DU-145) cell lines. Amongst the compounds tested, 6d showed the highest potency on A549 cells with an IC50 value of 2.8 ± 0.02 µM. Flow cytometric analysis of compound 6d treated A549 cells showed apoptosis induction by annexin-v/PI dual staining assay and the effect of 6d on different phases of cell cycle was also analyzed. Target based studies demonstrated the inhibition of tubulin polymerization by 6d at an IC50 value of 3.45 ± 0.51 µM and its effective binding with CT-DNA. Further, the molecular modelling studies revealed that 6d has a prominent binding affinity towards α/ß-tubulin receptor with admirable physico-chemical properties.


Assuntos
Antineoplásicos/farmacologia , DNA/química , Desenho de Fármacos , Microtúbulos/efeitos dos fármacos , Oxidiazóis/farmacologia , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microtúbulos/metabolismo , Estrutura Molecular , Oxidiazóis/química , Polimerização/efeitos dos fármacos , Piridinas/química , Relação Estrutura-Atividade
9.
Bioorg Chem ; 106: 104481, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261848

RESUMO

In quest of promising anticancer agents, the pharmacophores of natural (ß-carboline) and synthetic origin (benzothiazole) were adjoined by a carboxamide bridge and three-point diversification was accomplished. The in vitro cytotoxic ability of the compounds was established on adherent and suspension human cancer cell lines and compounds 8u and 8f advanced as pre-eminent molecules with IC50 values of 1.46 and 1.81 µM respectively in A549 cell line. The cytospecificity was entrenched for potent compounds 8u and 8f by evaluating against normal human lung epithelial cells and selectivity index was calculated. Furthermore, EtBr displacement, relative viscosity and gel-based topoisomerase II target assays unveiled the intercalative topo-II inhibitory capability and DNA binding studies (absorbance) revealed the dissociation constant (Kd) for compounds 8u and 8f as 98 and 103 µM respectively. Additionally, cell-based flow cytometric assays like Annexin-V/PI dual staining aids in the quantification of apoptosis induced and JC-1 staining disclosed the depolarization of mitochondrial membrane potential by compound 8u in A549 cells in a dose-dependent manner. Moreover, wound healing assay established the inhibition of in vitro cell migration by compound 8u on A549 cells. In addition, molecular docking studies proved the binding of compounds 8u and 8f in the active site of DNA complexed with topo IIα and stabilized by interactions with DNA base pairs and amino acid residues. Remarkably, the compounds 8u and 8f follow Lipinski's rule of five and are in the recommended range for Jorgensen's rule of three with a minimal violation and other pharmacokinetic parameters revealing druggability of the synthesized hybrids.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Carbolinas/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Desenvolvimento de Medicamentos , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/química , Carbolinas/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
10.
Bioorg Chem ; 101: 103983, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32683136

RESUMO

A series of new ß-carboline linked aryl sulfonyl piperazine congeners have been synthesized by coupling various ß-carboline acids with substituted aryl sulfonyl piperazines. Evaluation of their anticancer activity against a panel of human cancer cell lines such as colon (HT-29), breast (MDA-MB-231), bone osteosarcoma (MG-63), brain (U87 MG), prostate (PC- 3) and normal monkey kidney (Vero) cell line has been done. Among the series, compound 8ec and 8ed has shown most potent cytotoxicity with an IC50 values of 2.80 ± 0.10 µM and 0.59 ± 0.28 µM respectively against MG-63 cell line and also potent on other cell lines tested. Compounds 8ec and 8ed was found to inhibit Topo II that is confirmed by specific Topo II inhibition assay. DNA binding studies, cell cycle analysis, Annexin V study indicate that these compounds has potential anticancer activity. Molecular docking studies for compound 8ec and 8ed are incorporated to understand the nature of interaction with topoisomerase IIα and dsDNA.


Assuntos
Carbolinas/química , Carbolinas/síntese química , Simulação de Acoplamento Molecular/métodos , Inibidores da Topoisomerase II/uso terapêutico , Apoptose , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia
11.
Bioorg Med Chem ; 27(15): 3285-3298, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227365

RESUMO

To explore a new set of cytotoxic agents, ß-carboline-combretastatin carboxamide conjugates were designed, synthesized and evaluated for their in vitro cytotoxicity potential, DNA binding affinity and Topoisomerase-II (topo-II) inhibition activity. Among the designed hybrids, 10v and 10af have shown significant cytotoxic effect against A549 (lung cancer) cell line having IC50 value 1.01 µM and 1.17 µM respectively. Further, it was speculated that treatment with compound 10v may induce apoptosis among A549 cells, which was supported by Hoechst staining, DCFDA, Annexin V-FITC and morphological assays. Flow cytometric analysis revealed that the hybrid 10v arrests A549 cells in G2/M phase of cell cycle in a dose dependent manner. Amongst the active hybrids, most potent hybrid 10v was tested for DNA topo-II inhibition activity. Moreover, to further support the biological activity and to infer the mode of interaction between ligands and DNA, spectroscopy and molecular docking studies were carried out. The docking and spectroscopy results showed that the ligands exhibited an intercalative mode of binding with DNA and could efficiently bind to DNA and form topo-II ternary complex. Based on these experiments, the hybrids 10v and 10af were identified as proficient new scaffolds which need to be developed as hit molecules for therapeutic interest.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Bibenzilas/farmacologia , Carbolinas/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA de Cinetoplasto/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Células A549 , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Bibenzilas/química , Carbolinas/química , Proliferação de Células/efeitos dos fármacos , DNA de Cinetoplasto/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
12.
Bioorg Med Chem ; 27(5): 708-720, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30679134

RESUMO

A series of new pyrazole linked benzothiazole-ß-naphthol derivatives were designed and synthesized using a simple, efficient and ecofriendly route under catalyst-free conditions in good to excellent yields. These derivatives were evaluated for their cytotoxicity on selected human cancer cell lines. Among those, the derivatives 4j, 4k and 4l exhibited considerable cytotoxicity with IC50 values ranging between 4.63 and 5.54 µM against human cervical cancer cells (HeLa). Structure activity relationship was elucidated by varying different substituents on benzothiazoles and pyrazoles. Further, flow cytometric analysis revealed that these derivatives induced cell cycle arrest in G2/M phase and spectroscopic studies such as UV-visible, fluorescence and circular dichroism studies showed that these derivatives exhibited good DNA binding affinity. Additionally, these derivatives can effectively inhibit the topoisomerase I activity. Viscosity studies and molecular docking studies demonstrated that the derivatives bind with the minor groove of the DNA.


Assuntos
Benzotiazóis/farmacologia , Naftóis/farmacologia , Pirazóis/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/metabolismo , Bisbenzimidazol/farmacologia , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Naftóis/síntese química , Naftóis/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/metabolismo , Viscosidade
13.
Bioorg Chem ; 93: 103317, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586714

RESUMO

An operationally simple Biginelli protocol was employed for the synthesis of new C6-carbon based aryl α-haloacrylamide-linked dihydropyrimidinone derivatives. The synthesized compounds were appraised for their in vitro antiproliferative potential against a selected panel of human cancer cell lines especially MCF-7 (human breast cancer), MDA-MB-231 (human breast cancer), HCT-116 (human colon cancer), HCT-15 (human colorectal adenocarcinoma), HT-29 (human colon adenocarcinoma) and DU145 (human prostate cancer) along with normal lung fibroblasts (HFL-1). Preferably, compounds containing α-haloacrylamide (10a-g) functionality were found to exhibit most significant cytotoxicity (IC50 value 0.54 ±â€¯0.12 to 8.35 ±â€¯0.82 µM) against the listed cancer cell lines, particularly towards breast cancer cell lines MCF-7 and MDA-MB-231 (IC50 value 0.54 ±â€¯0.12 to 3.70 ±â€¯0.24 µM). In the seam of synthesized compounds, compound 10f exhibited potent antiproliferative activity against breast cancer cell lines namely MCF-7 (IC50 value 0.54 ±â€¯0.12 µM) and MDA-MB-231 (IC50 value 1.18 ±â€¯0.32 µM). Further to understand the underlying apoptosis mechanisms, different staining techniques such as AO/EB, DCFDA, and DAPI staining were performed. To know the extent of apoptosis and loss of mitochondrial membrane potential in MCF-7 cell lines, annexin V-FITC/PI and JC-1 were performed. Cell cycle analysis revealed that compound 10f arrested the cells at G2/M phase in a dose-dependent manner. The compound 10f also found to exhibit significant inhibition of tubulin polymerization (IC50 of 6.91 ±â€¯0.43 µM) with microtubule destabilizing properties. Molecular docking studies also revealed that compound 10f efficiently interacted with critical catalytically active residues Ser178, Val238, and Val318 of the α/ß-tubulin by a hydrogen bond.


Assuntos
Desenho de Fármacos , Pirimidinonas/química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
14.
Biochemistry ; 57(46): 6514-6527, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30369235

RESUMO

Porphyrins are well-known anticancer agents because of their high binding affinity for G-quadruplex DNA and excellent photophysical properties. Several studies carried out using TMPyP4 established it as an efficient chemotherapeutic and a photodynamic therapeutic (PDT) agent, but its use as a lead molecule has been restricted because of its high level of binding to double-stranded DNA (dsDNA), which may have side effects on normal cells and tissues. To minimize its interaction with dsDNA and to enhance internalization into cells, an analogue of TMPyP4 (5Me) was synthesized. Its selectivity for G-quadruplex DNA over dsDNA was evaluated by spectroscopic methods, and its role in stabilizing G-quadruplex DNA was assessed by fluorescence lifetime and thermal melting experiments. Biophysical studies indicated that 5Me interacts well with G-quadruplex DNA. In vitro cytotoxicity experiments with tumor cell lines (PANC-1, B16F10, and MDA MB 231) have revealed that 5Me can inhibit the growth of cancer cells comparable to TMPyP4. MTT and apoptotic assays demonstrated the ability of 5Me to specifically affect cancer cells over normal cells. Cell cycle analysis showed that 5Me, like TMPyP4, induces G2/M phase cell cycle arrest. In addition, 5Me is more effectively taken up by both cancer and normal cells than TMPyP4. In addition, we have noticed that 5Me is more efficient than TMPyP4 in inhibiting the growth of the cancer cells after irradiation with light (600-720 nm, 20 J/cm2, 50 mW/cm2). By and large, these experimental results indicate that 5Me can be an efficient chemotherapeutic as well as a PDT agent.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA/química , Quadruplex G , Neoplasias/patologia , Porfirinas/química , Porfirinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
15.
Bioorg Med Chem ; 26(17): 4916-4929, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30172625

RESUMO

A series of new C3-trans-cinnamide linked ß-carboline conjugates has been synthesized by coupling between various ß-carboline amines and substituted cinnamic acids. Evaluation of their anti-proliferative activity against a panel of selected human cancer cell lines such as A549 (lung cancer), MCF-7 (breast cancer), B16 (melanoma), HeLa (cervical cancer) and a normal cell line NIH3T3 (mouse embryonic fibroblast cell line), suggested that the newly designed conjugates are considerably active against all the tested cancer cell lines with IC50 values 13-45 nM. Moreover, the conjugates 8v and 8x were the most active against MCF-7 cells (14.05 nM and 13.84 nM respectively) and also even potent on other cell lines tested. Further, detailed investigations such as cell cycle analysis, apoptosis induction study, topoisomerase I inhibition assay, DNA binding affinity and docking studies revealed that these new conjugates are DNA interactive topoisomerase I inhibitors.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbolinas/química , Carbolinas/farmacologia , Cinamatos/química , DNA/efeitos dos fármacos , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/farmacologia , Amidas/química , Animais , Apoptose/efeitos dos fármacos , Carbolinas/síntese química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Humanos , Substâncias Intercalantes/química , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Viscosidade
16.
J Enzyme Inhib Med Chem ; 33(1): 615-628, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29536768

RESUMO

A practical and transition metal-free one-pot domino synthesis of diversified (1,3,4-oxadiazol-2-yl)anilines has been developed employing isatins and hydrazides as the starting materials, in the presence of molecular iodine. The prominent feature of this domino process involves consecutive condensation, hydrolytic ring cleavage, and an intramolecular decarboxylation, in a one-pot process that leads to the oxidative formation of a C-O bond. Fluorescence properties of some of the representative molecules obtained in this way were studied. The synthesised 2-(1,3,4-oxadiazolo-2-yl)aniline-benzene sulphonamides (8a-o) were screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity. Most of the compounds exhibited low micromolar to nanomolar activity against human (h) isoforms hCA I, hCA II, hCA IV, and XII, with some compounds displaying selective CA inhibitory activity towards hCA II with KIs of 6.4-17.6 nM.


Assuntos
Compostos de Anilina/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Iodo/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Descarboxilação , Relação Dose-Resposta a Droga , Humanos , Iodo/química , Estrutura Molecular , Relação Estrutura-Atividade
17.
Biochemistry ; 56(33): 4392-4404, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28737386

RESUMO

Guanine rich regions in DNA, which can form highly stable secondary structures, namely, G-quadruplex or G4 DNA structures, affect DNA replication and transcription. Molecules that stabilize G4 DNA have become important in recent years. In this study, G4 DNA stabilization, inhibition of telomerase, and anticancer activity of synthetic ß-carboline-benzimidazole derivatives (5a, 5d, 5h, and 5r) were studied. Among them, derivatives containing a 4-methoxyphenyl ring at C1 and a 6-methoxy-substituted benzimidazole at C3 (5a) were found to stabilize telomeric G-quadruplex DNA efficiently. The stoichiometry and interaction of a synthetic, ß-carboline-benzimidazole derivative, namely, 3-(6-methoxy-1H-benzo[d]imidazol-2-yl)-1-(4-methoxyphenyl)-9H-pyrido[3,4-b]indole (5a), with human intermolecular G-quadruplex DNA at low concentrations were examined using electrospray ionization mass spectrometry. Spectroscopy techniques indicate that 5a may intercalate between the two stacks of G-quadruplex DNA. This model is supported by docking studies. When cancer cells are treated with 5a, the cell cycle arrest occurs at the sub-G1 phase. In addition, an apoptosis assay and fluorescence microscopy studies using cancer cells indicate that 5a can induce apoptosis. Results of biochemical assays such as the polymerase chain reaction stop assay and telomerase activity assay indicate that 5a has the potential to stabilize G-quadruplex DNA, and thereby, it may interfere with in vitro DNA synthesis and decrease telomerase activity. The results of this study reveal that the ß-carboline-benzimidazole derivative (5a) is efficient in G-quadruplex DNA stabilization over double-stranded DNA, inhibits telomerase activity, and induces apoptosis in cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Benzimidazóis , Quadruplex G , Fase G1/efeitos dos fármacos , Telomerase , Telômero , Benzimidazóis/farmacologia , DNA/metabolismo , Células HeLa , Humanos , Espectrometria de Massas por Ionização por Electrospray , Telomerase/antagonistas & inibidores , Telomerase/química , Telomerase/metabolismo , Telômero/química , Telômero/metabolismo
18.
Apoptosis ; 22(1): 118-134, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770267

RESUMO

Apoptosis is a representative form of programmed cell death, which has been assumed to be critical for cancer prevention. Thus, any agent that can induce apoptosis may be useful for cancer treatment and apoptosis induction is arguably the most potent defense against cancer promotion. In our previous studies, 2-aryl benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity and one of the new molecule (2f) was considered as a potential lead. This lead molecule showed significant antiproliferative activity against human breast cancer cell line, MCF-7. The results of the present study revealed that this compound arrested the cell cycle at G2/M phase. Topoisomerase II inhibition assay and Western blot analysis suggested that this compound effectively inhibits topoisomerase II activity which leads to apoptotic cell death. Apoptosis induction in MCF-7 cells was further confirmed by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome c from mitochondria, an increase in the level of apoptosis inducing factor (AIF), generation of reactive oxygen species (ROS), up regulation of proapoptotic protein Bax and down regulation of anti apoptotic protein Bcl-2. Apoptosis assay using Annexin V-FITC assay also suggested that this compound induced cell death by apoptosis. However, compound 2f induced apoptosis could not be reversed by Z-VAD-FMK (a pan-caspase inhibitor) demonstrated that the 2f induced apoptosis was caspase independent. Further, 2f treatment did not activate caspase-7 and caspase-9 activity, suggesting that this compound induced apoptosis in breast cancer cells via a caspase independent pathway. Most importantly, this compound was less toxic towards non-tumorigenic breast epithelial cells, MCF-10A. Furthermore, docking studies also support the potentiality of this molecule to bind to the DNA topoisomerase II.


Assuntos
Apoptose/efeitos dos fármacos , Benzimidazóis/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , DNA Topoisomerases Tipo II/química , Fator de Indução de Apoptose/genética , Benzimidazóis/química , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inibidores de Caspase/administração & dosagem , Inibidores de Caspase/química , Caspases/genética , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
19.
Org Biomol Chem ; 15(32): 6837-6853, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28782777

RESUMO

An operationally facile and high yielding one-pot, three-component protocol has been developed for the preparation of selectively trans-2,3-dihydrofuro[3,2-c]coumarins and trans-1,2-dihydrobenzo[h]furo[3,2-c]quinolinones. This protocol proceeds through a domino Knoevenagel condensation, a Michael addition followed by intramolecular SN2 cyclisation. All the synthesized compounds have been evaluated for their in vitro cytotoxic activity against selected human cancer cell lines. Interestingly, most of the compounds have exhibited considerable cytotoxicity with IC50 values <10 µM in all the tested cell lines. Moreover, these compounds showed higher activity against MCF-7 (breast cancer) cell lines compared to other tested cell lines. Compounds 1g and 1r displayed significant cytotoxicity against all four tested cell lines. Cytotoxicity studies indicated that the toxicity of the synthesized compounds was considerably higher in tumor cells compared to normal cells. The structure-activity relationship studies revealed that the activating groups in these compounds preferably improved the activity compared to the deactivating groups. For a better understanding of the mechanism of action of these compounds, we performed the binding studies with calf thymus DNA (CT-DNA). Both molecular docking studies as well as biophysical studies indicate that these compounds may possess DNA binding affinity through intercalation. Through photocleavage studies, it is evident that they have the potential to cleave pBR322 plasmid DNA strands in a concentration and time dependent manner. In addition, compounds 1g and 1r showed significant topoisomerase II inhibitory activities. Moreover, an in silico study of these synthesized compounds revealed that they possess drug-like properties.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cumarínicos/síntese química , Cumarínicos/farmacologia , DNA/química , Quinolonas/farmacologia , Animais , Antineoplásicos/química , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Células NIH 3T3 , Quinolonas/síntese química , Quinolonas/química , Estereoisomerismo , Relação Estrutura-Atividade
20.
Biochim Biophys Acta ; 1850(1): 129-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25452213

RESUMO

BACKGROUND: Telomeric and NHE III1, a c-MYC promoter region is abundant in guanine content and readily form G-quadruplex structures. Small molecules that stabilize G-quadruplex DNA were shown to reduce oncoprotein expression, initiate apoptosis and they may function as anticancer molecules. METHODS: Electrospray ionization mass spectrometry, spectroscopy, isothermal titration calorimetry, Taq DNA polymerase stop assay, real time PCR and luciferase reporter assay. Cell migration assay to find out the effect of derivatives on normal as well as cancer cell proliferation. RESULTS: Among three different dihydroindolizino indole derivatives, 4-cyanophenyl group attached derivative has shown maximum affinity, selective interaction and higher stability towards G-quadruplex DNA over dsDNA. Further, as a potential G-quadruplex DNA stabilizer, 4-cyanophenyl linked dihydroindolizino indole derivative was found to be more efficient in inhibiting in vitro DNA synthesis, c-MYC expression and cancer cell proliferation among human cancer cells. CONCLUSION: The present study reveals that dihydroindolizino indole derivative having 4-cyanophenyl group has potential to stabilize G-quadruplex DNA and exhibit anticancer activity. GENERAL SIGNIFICANCE: These studies are useful in the identification and synthesis of lead derivatives that will selectively stabilize G-quadruplex DNA and function as anticancer agents.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Quadruplex G , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Temperatura de Transição/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ligação Competitiva , Calorimetria , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Indóis/síntese química , Indóis/química , Células MCF-7 , Modelos Químicos , Estrutura Molecular , Neoplasias/genética , Neoplasias/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA