Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nano Lett ; 21(1): 651-657, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33283521

RESUMO

The global COVID-19 pandemic has changed many aspects of daily lives. Wearing personal protective equipment, especially respirators (face masks), has become common for both the public and medical professionals, proving to be effective in preventing spread of the virus. Nevertheless, a detailed understanding of respirator filtration-layer internal structures and their physical configurations is lacking. Here, we report three-dimensional (3D) internal analysis of N95 filtration layers via X-ray tomography. Using deep learning methods, we uncover how the distribution and diameters of fibers within these layers directly affect contaminant particle filtration. The average porosity of the filter layers is found to be 89.1%. Contaminants are more efficiently captured by denser fiber regions, with fibers <1.8 µm in diameter being particularly effective, presumably because of the stronger electric field gradient on smaller diameter fibers. This study provides critical information for further development of N95-type respirators that combine high efficiency with good breathability.


Assuntos
COVID-19/prevenção & controle , Respiradores N95/virologia , Pandemias , SARS-CoV-2/ultraestrutura , Microbiologia do Ar , COVID-19/transmissão , COVID-19/virologia , Aprendizado Profundo , Filtração/estatística & dados numéricos , Humanos , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Respiradores N95/normas , Respiradores N95/estatística & dados numéricos , Nanopartículas/ultraestrutura , Pandemias/prevenção & controle , Tamanho da Partícula , Polipropilenos , Porosidade , Têxteis/virologia , Tomografia por Raios X
2.
Nano Lett ; 19(9): 6352-6362, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31314531

RESUMO

Semiconducting MoTe2 is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains underexplored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinning at contacts. Here, we demonstrate unipolar n-type MoTe2 transistors with the highest performance to date, including high saturation current (>400 µA/µm at 80 K and >200 µA/µm at 300 K) and relatively low contact resistance (1.2 to 2 kΩ·µm from 80 to 300 K), achieved with Ag contacts and AlOx encapsulation. We also investigate other contact metals (Sc, Ti, Cr, Au, Ni, Pt), extracting their Schottky barrier heights using an analytic subthreshold model. High-resolution X-ray photoelectron spectroscopy reveals that interfacial metal-Te compounds dominate the contact resistance. Among the metals studied, Sc has the lowest work function but is the most reactive, which we counter by inserting monolayer hexagonal boron nitride between MoTe2 and Sc. These metal-insulator-semiconductor (MIS) contacts partly depin the metal Fermi level and lead to the smallest Schottky barrier for electron injection. Overall, this work improves our understanding of n-type contacts to 2D materials, an important advance for low-power electronics.

3.
J Am Chem Soc ; 138(15): 5123-9, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26997198

RESUMO

Molybdenum disulfide (MoS2), with its active edge sites, is a proposed alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Recently, the inert basal plane of MoS2 was successfully activated and optimized with excellent intrinsic HER activity by creating and further straining sulfur (S) vacancies. Nevertheless, little is known about the HER kinetics of those S vacancies and the additional effects from elastic tensile strain. Herein, scanning electrochemical microscopy was used to determine the HER kinetic data for both unstrained S vacancies (formal potential Ev0 = −0.53 VAg/AgCl, electron-transfer coefficient αv = 0.4, electron-transfer rate constant kv0 = 2.3 × 10(­4) cm/s) and strained S vacancies (Esv0= −0.53 VAg/AgCl, αsv = 0.4, ksv0 = 1.0 × 10(­3) cm/s) on the basal plane of MoS2 monolayers, and the strained S vacancy has an electron-transfer rate 4 times higher than that of the unstrained S vacancy. This study provides a general platform for measuring the kinetics of two-dimensional material-based catalysts.

4.
Small ; 11(17): 2037-43, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25565340

RESUMO

Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions.

5.
Phys Rev Lett ; 110(6): 065502, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432270

RESUMO

Tetragonal semimetallic phases are predicted for Hf(2)O(3) and Zr(2)O(3) using density functional theory. The structures belong to space group P4[over ¯]m2 and are more stable than their corundum counterparts. Many body corrections at first order confirm their semimetallic character. The carrier concentrations are very similar for both materials, and are estimated as 1.8×10(21) cm(-3) for both electrons and holes, allowing for electric conduction. This could serve as a basic explanation for the low resistance state of hafnia-based resistive random access memory.

6.
Nano Lett ; 12(11): 5455-63, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23043427

RESUMO

The emergence of new technologies, such as whole genome sequencing systems, which generate a large amount of data, is requiring ultrahigh storage capacities. Due to their compactness and low power consumption, probe-based memory devices using Pb(Zr(0.2)Ti(0.8))O(3) (PZT) ferroelectric films are the ideal candidate for such applications where portability is desired. To achieve ultrahigh (>1 Tbit/in(2)) storage densities, sub-10 nm inverted domains are required. However, such domains remain unstable and can invert back to their original polarization due to the effects of an antiparallel built-in electric field in the PZT film, domain-wall, and depolarization energies. Here, we show that the built-in electric-field can be tuned and suppressed by repetitive hydrogen and oxygen plasma treatments. Such treatments trigger reversible Pb reduction/oxidation activity, which alters the electrochemistry of the Pb overlayer and compensates for charges induced by the Pb vacancies. This tuning mechanism is used to demonstrate the writing of stable and equal size sub-4 nm domains in both up- and down-polarized PZT films, corresponding to eight inverted unit-cells. The bit sizes recorded here are the smallest ever achieved, which correspond to potential 60 Tbit/in(2) data storage densities.


Assuntos
Nanotecnologia/métodos , Eletricidade , Eletroquímica/métodos , Desenho de Equipamento , Genoma , Hidrogênio/química , Chumbo/química , Modelos Estatísticos , Oxigênio/química , Física/métodos , Análise de Sequência de DNA/instrumentação , Temperatura , Titânio/química , Zircônio/química
7.
Nano Lett ; 11(3): 1161-5, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21323381

RESUMO

We present a new method to manipulate the channel charge density of field-effect transistors using dipole-generating self-assembled monolayers (SAMs) with different anchor groups. Our approach maintains an ideal interface between the dipole layers and the semiconductor while changing the built-in electric potential by 0.41-0.50 V. This potential difference can be used to change effectively the electrical properties of nanoelectronic devices. We further demonstrate the application of the SAM dipoles to enable air-stable operation of n-channel organic transistors.

8.
Opt Express ; 19(27): 25866-72, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274174

RESUMO

This work presents a novel method to introduce a sustainable biaxial tensile strain larger than 1% in a thin Ge membrane using a stressor layer integrated on a Si substrate. Raman spectroscopy confirms 1.13% strain and photoluminescence shows a direct band gap reduction of 100meV with enhanced light emission efficiency. Simulation results predict that a combination of 1.1% strain and heavy n(+) doping reduces the required injected carrier density for population inversion by over a factor of 60. We also present the first highly strained Ge photodetector, showing an excellent responsivity well beyond 1.6um.


Assuntos
Eletrônica/instrumentação , Germânio/química , Germânio/efeitos da radiação , Membranas Artificiais , Fotometria/métodos , Semicondutores , Silício/química , Desenho de Equipamento , Luz , Dispositivos Ópticos
9.
Nanotechnology ; 22(25): 254029, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21572196

RESUMO

Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.

10.
Nanotechnology ; 21(18): 185303, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20378944

RESUMO

Nanoframes containing 20 nm diameter TiO(2) nanowire arrays were synthesized with polymer templates via cathodic sol-gel deposition followed by 450 degrees C sintering. Raman spectra indicated that they are composed of pure anatase TiO(2). The nanowire array inside the nanoframe was confirmed to be single crystalline by high resolution TEM. Dye-sensitized solar cells based on this nanoframe were fabricated and the effects of the top cover in the nanoframe, which is the only difference between nanoframe cells and nanowire cells, were investigated. The results show that the top cover does not prevent the I( - ) and I(3)( - ) ions underneath from diffusing freely in the electrolyte and causes no deterioration of the cell performance. The nanoframe cell is a promising device in which nanowire arrays are strengthened and the effective internal surface area has the potentiality to be increased without sacrificing the advantages of nanowire cells compared to nanoparticle cells.

11.
Opt Express ; 17(12): 10019-24, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19506652

RESUMO

We report the room temperature electroluminescence (EL) at 1.6 microm of a Ge n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device shows a super linear luminescence enhancement at high current. By comparing different n type doping concentrations, we observe that a higher concentration is required to achieve better efficiency of the device. Thermal enhancement effects observed in temperature dependent EL spectra show the capability of this device to operate at room temperature or above. These detailed studies show that Ge can be a good candidate for a Si compatible light emitting device.


Assuntos
Eletroquímica/instrumentação , Germânio/química , Iluminação/instrumentação , Silício/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade , Temperatura
12.
J Am Chem Soc ; 130(12): 3742-3, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18303895

RESUMO

Reported here for the first time are the oxidative couplings of alkynes and primary alcohols yielding conjugated enones. Although the BF3-catalyzed reaction of terminal alkynes with p-trifluoromethylphenyl(difluoro)-lambda3-bromane results in the fluoro-lambda3-bromanation of triple bonds to afford (E)-beta-fluorovinyl-lambda3-bromanes, reaction of an alkyne with the difluoro-lambda3-bromane in the presence of an alcohol and BF3-Et2O affords directly conjugated enones in good yields. The reaction proceeds in a highly stereo- and regioselective manner under metal-free conditions. Interestingly, no formation of enones was detected, when difluoro-lambda3-iodane p-CF3C6H4IF2 was used instead of the lambda3-bromane. A mechanism involving a lambda3-bromane-induced oxidation of an alcohol to an aldehyde, [2 + 2] cyclization with alkynes yielding 2H-oxetes, and finally the electrocyclic ring opening is discussed.


Assuntos
Alcinos/química , Carbono/química , Etanol/química , Hidrocarbonetos Bromados/química , Estrutura Molecular , Oxirredução , Estereoisomerismo
13.
Org Lett ; 9(17): 3335-8, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17658841

RESUMO

4-(Difluoroiodo)toluene-induced domino lambda(3)-iodanation-1,4-halogen shift-ring enlargement-fluorination reaction of 5-halopentynes with a four-, five-, or six-membered carbocycle afforded the ring-expanded (E)-delta-fluoro-beta-halovinyl-lambda3-iodanes stereoselectively in high yields, probably via the intermediacy of five-membered halonium ions. Use of internal alkynes makes it possible to synthesize tetrasubstituted beta-halovinyl-lambda(3)-iodanes with defined stereochemistry.


Assuntos
Alcinos/química , Halogênios/química , Bromo , Cloro , Flúor , Iodo/química , Estereoisomerismo
14.
Sci Adv ; 3(8): e1700481, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28819644

RESUMO

The success of silicon as a dominant semiconductor technology has been enabled by its moderate band gap (1.1 eV), permitting low-voltage operation at reduced leakage current, and the existence of SiO2 as a high-quality "native" insulator. In contrast, other mainstream semiconductors lack stable oxides and must rely on deposited insulators, presenting numerous compatibility challenges. We demonstrate that layered two-dimensional (2D) semiconductors HfSe2 and ZrSe2 have band gaps of 0.9 to 1.2 eV (bulk to monolayer) and technologically desirable "high-κ" native dielectrics HfO2 and ZrO2, respectively. We use spectroscopic and computational studies to elucidate their electronic band structure and then fabricate air-stable transistors down to three-layer thickness with careful processing and dielectric encapsulation. Electronic measurements reveal promising performance (on/off ratio > 106; on current, ~30 µA/µm), with native oxides reducing the effects of interfacial traps. These are the first 2D materials to demonstrate technologically relevant properties of silicon, in addition to unique compatibility with high-κ dielectrics, and scaling benefits from their atomically thin nature.

15.
Nat Commun ; 8(1): 658, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939848

RESUMO

Negative differential resistance behavior in oxide memristors, especially those using NbO2, is gaining renewed interest because of its potential utility in neuromorphic computing. However, there has been a decade-long controversy over whether the negative differential resistance is caused by a relatively low-temperature non-linear transport mechanism or a high-temperature Mott transition. Resolving this issue will enable consistent and robust predictive modeling of this phenomenon for different applications. Here we examine NbO2 memristors that exhibit both a current-controlled and a temperature-controlled negative differential resistance. Through thermal and chemical spectromicroscopy and numerical simulations, we confirm that the former is caused by a ~400 K non-linear-transport-driven instability and the latter is caused by the ~1000 K Mott metal-insulator transition, for which the thermal conductance counter-intuitively decreases in the metallic state relative to the insulating state.The development of future computation devices will be aided by a better understanding of the physics underlying material behaviors. Using thermoreflectance and spatially resolved X-ray microscopy, Kumar et al. elucidate the origin of two types of negative differential resistance in NbO2 memristors.

16.
Nanoscale ; 9(5): 1793-1798, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27906408

RESUMO

We analyzed micrometer-scale titanium-niobium-oxide prototype memristors, which exhibited low write-power (<3 µW) and energy (<200 fJ per bit per µm2), low read-power (∼nW), and high endurance (>millions of cycles). To understand their physico-chemical operating mechanisms, we performed in operando synchrotron X-ray transmission nanoscale spectromicroscopy using an ultra-sensitive time-multiplexed technique. We observed only spatially uniform material changes during cell operation, in sharp contrast to the frequently detected formation of a localized conduction channel in transition-metal-oxide memristors. We also associated the response of assigned spectral features distinctly to non-volatile storage (resistance change) and writing of information (application of voltage and Joule heating). These results provide critical insights into high-performance memristors that will aid in device design, scaling and predictive circuit-modeling, all of which are essential for the widespread deployment of successful memristor applications.

17.
ACS Nano ; 10(8): 7507-14, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27434729

RESUMO

Two-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 µm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick). High-field electrical measurements and electrothermal modeling demonstrate that ultrathin WTe2 can carry remarkably high current density (approaching 50 MA/cm(2), higher than most common interconnect metals) despite a very low thermal conductivity (of the order ∼3 Wm(-1) K(-1)). These results suggest several pathways for air-stable technological viability of this layered semimetal.

18.
ACS Nano ; 10(12): 11205-11210, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27957851

RESUMO

Transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physicochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.

19.
Adv Mater ; 28(14): 2772-6, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26833926

RESUMO

Oxygen migration in tantalum oxide, a promising next-generation storage material, is studied using in operando X-ray absorption spectromicroscopy. This approach allows a physical description of the evolution of conduction channel and eventual device failure. The observed ring-like patterns of oxygen concentration are modeled using thermophoretic forces and Fick diffusion, establishing the critical role of temperature-driven oxygen migration.

20.
ACS Nano ; 9(6): 5922-8, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26027690

RESUMO

Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA