Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802041

RESUMO

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Neurospora crassa/enzimologia , Sistemas de Translocação de Proteínas/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Espectrometria de Massas , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica em Folha beta , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
2.
Proc Natl Acad Sci U S A ; 120(34): e2301447120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579144

RESUMO

The TOM complex is the main entry point for precursor proteins (preproteins) into mitochondria. Preproteins containing targeting sequences are recognized by the TOM complex and imported into mitochondria. We have determined the structure of the TOM core complex from Neurospora crassa by single-particle electron cryomicroscopy at 3.3 Å resolution, showing its interaction with a bound preprotein at 4 Å resolution, and of the TOM holo complex including the Tom20 receptor at 6 to 7 Å resolution. TOM is a transmembrane complex consisting of two ß-barrels, three receptor subunits, and three short transmembrane subunits. Tom20 has a transmembrane helix and a receptor domain on the cytoplasmic side. We propose that Tom20 acts as a dynamic gatekeeper, guiding preproteins into the pores of the TOM complex. We analyze the interactions of Tom20 with other TOM subunits, present insights into the structure of the TOM holo complex, and suggest a translocation mechanism.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Membrana Transportadoras , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte/metabolismo
3.
Biochem Soc Trans ; 52(2): 911-922, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629718

RESUMO

To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Microscopia Crioeletrônica/métodos , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Conformação Proteica , Animais
4.
Biol Chem ; 401(6-7): 687-697, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32142473

RESUMO

In the past three decades, significant advances have been made in providing the biochemical background of TOM (translocase of the outer mitochondrial membrane)-mediated protein translocation into mitochondria. In the light of recent cryoelectron microscopy-derived structures of TOM isolated from Neurospora crassa and Saccharomyces cerevisiae, the interpretation of biochemical and biophysical studies of TOM-mediated protein transport into mitochondria now rests on a solid basis. In this review, we compare the subnanometer structure of N. crassa TOM core complex with that of yeast. Both structures reveal remarkably well-conserved symmetrical dimers of 10 membrane protein subunits. The structural data also validate predictions of weakly stable regions in the transmembrane ß-barrel domains of the protein-conducting subunit Tom40, which signal the existence of ß-strands located in interfaces of protein-protein interactions.


Assuntos
Proteínas de Transporte/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurospora crassa/enzimologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Conformação Proteica
5.
Nitric Oxide ; 93: 102-114, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541733

RESUMO

Elevated levels of reactive nitrogen species, alteration in redox balance and deregulated redox signaling are common hallmarks of cancer progression and chemoresistance. However, depending on the cellular context, distinct reactive nitrogen species are also hypothesized to mediate cytotoxic activity and are thus used in anticancer therapies. We present here the dual face of nitric oxide and its derivatives in cancer biology. Main derivatives of nitric oxide, such as nitrogen dioxide and peroxynitrite cause cell death by inducing protein and lipid peroxidation and/or DNA damage. Moreover, they control the activity of important protein players within the pro- and anti-apoptotic signaling pathways. Thus, the control of intracellular reactive nitrogen species may become a sophisticated tool in anticancer strategies.


Assuntos
Neoplasias/tratamento farmacológico , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/química , Proteínas/metabolismo
6.
Methods Mol Biol ; 2778: 221-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478281

RESUMO

Total interference reflection fluorescence (TIRF) microscopy of lipid bilayers is an effective technique for studying the lateral movement and ion channel activity of single integral membrane proteins. Here we describe how to integrate the mitochondrial outer membrane preprotein translocase TOM-CC and its ß-barrel protein-conducting channel Tom40 into supported lipid bilayers to identify possible relationships between movement and channel activity. We propose that our approach can be readily applied to membrane protein channels where transient tethering to either membrane-proximal or intramembrane structures is accompanied by a change in channel permeation.


Assuntos
Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Canais Iônicos/metabolismo
7.
J Vis Exp ; (192)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876952

RESUMO

High-resolution imaging techniques have shown that many ion channels are not static, but subject to highly dynamic processes, including the transient association of pore-forming and auxiliary subunits, lateral diffusion, and clustering with other proteins. However, the relationship between lateral diffusion and function is poorly understood. To approach this problem, we describe how lateral mobility and activity of individual channels in supported lipid membranes can be monitored and correlated using total internal reflection fluorescence (TIRF) microscopy. Membranes are fabricated on an ultrathin hydrogel substrate using the droplet interface bilayer (DIB) technique. Compared to other types of model membranes, these membranes have the advantage of being mechanically robust and suitable for highly sensitive analytical techniques. This protocol measures Ca2+ ion flux through single channels by observing the fluorescence emission of a Ca2+-sensitive dye in close proximity to the membrane. In contrast to classical single-molecule tracking approaches, no fluorescent fusion proteins or labels, which can interfere with lateral movement and function in the membrane, are required. Possible changes in ion flux associated with conformational changes of the protein are only due to protein lateral motion in the membrane. Representative results are shown using the mitochondrial protein translocation channel TOM-CC and the bacterial channel OmpF. In contrast to OmpF, the gating of TOM-CC is very sensitive to molecular confinement and the nature of lateral diffusion. Hence, supported droplet-interface bilayers are a powerful tool to characterize the link between lateral diffusion and the function of ion channels.


Assuntos
Bicamadas Lipídicas , Microscopia , Imagem Individual de Molécula , Análise por Conglomerados , Corantes
8.
Biophys J ; 102(1): 39-47, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22225796

RESUMO

Mitochondrial proteins are almost exclusively imported into mitochondria from the cytosol in an unfolded or partially folded conformation. Regardless of whether they are destined for the outer or inner membrane, the intermembrane space, or the matrix, proteins begin the importation process by crossing the mitochondrial outer membrane via a specialized protein import machinery whose main component is the Tom40 channel. High-resolution ion conductance measurements through the Tom40 channel in the presence of the mitochondrial presequence peptide pF(1)ß revealed the kinetics of peptide binding. Here we show that the rates for association k(on) and dissociation k(off) strongly depend on the applied transmembrane voltage. Both kinetic constants increase with an increase in the applied voltage. The increase of k(off) with voltage provides strong evidence of peptide translocation. This allows us to distinguish quantitatively between substrate blocking and permeation.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , Modelos Químicos , Modelos Moleculares , Peptídeos/química , Sítios de Ligação , Simulação por Computador , Cinética , Proteínas de Membrana Transportadoras , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Movimento (Física) , Ligação Proteica , Conformação Proteica , Transporte Proteico
9.
Biochim Biophys Acta ; 1807(12): 1647-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21888892

RESUMO

Most mitochondrial proteins are imported into mitochondria from the cytosolic compartment. Proteins destined for the outer or inner membrane, the inter-membrane space, or the matrix are recognized and translocated by the TOM machinery containing the specialized protein import channel Tom40. The latter is a protein with ß-barrel shape, which is suggested to have evolved from a porin-type protein. To obtain structural insights in the absence of a crystal structure the membrane topology of Tom40 from Neurospora crassa was determined by limited proteolysis combined with mass spectrometry. The results were interpreted on the basis of a structural model that has been generated for NcTom40 by using the structure of mouse VDAC-1 as a template and amino acid sequence information of approximately 270 different Tom40 and approximately 480 VDAC amino acid sequences for refinement. The model largely explains the observed accessible cleavage sites and serves as a structural basis for the investigation of physicochemical properties of the ensemble of our Tom40 sequence data set. By this means we discovered two conserved polar slides in the pore interior. One is possibly involved in the positioning of a pore-inserted helix; the other one might be important for mitochondrial pre-sequence peptide binding as it is only present in Tom40 but not in VDAC proteins. The outer surface of the Tom40 barrel reveals two conserved amino acid clusters. They may be involved in binding other components of the TOM complex or bridging components of the TIM machinery of the mitochondrial inner membrane.


Assuntos
Biologia Computacional/métodos , Proteínas Fúngicas/química , Espectrometria de Massas/métodos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/classificação , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Neurospora crassa/química , Neurospora crassa/citologia , Filogenia , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/genética
10.
BMC Microbiol ; 12: 262, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23157596

RESUMO

BACKGROUND: Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. RESULTS: Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. CONCLUSION: Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/metabolismo , Cupriavidus necator/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/genética , Cupriavidus necator/genética , Cupriavidus necator/ultraestrutura , Proteínas de Ligação a DNA/genética , Deleção de Genes , Microscopia Eletrônica de Transmissão
11.
Commun Biol ; 5(1): 471, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581327

RESUMO

Single-molecule studies can reveal phenomena that remain hidden in ensemble measurements. Here we show the correlation between lateral protein diffusion and channel activity of the general protein import pore of mitochondria (TOM-CC) in membranes resting on ultrathin hydrogel films. Using electrode-free optical recordings of ion flux, we find that TOM-CC switches reversibly between three states of ion permeability associated with protein diffusion. While freely diffusing TOM-CC molecules are predominantly in a high permeability state, non-mobile molecules are mostly in an intermediate or low permeability state. We explain this behavior by the mechanical binding of the two protruding Tom22 subunits to the hydrogel and a concomitant combinatorial opening and closing of the two ß-barrel pores of TOM-CC. TOM-CC could thus represent a ß-barrel membrane protein complex to exhibit membrane state-dependent mechanosensitive properties, mediated by its two Tom22 subunits.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Hidrogéis , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Redox Biol ; 55: 102395, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841627

RESUMO

Lung cancer is one of the most common cancers worldwide, causing nearly one million deaths each year. Herein, we present the effect of 2-methoxyestradiol (2-ME), the endogenous metabolite of 17ß-estradiol (E2), on non-small cell lung cancer (NSCLC) cells. We observed that 2-ME reduced the viability of lung adenocarcinoma in two-dimensional (2D) and three-dimensional (3D) spheroidal A549 cell culture models. Molecular modeling was carried out aiming to visualize amino acid residues within binding pockets of the acyl-protein thioesterases, namely 1 (APT1) and 2 (APT2), and thus to identify which ones were more likely involved in the interaction with 2-ME. Our findings suggest that 2-ME acts as an APT1 inhibitor enhancing protein palmitoylation and oxidative stress phenomena in the lung cancer cell. In order to support our data, metabolomics of blood serum from NSCLC patients was also performed. Moreover, computational analysis suggests that 2-ME as compared to other estrogen metabolism intermediates is relatively safe in terms of its possible non-receptor bioactivity within healthy human cells due to a very low electrophilic potential and hence no substantial risk of spontaneous covalent modification of biologically protective nucleophiles. We propose that 2-ME can be used as a selective tumor biomarker in the course of certain types of lung cancers and possibly as a therapeutic adjuvant or neoadjuvant.

13.
J Membr Biol ; 242(1): 11-21, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21717124

RESUMO

Tom40 proteins represent an essential class of molecules which facilitate translocation of unfolded proteins from the cytosol into the mitochondrial intermembrane space. They are part of a high-molecular mass complex that forms the protein-conducting channel in outer mitochondrial membranes. This study concerns the recombinant expression, purification and folding of amino-terminally truncated variants of the two human Tom40 isoforms for structural biology experiments. Both CD and FTIR secondary structure analysis revealed a dominant beta-sheet structure and a short alpha-helical part for both proteins together with a high thermal stability. Two secondary structure elements can be denatured independently. Reconstitution of the recombinant protein into planar lipid bilayers demonstrated ion channel activity similar to Tom40 purified from Neurospora crassa mitochondrial membranes, but conductivity fingerprints differ from the structurally closely related VDAC proteins.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Dicroísmo Circular , Eletrofisiologia , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas Mitocondriais/genética , Dobramento de Proteína , Isoformas de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Sci Rep ; 11(1): 1616, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452331

RESUMO

Osteosarcoma (OS) is one of the most malignant tumors of childhood and adolescence. Research on mitochondrial dynamics (fusion/fission) and biogenesis has received much attention in last few years, as they are crucial for death of cancer cells. Specifically, it was shown that increased expression of the cytoplasmic dynamin-related protein 1 (Drp1) triggers mitochondrial fission (division), which activates BAX and downstream intrinsic apoptosis, effectively inhibiting OS growth. In the presented study, human OS cells (metastatic 143B OS cell line) were incubated with 2-methoxyestradiol (2-ME) at both physiologically and pharmacologically relevant concentrations. Cell viability was determined by the MTT assay. Confocal microscopy and western blot methods were applied to examine changes in Drp1 and BAX protein levels. Mitochondrial Division Inhibitor 1, MDIVI-1, was used in the study to further examine the role of Drp1 in 2-ME-mediated mechanism of action. To determine quantitative and qualitative changes in mitochondria, electron microscopy was used. 2-ME at all used concentrations increased mitochondrial fission and induced autophagy in OS cells. At the concentration of 1 µM 2-ME increased the area density of mitochondria in OS cells. Subsequent, upregulated expression of Drp1 and BAX proteins by 2-ME strongly suggests the activation of the intrinsic apoptosis pathway. We further observed 2-ME-mediated regulation of glycolytic state of OS cells. Therefore, we suggest that changes of mitochondrial dynamics may represent a novel mechanism of anticancer action of 2-ME. This finding may open new approaches to improve the efficacy of chemotherapy in the treatment of OS, however, it has to be confirmed by in vivo studies.


Assuntos
2-Metoxiestradiol/farmacologia , Apoptose/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dinaminas/metabolismo , Humanos , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Quinazolinonas/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
15.
Protein Sci ; 30(1): 201-217, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140490

RESUMO

Protein stability is a key factor in successful structural and biochemical research. However, the approaches for systematic comparison of protein stability are limited by sample consumption or compatibility with sample buffer components. Here we describe how miniaturized measurement of intrinsic tryptophan fluorescence (NanoDSF assay) in combination with a simplified description of protein unfolding can be used to interrogate the stability of a protein sample. We demonstrate that improved protein stability measures, such as apparent Gibbs free energy of unfolding, rather than melting temperature Tm , should be used to rank the results of thermostability screens. The assay is compatible with protein samples of any composition, including protein complexes and membrane proteins. Our data analysis software, MoltenProt, provides an easy and robust way to perform characterization of multiple samples. Potential applications of MoltenProt and NanoDSF include buffer and construct optimization for X-ray crystallography and cryo-electron microscopy, screening for small-molecule binding partners and comparison of effects of point mutations.


Assuntos
Proteínas de Membrana/química , Complexos Multiproteicos/química , Dobramento de Proteína , Desdobramento de Proteína , Software , Cristalografia por Raios X , Temperatura Alta
16.
Biophys J ; 99(3): 774-81, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20682254

RESUMO

TOM protein-conducting channels serve as the main entry sites into mitochondria for virtually all mitochondrial proteins. When incorporated into lipid bilayers, they form large, relatively nonspecific ion channels that are blocked by peptides derived from mitochondrial precursor proteins. Using single-channel electrical recordings, we analyzed the interactions of mitochondrial presequence peptides with single TOM pores. The largest conductance state of the translocon represents the likely protein-conducting conformation of the channel. The frequency (but not the duration) of the polypeptide-induced blockage is strongly modulated by the substrate concentration. Structural differences between substrates are reflected in characteristic blockage frequencies and duration of blockage. To our knowledge, this study provides first quantitative data regarding the kinetics of polypeptide interaction with the mitochondrial TOM machinery.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Cinética , Potenciais da Membrana/fisiologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Dados de Sequência Molecular , Neurospora crassa/metabolismo , Neurospora crassa/ultraestrutura , Peptídeos/química , Ligação Proteica , Especificidade por Substrato , Fatores de Tempo
17.
IUCrJ ; 6(Pt 4): 773-780, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316820

RESUMO

In fungi, the mitochondrial respiratory chain complexes (complexes I-IV) are responsible for oxidative phosphorylation, as in higher eukaryotes. Cryo-EM was used to identify a 200 kDa membrane protein from Neurospora crassa in lipid nanodiscs as cytochrome c oxidase (complex IV) and its structure was determined at 5.5 Šresolution. The map closely resembles the cryo-EM structure of complex IV from Saccharomyces cerevisiae. Its ten subunits are conserved in S. cerevisiae and Bos taurus, but other transmembrane subunits are missing. The different structure of the Cox5a subunit is typical for fungal complex IV and may affect the interaction with complex III in a respiratory supercomplex. Additional density was found between the matrix domains of the Cox4 and Cox5a subunits that appears to be specific to N. crassa.

18.
Biophys J ; 95(3): 1511-22, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18456827

RESUMO

The protein translocase of the outer mitochondrial membrane (TOM) serves as the main entry site for virtually all mitochondrial proteins. Like many other protein translocases it also has an ion channel activity that can be used to study the dynamical properties of this supramolecular complex. We have purified TOM core complex and Tom40, the main pore forming subunit, from mitochondria of the filamentous fungus Neurospora crassa and incorporated them into planar lipid bilayers. We then examined their single channel properties to provide a detailed description of the conformational dynamics of this channel in the absence of its protein substrate. For isolated TOM core complex we have found at least six conductance states. Transitions between these states were voltage-dependent with a bell-shaped open probability distribution and distinct kinetics depending on the polarity of the applied voltage. The states with the largest conductance followed an Ohmic I/V characteristic consistent with a large cylindrical pore with very little interaction with the permeating ions. For the lower conductance states, however, we have observed inverted S-shaped nonlinear current-voltage curves reminiscent to those of much narrower pores where the permeating ions have to surmount an electrostatic energy barrier. At low voltages (<+/-70 mV), purified Tom40 protein did not show any transitions between its conductance states. Prolonged exposure to higher voltages induced similar gating behavior to what we observed for TOM core complex. This effect was time-dependent and reversible, indicating that Tom40 forms not only the pore but also contains the "gating machinery" of the complex. However, for proper functioning, additional proteins (Tom22, Tom7, Tom6, and Tom5) are required that act as a modulator of the pore dynamics by significantly reducing the energy barrier between different conformational states.


Assuntos
Bicamadas Lipídicas/química , Membranas Mitocondriais/química , Membranas Mitocondriais/fisiologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Transporte Proteico/fisiologia , Simulação por Computador , Proteínas de Membrana Transportadoras , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
19.
J Mol Biol ; 366(4): 1174-84, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17217961

RESUMO

The repeating unit of outer membrane beta-barrels from Gram-negative bacteria is the beta-hairpin, and representatives of this protein family always have an even strand number between eight and 22. Two dominant structural forms have eight and 16 strands, respectively, suggesting gene duplication as a possible mechanism for their evolution. We duplicated the sequence of OmpX, an eight-stranded beta-barrel protein of known structure, and obtained a beta-barrel, designated Omp2X, which can fold in vitro and in vivo. Using single-channel conductance measurements and PEG exclusion assays, we found that Omp2X has a pore size similar to that of OmpC, a natural 16-stranded barrel. Fusions of the homologous proteins OmpX, OmpA and OmpW were able to fold in vitro in all combinations tested, revealing that the general propensity to form a beta-barrel is sufficient to evolve larger barrels by simple genetic events.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Duplicação Gênica , Hidrolases/química , Hidrolases/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrolases/metabolismo , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína
20.
Cancer Genomics Proteomics ; 15(1): 73-89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29275365

RESUMO

BACKGROUND/AIM: Dysregulation of mitochondrial pathways is implicated in several diseases, including cancer. Notably, mitochondrial respiration and mitochondrial biogenesis are favored in some invasive cancer cells, such as osteosarcoma. Hence, the aim of the current work was to investigate the effects of 2-methoxyestradiol (2-ME), a potent anticancer agent, on the mitochondrial biogenesis of osteosarcoma cells. MATERIALS AND METHODS: Highly metastatic osteosarcoma 143B cells were treated with 2-ME separately or in combination with L-lactate, or with the solvent (non-treated control cells). Protein levels of α-syntrophin and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) were determined by western blotting. Impact of 2-ME on mitochondrial mass, regulation of cytochrome c oxidase I (COXI) expression, and succinate dehydrogenase complex flavoprotein subunit A (SDHA) was determined by immunofluorescence analyses. Inhibition of sirtuin 3 (SIRT3) activity by 2-ME was investigated by fluorescence assay and also, using molecular docking and molecular dynamics simulations. RESULTS: L-lactate induced mitochondrial biogenesis pathway via up-regulation of COXI. 2-ME inhibited mitochondrial biogenesis via regulation of PGC-1α, COXI, and SIRT3 in a concentration-dependent manner as a consequence of nuclear recruitment of neuronal nitric oxide synthase and nitric oxide generation. It was also proved that 2-ME inhibited SIRT3 activity by binding to both the canonical and allosteric inhibitor binding sites. Moreover, regardless of the mitochondrial biogenesis pathway, 2-ME affected the expression of SDHA. CONCLUSION: Herein, mitochondrial biogenesis pathway regulation and SDHA were presented as novel targets of 2-ME, and moreover, 2-ME was demonstrated as a potent inhibitor of SIRT3. L-lactate was confirmed to exert pro-carcinogenic effects on osteosarcoma cells via the induction of the mitochondrial biogenesis pathway. Thus, L-lactate level may be considered as a prognostic biomarker for osteosarcoma.


Assuntos
Antineoplásicos/farmacologia , Complexo II de Transporte de Elétrons/metabolismo , Estradiol/análogos & derivados , Osteossarcoma/enzimologia , 2-Metoxiestradiol , Antineoplásicos/química , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estradiol/química , Estradiol/farmacologia , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Musculares/metabolismo , Biogênese de Organelas , Osteossarcoma/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA