Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(8): 1003-1021, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864368

RESUMO

Terrestrial invertebrates are highly important for the decomposition of dung from large mammals. Mammal dung has been present in many of Earth's ecosystems for millions of years, enabling the evolution of a broad diversity of dung-associated invertebrates that process various components of the dung. Today, large herbivorous mammals are increasingly introduced to ecosystems with the aim of restoring the ecological functions formerly provided by their extinct counterparts. However, we still know little about the ecosystem functions and nutrient flows in these rewilded ecosystems, including the dynamics of dung decomposition. In fact, the succession of insect communities in dung is an area of limited research attention also outside a rewilding context. In this study, we use environmental DNA metabarcoding of dung from rewilded Galloway cattle in an experimental set-up to investigate invertebrate communities and functional dynamics over a time span of 53 days, starting from the time of deposition. We find a strong signal of successional change in community composition, including for the species that are directly dependent on dung as a resource. While several of these species were detected consistently across the sampling period, others appeared confined to either early or late successional stages. We believe that this is indicative of evolutionary adaptation to a highly dynamic resource, with species showing niche partitioning on a temporal scale. However, our results show consistently high species diversity within the functional groups that are directly dependent on dung. Our findings of such redundancy suggest functional stability of the dung-associated invertebrate community, with several species ready to fill vacant niches if other species disappear. Importantly, this might also buffer the ecosystem functions related to dung decomposition against environmental change. Interestingly, alpha diversity peaked after approximately 20-25 days in both meadow and pasture habitats, and did not decrease substantially during the experimental period, probably due to preservation of eDNA in the dung after the disappearance of visiting invertebrates, and from detection of tissue remains and cryptic life stages.


Assuntos
Artrópodes , Biodiversidade , Código de Barras de DNA Taxonômico , Fezes , Animais , Bovinos/fisiologia , Fezes/química , Artrópodes/fisiologia , DNA Ambiental/análise , Ecossistema
2.
Zootaxa ; 5415(3): 493-498, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38480188

RESUMO

We describe the new genus and species Stolleagrion foghnielseni n. gen. et sp. from the Fur Formation in northwestern Denmark based on a single fossil wing. This is the first odonatan described from the earliest part of the PETM recovery phase of the early Eocene. A combination of nine wing character states are considered to be diagnostic of the Dysagrionidae Cockrell only together with the cephalozygopteran head; however, the combination of these nine plus the presence of Ax0 is also diagnostic without the head. By this, we assign Stolleagrion foghnielseni to the Dysagrionidae and reassess the position of other odonates previously treated as cf. Dysagrionidae.


Assuntos
Odonatos , Animais , Fósseis , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA