Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542105

RESUMO

RTX toxins are important virulence factors produced by a wide range of Gram-negative bacteria. They are secreted as water-soluble proteins that are able to bind to the host cell membrane and insert hydrophobic segments into the lipid bilayer that ultimately contribute to the formation of transmembrane pores. Ion diffusion through these pores leads then to cytotoxic and cytolytic effects on the hosts. Several reports have evidenced that the binding of several RTX toxins to the target cell membrane may take place through a high-affinity interaction with integrins of the ß2 family that is highly expressed in immune cells of the myeloid lineage. However, at higher toxin doses, cytotoxicity by most RTX toxins has been observed also on ß2-deficient cells in which toxin binding to the cell membrane has been proposed to occur through interaction with glycans of glycosylated lipids or proteins present in the membrane. More recently, cumulative pieces of evidence show that membrane cholesterol is essential for the mechanism of action of several RTX toxins. Here, we summarize the most important aspects of the RTX toxin interaction with the target cell membrane, including the cholesterol dependence, the recent identification in the sequences of several RTX toxins of linear motifs coined as the Cholesterol Recognition/interaction Amino acid Consensus (CRAC), and the reverse or mirror CARC motif, which is involved in the toxin-cholesterol interaction.


Assuntos
Toxinas Bacterianas , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Exotoxinas/metabolismo , Colesterol/metabolismo
2.
Small ; 18(13): e2105915, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156292

RESUMO

Cardiovascular disease, the leading cause of mortality worldwide, is primarily caused by atherosclerosis, which is characterized by lipid and inflammatory cell accumulation in blood vessels and carotid intima thickening. Although disease management has improved significantly, new therapeutic strategies focused on accelerating atherosclerosis regression must be developed. Atherosclerosis models mimicking in vivo-like conditions provide essential information for research and new advances toward clinical application. New nanotechnology-based therapeutic opportunities have emerged with apoA-I nanoparticles (recombinant/reconstituted high-density lipoproteins, rHDL) as ideal carriers to deliver molecules and the discovery that microRNAs participate in atherosclerosis establishment and progression. Here, a therapeutic strategy to improve cholesterol efflux is developed based on a two-step administration of rHDL consisting of a first dose of antagomiR-33a-loaded rHDLs to induce adenosine triphosphate-binding cassette transporters A1 overexpression, followed by a second dose of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine rHDLs, which efficiently remove cholesterol from foam cells. A triple-cell 2D-atheroma plaque model reflecting the cellular complexity of atherosclerosis is used to improve efficiency of the nanoparticles in promoting cholesterol efflux. The results show that sequential administration of rHDL potentiates cholesterol efflux indicating that this approach may be used in vivo to more efficiently target atherosclerotic lesions and improve prognosis of the disease.


Assuntos
Aterosclerose , MicroRNAs , Aterosclerose/tratamento farmacológico , Colesterol , Células Espumosas , Humanos , Macrófagos , MicroRNAs/uso terapêutico
3.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955837

RESUMO

Adenylate Cyclase Toxin (ACT or CyaA) is one of the important virulence factors secreted by Bordetella pertussis, the bacterium causative of whooping cough. ACT debilitates host defenses by production of unregulated levels of cAMP into the cell cytosol upon delivery of its N-terminal domain with adenylate cyclase activity (AC domain) and by forming pores in the plasma membrane of macrophages. Binding of soluble toxin monomers to the plasma membrane of target cells and conversion into membrane-integrated proteins are the first and last step for these toxin activities; however, the molecular determinants in the protein or the target membrane that govern this conversion to an active toxin form are fully unknown. It was previously reported that cytotoxic and cytolytic activities of ACT depend on membrane cholesterol. Here we show that ACT specifically interacts with membrane cholesterol, and find in two membrane-interacting ACT domains, four cholesterol-binding motifs that are essential for AC domain translocation and lytic activities. We hypothesize that direct ACT interaction with membrane cholesterol through those four cholesterol-binding motifs drives insertion and stabilizes the transmembrane topology of several helical elements that ultimately build the ACT structure for AC delivery and pore-formation, thereby explaining the cholesterol-dependence of the ACT activities. The requirement for lipid-mediated stabilization of transmembrane helices appears to be a unifying mechanism to modulate toxicity in pore-forming toxins.


Assuntos
Bordetella pertussis , Células Eucarióticas , Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/metabolismo , Colesterol/metabolismo , Eritrócitos/metabolismo , Células Eucarióticas/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(33): E6784-E6793, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760979

RESUMO

Adenylate cyclase toxin (ACT or CyaA) plays a crucial role in respiratory tract colonization and virulence of the whooping cough causative bacterium Bordetella pertussis Secreted as soluble protein, it targets myeloid cells expressing the CD11b/CD18 integrin and on delivery of its N-terminal adenylate cyclase catalytic domain (AC domain) into the cytosol, generates uncontrolled toxic levels of cAMP that ablates bactericidal capacities of phagocytes. Our study deciphers the fundamentals of the heretofore poorly understood molecular mechanism by which the ACT enzyme domain directly crosses the host cell membrane. By combining molecular biology, biochemistry, and biophysics techniques, we discover that ACT has intrinsic phospholipase A (PLA) activity, and that such activity determines AC translocation. Moreover, we show that elimination of the ACT-PLA activity abrogates ACT toxicity in macrophages, particularly at toxin concentrations close to biological reality of bacterial infection. Our data support a molecular mechanism in which in situ generation of nonlamellar lysophospholipids by ACT-PLA activity into the cell membrane would form, likely in combination with membrane-interacting ACT segments, a proteolipidic toroidal pore through which AC domain transfer could directly take place. Regulation of ACT-PLA activity thus emerges as novel target for therapeutic control of the disease.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/enzimologia , AMP Cíclico/metabolismo , Fosfolipases A/metabolismo , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/genética , Sequência de Aminoácidos , Animais , Bordetella pertussis/genética , Bordetella pertussis/fisiologia , Domínio Catalítico , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Fosfolipases A/química , Fosfolipases A/genética , Transporte Proteico , Homologia de Sequência de Aminoácidos , Coqueluche/microbiologia
5.
Int J Mol Sci ; 21(17)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872570

RESUMO

Type 2 Diabetes Mellitus (T2DM), one of the most common metabolic disorders, is caused by a combination of two primary factors: defective insulin secretion by pancreatic ß-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. Because insulin release and activity are essential processes for glucose homeostasis, the molecular mechanisms involved in the synthesis and release of insulin, as well as in its detection are tightly regulated. Defects in any of the mechanisms involved in these processes can lead to a metabolic imbalance responsible for the development of the disease. This review analyzes the key aspects of T2DM, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance. For that purpose, we summarize the data gathered up until now, focusing especially on insulin synthesis, insulin release, insulin sensing and on the downstream effects on individual insulin-sensitive organs. The review also covers the pathological conditions perpetuating T2DM such as nutritional factors, physical activity, gut dysbiosis and metabolic memory. Additionally, because T2DM is associated with accelerated atherosclerosis development, we review here some of the molecular mechanisms that link T2DM and insulin resistance (IR) as well as cardiovascular risk as one of the most important complications in T2DM.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Homeostase , Secreção de Insulina , Animais , Humanos
6.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630698

RESUMO

Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic ß-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic ß-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins' impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Adipócitos/metabolismo , Doenças Cardiovasculares/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Fatores de Risco
7.
Int J Mol Sci ; 19(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388787

RESUMO

Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.


Assuntos
Colesterol/metabolismo , Hiperlipoproteinemia Tipo II/patologia , Animais , Transporte Biológico , Suplementos Nutricionais , Testes Genéticos , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia
8.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874871

RESUMO

Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by high blood-cholesterol levels mostly caused by mutations in the low-density lipoprotein receptor (LDLr). With a prevalence as high as 1/200 in some populations, genetic screening for pathogenic LDLr mutations is a cost-effective approach in families classified as 'definite' or 'probable' FH and can help to early diagnosis. However, with over 2000 LDLr variants identified, distinguishing pathogenic mutations from benign mutations is a long-standing challenge in the field. In 1998, the World Health Organization (WHO) highlighted the importance of improving the diagnosis and prognosis of FH patients thus, identifying LDLr pathogenic variants is a longstanding challenge to provide an accurate genetic diagnosis and personalized treatments. In recent years, accessible methodologies have been developed to assess LDLr activity in vitro, providing experimental reproducibility between laboratories all over the world that ensures rigorous analysis of all functional studies. In this review we present a broad spectrum of functionally characterized missense LDLr variants identified in patients with FH, which is mandatory for a definite diagnosis of FH.


Assuntos
Testes Genéticos , Hiperlipoproteinemia Tipo II , Receptores de LDL/genética , Análise Mutacional de DNA , Variação Genética , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação , Fenótipo , Estudos Retrospectivos
9.
Proc Natl Acad Sci U S A ; 115(11): E2491, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29467295

Assuntos
Fosfolipases
10.
Hum Mutat ; 36(1): 129-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378237

RESUMO

Familial hypercholesterolemia (FH) is an autosomal-dominant disorder mostly caused by mutations in the low-density lipoprotein receptor (LDLR) gene leading to increased risk for premature cardiovascular diseases. According to functional studies, LDLR mutations may be classified into five classes. The main objective of this study was to characterize seven LDLR variants previously detected in FH patients. Analysis by flow cytometry and confocal microscopy of LDLR activity demonstrate that all the studied variants are pathogenic. Among the mutations located in ß-propeller, p.Trp577Gly and p.Ile624del were classified as class 2, whereas p.Arg416Trp and p.Thr454Asn as class 5. p.Phe800Glyfs*129 (located in the cytoplasmic domain), p.Cys155Tyr (located in the binding domain), and p.Asn825Lys (inside FxNPxY motif) were classified as class 2, 3, and 4, respectively. The results also show that LDLR activity of these class 4 and 5 variants is not completely abolished, showing a milder phenotype. We have also determined that statin response is more efficient lowering total cholesterol in heterozygous patients carrying p.Ile624del (class 2) compared with p.Arg416Trp and p.Thr454Asn (class 5) variants. In conclusion, these findings emphasize the importance of characterizing LDLR pathogenic variants to provide an indisputable FH diagnosis and to gain insight into the statin response depending on the LDLR class mutation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Hipolipemiantes/uso terapêutico , Receptores de LDL/química , Receptores de LDL/genética , Adulto , Animais , Células CHO , Cricetulus , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Receptores de LDL/metabolismo
11.
Hum Mutat ; 33(1): 232-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21990180

RESUMO

Familial hypercholesterolemia (FH) is an autosomal dominant disorder mostly caused by mutations in the LDLR gene. Although the detection of functional mutations in the LDLR gene provides an unequivocal diagnosis of the FH condition, there are many variants whose pathogenicity is still unknown. The aims of this study were to set up a rapid method to determine the effect of LDLR mutations, thereby providing an accurate diagnosis of FH, and to functionally characterize six LDLR mutations detected at high frequency by the LIPOchip(®) platform (Progenika Biopharma, Spain) in the Spanish population. LDLR expression and activity were analyzed by one-single-step flow cytometry assay and confocal microscopy. Splicing effects were determined by sequencing reverse transcription polymerase chain reaction products. The analysis of three heterozygous variants with a single point mutation within the low-density lipoprotein binding domain allowed us to classify the c.806G>A variant as nonpathogenic, and c.862G>A and c.895G>A variants as causative of FH. The results obtained for three variants affecting donor splice sites of the LDLR mRNA, c.313+2dupT, c.1186+5G>A, and c.1845+1G>C, demonstrated that these mutations are pathogenic. These results expand our knowledge of mutations responsible for FH, providing an accurate diagnosis and leading to early treatment to reduce the risk of premature cardiovascular events.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Lipoproteínas LDL/metabolismo , Splicing de RNA , Receptores de LDL/genética , Sequência de Bases , Sítios de Ligação , Estudos de Casos e Controles , Células Cultivadas , Análise Mutacional de DNA , Éxons , Expressão Gênica , Heterozigoto , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Sítios de Splice de RNA , Receptores de LDL/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo
12.
J Biol Chem ; 285(1): 357-64, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19875442

RESUMO

Adenylate cyclase toxin (ACT), a 200 kDa protein, is an essential virulence factor for Bordetella pertussis, the bacterium that causes whooping cough. ACT is a member of the pore-forming RTX (repeats-in-toxin) family of proteins that share a characteristic calcium-binding motif of Gly- and Asp-rich nonapeptide repeats and a marked cytolytic or cytotoxic activity. In addition, ACT exhibits a distinctive feature: it has an N-terminal calmodulin-dependent adenylate cyclase domain. Translocation of this domain into the host cytoplasm results in uncontrolled production of cAMP, and it has classically been assumed that this surge in cAMP is the basis for the toxin-mediated killing. Several members of the RTX family of toxins, including ACT, have been shown to induce intracellular calcium increases, through different mechanisms. We show here that ACT stimulates a raft-mediated calcium influx, through its cAMP production activity, that activates PKA, which in turn activates calcium channels with L-type properties. This process is shown to occur both in CD11b(+) and CD11b(-) cells, suggesting a common mechanism, independent of the toxin receptor. We also show that this ACT-induced calcium influx does not correlate with the toxin-induced cytotoxicity.


Assuntos
Toxina Adenilato Ciclase/farmacologia , Antígeno CD11b/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Colesterol/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Cinética , Camundongos , RNA Interferente Pequeno/metabolismo , Temperatura
13.
Biochim Biophys Acta ; 1798(6): 1225-33, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20223223

RESUMO

alpha-Haemolysin (HlyA) is a toxin secreted by pathogenic Escherichia coli, whose lytic activity requires submillimolar Ca(2+) concentrations. Previous studies have shown that Ca(2+) binds within the Asp and Gly rich C-terminal nonapeptide repeat domain (NRD) in HlyA. The presence of the NRD puts HlyA in the RTX (Repeats in Toxin) family of proteins. We tested the stability of the whole protein, the amphipathic helix domain and the NRD, in both the presence and absence of Ca(2+) using native HlyA, a truncated form of HlyADeltaN601 representing the C-terminal domain, and a novel mutant HlyA W914A whose intrinsic fluorescence indicates changes in the N-terminal domain. Fluorescence and infrared spectroscopy, tryptic digestion, and urea denaturation techniques concur in showing that calcium binding to the repeat domain of alpha-haemolysin stabilizes and compacts both the NRD and the N-terminal domains of HlyA. The stabilization of the N-terminus through Ca(2+) binding to the C-terminus reveals long-range inter-domain structural effects. Considering that RTX proteins consist, in general, of a Ca(2+)-binding NRD and separate function-specific domains, the long-range stabilizing effects of Ca(2+) in HlyA may well be common to other members of this family.


Assuntos
Cálcio/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Substituição de Aminoácidos , Cálcio/química , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Mutação de Sentido Incorreto , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína
14.
FEBS J ; 288(23): 6795-6814, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34216517

RESUMO

Several toxins acting on animal cells present different, but specific, interactions with cholesterol. Bordetella pertussis infects the human respiratory tract and causes whooping cough, a highly contagious and resurgent disease. Its virulence factor adenylate cyclase toxin (ACT) plays an important role in the course of infection. ACT is a pore-forming cytolysin belonging to the Repeats in ToXin (RTX) family of leukotoxins/hemolysins and is capable of permeabilizing several cell types and lipid vesicles. Previously, we observed that in the presence of cholesterol ACT induces greater liposome permeabilization. Similarly, recent reports also implicate cholesterol in the cytotoxicity of an increasing number of pore-forming RTX toxins. However, the mechanistic details by which this sterol promotes the lytic activity of ACT or of these other RTX toxins remain largely unexplored and poorly understood. Here, we have applied a combination of biophysical techniques to dissect the role of cholesterol in pore formation by ACT. Our results indicate that cholesterol enhances the lytic potency of ACT by promoting toxin oligomerization, a step which is indispensable for ACT to accomplish membrane permeabilization and cell lysis. Since our experimental design eliminates the possibility that this cholesterol effect derives from toxin accumulation due to lateral lipid phase segregation, we hypothesize that cholesterol facilitates lytic pore formation, by favoring a toxin conformation more prone to protein-protein interactions and oligomerization. Our data shed light on the complex relationship between lipid membranes and protein toxins acting on these membranes. Coupling cholesterol binding, increased oligomerization and increased lytic activity is likely pertinent for other RTX cytolysins.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/genética , Sequência de Aminoácidos , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Membrana Celular/química , Permeabilidade da Membrana Celular , Humanos , Immunoblotting , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Perforina/química , Perforina/genética , Perforina/metabolismo , Porosidade , Ligação Proteica , Multimerização Proteica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Virulência/genética , Coqueluche/microbiologia
15.
JACC Basic Transl Sci ; 6(11): 815-827, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34869944

RESUMO

Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%.

16.
FEBS J ; 287(9): 1798-1815, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31652486

RESUMO

Rapid plasma membrane repair in response to pore-forming toxins is crucial for cell survival, but the molecular mechanisms employed by eukaryotic nucleated cells to maintain membrane integrity and the specificities of such pathways remain poorly understood. Here, we have explored the permeabilization elicited by the Bordetella pertussis adenylate cyclase toxin, a 200-kDa protein toxin with α-helical pore-forming domain that forms pores of tunable size, and evaluated the response of target macrophages to such toxin poration. We show here that the response and the fate of target macrophages depend on toxin pore width. We find that the toxin's hemolysin moiety induces a transient membrane permeabilization by forming wide enough pores allowing Ca2+ influx into the target cell cytosol. This activates a Ca2+ -dependent cellular response involving exocytosis and endocytosis steps eliminating toxin pores and restoring membrane integrity. In contrast, the full-length native toxin, at low concentrations, forms very small pores that cause insidious perturbation of cell ion homeostasis that escapes control by the macrophage membrane repair response, eventually leading to cell death. Our data reveal that permeability to Ca2+ and ATP are key elements in the membrane repair pathway for eliminating α-helical pores of bacterial origin.


Assuntos
Toxina Adenilato Ciclase/farmacologia , Bordetella pertussis/química , Membrana Celular/efeitos dos fármacos , Proteínas Hemolisinas/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Macrófagos/metabolismo , Camundongos
17.
Sci Rep ; 10(1): 1727, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015373

RESUMO

The primary genetic cause of familial hypercholesterolemia (FH) is related to mutations in the LDLR gene encoding the Low-density Lipoprotein Receptor. LDLR structure is organized in 5 different domains, including an EGF-precursor homology domain that plays a pivotal role in lipoprotein release and receptor recycling. Mutations in this domain constitute 51.7% of the total missense variants described in LDLR. The aim of the present work was to analyse how clinically significant variants in the EGF-precursor homology domain impact LDLR. The activity of sixteen LDLR variants was functionally characterized by determining LDLR expression by Western blot and LDLR expression, LDL binding capacity and uptake, and LDLR recycling activity by flow cytometry in transfected CHO-ldlA7 cells. Of the analysed variants, we found six non-pathogenic LDLR variants and ten pathogenic variants distributed as follow: three class 3 variants; four class 2 variants; and three class 5 variants. These results can be incorporated into clinical management of patients by helping guide the appropriate level of treatment intensity depending on the extent of loss of LDLR activity. This data can also contribute to cascade-screening for pathogenic FH variants.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Mutação de Sentido Incorreto/genética , Receptores de LDL/genética , Animais , Células CHO , Cricetulus , Fator de Crescimento Epidérmico/genética , Humanos , Lipoproteínas LDL/metabolismo , Fenótipo , Polimorfismo Genético , Domínios Proteicos/genética , Receptores de LDL/metabolismo
18.
Biomedicines ; 8(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977626

RESUMO

Cardiovascular disease (CVD), the leading cause of mortality worldwide is primarily caused by atherosclerosis, which is promoted by the accumulation of low-density lipoproteins into the intima of large arteries. Multiple nanoparticles mimicking natural HDL (rHDL) have been designed to remove cholesterol excess in CVD therapy. The goal of this investigation was to assess the cholesterol efflux efficiency of rHDLs with different lipid compositions, mimicking different maturation stages of high-density lipoproteins (HDLs) occurring in vivo. METHODS: the cholesterol efflux activity of soybean PC (Soy-PC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DPPC:Chol:1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoPC) and DPPC:18:2 cholesteryl ester (CE):LysoPC rHDLs was determined in several cell models to investigate the contribution of lipid composition to the effectiveness of cholesterol removal. RESULTS: DPPC rHDLs are the most efficient particles, inducing cholesterol efflux in all cellular models and in all conditions the effect was potentiated when the ABCA1 transporter was upregulated. CONCLUSIONS: DPPC rHDLs, which resemble nascent HDL, are the most effective particles in inducing cholesterol efflux due to the higher physical binding affinity of cholesterol to the saturated long-chain-length phospholipids and the favored cholesterol transfer from a highly positively curved bilayer, to an accepting planar bilayer such as DPPC rHDLs. The physicochemical characteristics of rHDLs should be taken into consideration to design more efficient nanoparticles to promote cholesterol efflux.

19.
Biomolecules ; 9(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083482

RESUMO

RTX (Repeats in ToXin) pore-forming toxins constitute an expanding family of exoproteins secreted by many Gram-negative bacteria and involved in infectious diseases caused by said pathogens. Despite the relevance in the host/pathogen interactions, the structure and characteristics of the lesions formed by these toxins remain enigmatic. Here, we capture the first direct nanoscale pictures of lytic pores formed by an RTX toxin, the Adenylate cyclase (ACT), secreted by the whooping cough bacterium Bordetella pertussis. We reveal that ACT associates into growing-size oligomers of variable stoichiometry and heterogeneous architecture (lines, arcs, and rings) that pierce the membrane, and that, depending on the incubation time and the toxin concentration, evolve into large enough "holes" so as to allow the flux of large molecular mass solutes, while vesicle integrity is preserved. We also resolve ACT assemblies of similar variable stoichiometry in the cell membrane of permeabilized target macrophages, proving that our model system recapitulates the process of ACT permeabilization in natural membranes. Based on our data we propose a non-concerted monomer insertion and sequential mechanism of toroidal pore formation by ACT. A size-tunable pore adds a new regulatory element to ACT-mediated cytotoxicity, with different pore sizes being putatively involved in different physiological scenarios or cell types.


Assuntos
Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/patogenicidade , Membrana Celular/metabolismo , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/metabolismo , Animais , Bordetella pertussis/enzimologia , Linhagem Celular , Permeabilidade da Membrana Celular , Macrófagos/microbiologia , Camundongos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ligação Proteica , Multimerização Proteica
20.
Toxins (Basel) ; 11(6)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216745

RESUMO

Pore-forming toxins (PFTs) form nanoscale pores across target membranes causing cell death. The pore-forming cytolysins of the RTX (repeats in toxin) family belong to a steadily increasing family of proteins characterized by having in their primary sequences a number of glycine- and aspartate-rich nonapeptide repeats. They are secreted by a variety of Gram-negative bacteria and form ion-permeable pores in several cell types, such as immune cells, epithelial cells, or erythrocytes. Pore-formation by RTX-toxins leads to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. The pores formed in lipid bilayers by the RTX-toxins share some common properties such as cation selectivity and voltage-dependence. Hemolytic and cytolytic RTX-toxins are important virulence factors in the pathogenesis of the producing bacteria. And hence, understanding the function of these proteins at the molecular level is critical to elucidating their role in disease processes. In this review we summarize the current state of knowledge on pore-formation by RTX toxins, and include recent results from our own laboratory regarding the pore-forming activity of adenylate cyclase toxin (ACT or CyaA), a large protein toxin secreted by Bordetella pertussis, the bacterium causative of whooping cough.


Assuntos
Toxinas Bacterianas/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Animais , Toxinas Bacterianas/química , Humanos , Proteínas Citotóxicas Formadoras de Poros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA