Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 586(7828): 248-256, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028999

RESUMO

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Assuntos
Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Agricultura , Atmosfera/química , Produtos Agrícolas/metabolismo , Atividades Humanas , Internacionalidade , Nitrogênio/análise , Nitrogênio/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579162

RESUMO

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

3.
Proc Natl Acad Sci U S A ; 116(39): 19330-19335, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501341

RESUMO

Sunlight drives the Earth's weather, climate, chemistry, and biosphere. Recent efforts to improve solar heating codes in climate models focused on more accurate treatment of the absorption spectrum or fractional clouds. A mostly forgotten assumption in climate models is that of a flat Earth atmosphere. Spherical atmospheres intercept 2.5 W⋅m-2 more sunlight and heat the climate by an additional 1.5 W⋅m-2 globally. Such a systematic shift, being comparable to the radiative forcing change from preindustrial to present, is likely to produce a discernible climate shift that would alter a model's skill in simulating current climate. Regional heating errors, particularly at high latitudes, are several times larger. Unlike flat atmospheres, constituents in a spherical atmosphere, such as clouds and aerosols, alter the total amount of energy received by the Earth. To calculate the net cooling of aerosols in a spherical framework, one must count the increases in both incident and reflected sunlight, thus reducing the aerosol effect by 10 to 14% relative to using just the increase in reflected. Simple fixes to the current flat Earth climate models can correct much of this oversight, although some inconsistencies will remain.

4.
Proc Natl Acad Sci U S A ; 115(49): 12413-12418, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455300

RESUMO

Biomass burning drives changes in greenhouse gases, climate-forcing aerosols, and global atmospheric chemistry. There is controversy about the magnitude and timing of changes in biomass burning emissions on millennial time scales from preindustrial to present and about the relative importance of climate change and human activities as the underlying cause. Biomass burning is one of two notable sources of ethane in the preindustrial atmosphere. Here, we present ice core ethane measurements from Antarctica and Greenland that contain information about changes in biomass burning emissions since 1000 CE (Common Era). The biomass burning emissions of ethane during the Medieval Period (1000-1500 CE) were higher than present day and declined sharply to a minimum during the cooler Little Ice Age (1600-1800 CE). Assuming that preindustrial atmospheric reactivity and transport were the same as in the modern atmosphere, we estimate that biomass burning emissions decreased by 30 to 45% from the Medieval Period to the Little Ice Age. The timing and magnitude of this decline in biomass burning emissions is consistent with that inferred from ice core methane stable carbon isotope ratios but inconsistent with histories based on sedimentary charcoal and ice core carbon monoxide measurements. This study demonstrates that biomass burning emissions have exceeded modern levels in the past and may be highly sensitive to changes in climate.


Assuntos
Etano/química , Camada de Gelo/química , Biomassa , Mudança Climática , Atividades Humanas , Humanos , Modelos Teóricos , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 114(11): 2854-2859, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242682

RESUMO

Heat waves and air pollution episodes pose a serious threat to human health and may worsen under future climate change. In this paper, we use 15 years (1999-2013) of commensurately gridded (1° x 1°) surface observations of extended summer (April-September) surface ozone (O3), fine particulate matter (PM2.5), and maximum temperature (TX) over the eastern United States and Canada to construct a climatology of the coincidence, overlap, and lag in space and time of their extremes. Extremes of each quantity are defined climatologically at each grid cell as the 50 d with the highest values in three 5-y windows (∼95th percentile). Any two extremes occur on the same day in the same grid cell more than 50% of the time in the northeastern United States, but on a domain average, co-occurrence is approximately 30%. Although not exactly co-occurring, many of these extremes show connectedness with consistent offsets in space and in time, which often defy traditional mechanistic explanations. All three extremes occur primarily in large-scale, multiday, spatially connected episodes with scales of >1,000 km and clearly coincide with large-scale meteorological features. The largest, longest-lived episodes have the highest incidence of co-occurrence and contain extreme values well above their local 95th percentile threshold, by +7 ppb for O3, +6 µg m-3 for PM2.5, and +1.7 °C for TX. Our results demonstrate the need to evaluate these extremes as synergistic costressors to accurately quantify their impacts on human health.


Assuntos
Poluição do Ar/efeitos adversos , Mudança Climática , Monitoramento Ambiental , Raios Infravermelhos/efeitos adversos , Canadá , Humanos , New England , América do Norte , Ozônio/efeitos adversos , Ozônio/isolamento & purificação , Material Particulado/efeitos adversos , Estações do Ano , Temperatura
6.
Nature ; 476(7359): 198-201, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21833087

RESUMO

Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.


Assuntos
Atmosfera/química , Etano/análise , Combustíveis Fósseis , Metano/análise , Neve/química , Regiões Antárticas , Biocombustíveis , Biomassa , Incêndios , Combustíveis Fósseis/história , Combustíveis Fósseis/estatística & dados numéricos , Geografia , Groenlândia , História do Século XX , História do Século XXI , Gelo/análise , Modelos Teóricos
7.
Geophys Res Lett ; 43(7): 3509-3518, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32818004

RESUMO

The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

9.
Proc Natl Acad Sci U S A ; 108(27): 10997-1002, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690364

RESUMO

Nitrogen oxides emitted from aircraft engines alter the chemistry of the atmosphere, perturbing the greenhouse gases methane (CH(4)) and ozone (O(3)). We quantify uncertainties in radiative forcing (RF) due to short-lived increases in O(3), long-lived decreases in CH(4) and O(3), and their net effect, using the ensemble of published models and a factor decomposition of each forcing. The decomposition captures major features of the ensemble, and also shows which processes drive the total uncertainty in several climate metrics. Aviation-specific factors drive most of the uncertainty for the short-lived O(3) and long-lived CH(4) RFs, but a nonaviation factor dominates for long-lived O(3). The model ensemble shows strong anticorrelation between the short-lived and long-lived RF perturbations (R(2)=0.87). Uncertainty in the net RF is highly sensitive to this correlation. We reproduce the correlation and ensemble spread in one model, showing that processes controlling the background tropospheric abundance of nitrogen oxides are likely responsible for the modeling uncertainty in climate impacts from aviation.

10.
Science ; 385(6705): 201-204, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991055

RESUMO

The decay of methyl chloroform, a banned ozone-depleting substance, has provided a clear observational metric of mean tropospheric hydroxyl radical (OH) abundance. Almost all current global chemistry models calculate about 15% too much OH and thus too rapid methane loss. Methane is a short-lived climate forcer, critical to achieving global warming targets, and this error affects our model projections of climate change. New observations of water vapor absorption in the ultraviolet region (290 to 350 nanometers) imply reductions in sunlight with key photolysis rates decreasing by 8 to 12% in the near-surface tropical atmosphere. Incorporation of this new mechanism in a chemistry-transport model reduces OH and methane loss by only 4%, but combined with other proposed mechanisms, such as tropospheric halogen chemistry (7%), we may be able to resolve this conundrum.

12.
Proc Natl Acad Sci U S A ; 105(50): 19617-21, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19066224

RESUMO

One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.

14.
J Geophys Res Atmos ; 120(11): 5693-5705, 2015 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-26900537

RESUMO

Nitrous oxide lifetime is computed empirically from MLS satellite dataEmpirical N2O lifetimes compared with models including interannual variabilityResults improve values for present anthropogenic and preindustrial emissions.

15.
Science ; 330(6006): 952-4, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21071666

RESUMO

Nitrous oxide (N(2)O) and methane (CH(4)) are chemically reactive greenhouse gases with well-documented atmospheric concentration increases that are attributable to anthropogenic activities. We quantified the link between N(2)O and CH(4) emissions through the coupled chemistries of the stratosphere and troposphere. Specifically, we simulated the coupled perturbations of increased N(2)O abundance, leading to stratospheric ozone (O(3)) depletion, altered solar ultraviolet radiation, altered stratosphere-to-troposphere O(3) flux, increased tropospheric hydroxyl radical concentration, and finally lower concentrations of CH(4). The ratio of CH(4) per N(2)O change, -36% by mole fraction, offsets a fraction of the greenhouse effect attributable to N(2)O emissions. These CH(4) decreases are tied to the 108-year chemical mode of N(2)O, which is nine times longer than the residence time of direct CH(4) emissions.

16.
Environ Sci Technol ; 43(17): 6482-7, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19764205

RESUMO

Ozone exposure is associated with negative health impacts, including premature mortality. Observations and modeling studies demonstrate that emissions from one continent influence ozone air quality over other continents. We estimate the premature mortalities avoided from surface ozone decreases obtained via combined 20% reductions of anthropogenic nitrogen oxide, nonmethane volatile organic compound, and carbon monoxide emissions in North America (NA), EastAsia (EA), South Asia (SA), and Europe (EU). We use estimates of ozone responses to these emission changes from several atmospheric chemical transportmodels combined with a health impactfunction. Foreign emission reductions contribute approximately 30%, 30%, 20%, and >50% of the mortalities avoided by reducing precursor emissions in all regions together in NA, EA, SA and EU, respectively. Reducing emissions in NA and EU avoids more mortalities outside the source region than within, owing in part to larger populations in foreign regions. Lowering the global methane abundance by 20% reduces mortality mostin SA,followed by EU, EA, and NA. For some source-receptor pairs, there is greater uncertainty in our estimated avoided mortalities associated with the modeled ozone responses to emission changes than with the health impact function parameters.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Mortalidade/tendências , Ozônio/toxicidade , Poluentes Atmosféricos/análise , Ásia/epidemiologia , Simulação por Computador , Europa (Continente)/epidemiologia , Cardiopatias/mortalidade , Humanos , Pneumopatias/mortalidade , Modelos Teóricos , América do Norte/epidemiologia , Ozônio/análise , Densidade Demográfica , Estações do Ano
17.
Philos Trans A Math Phys Eng Sci ; 365(1856): 1705-26, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17513264

RESUMO

Atmospheric composition is controlled by the emission, photochemistry and transport of many trace gases. Understanding the time scale as well as the chemical and spatial patterns of perturbations to trace gases is needed to evaluate possible environmental damage (e.g. stratospheric ozone depletion or climate change) caused by anthropogenic emissions. This paper reviews lessons learned from treating global atmospheric chemistry as a linearized system and analysing it in terms of eigenvalues. The results give insight into how emissions of one trace species cause perturbations to another and how transport and chemistry can alter the time scale of the overall perturbation. Further, the eigenvectors describe the fundamental chemical modes, or patterns, of the atmosphere's chemical response to perturbations.

19.
Science ; 302(5645): 581-2, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14576412
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA