Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomarkers ; 29(5): 324-339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38808385

RESUMO

BACKGROUND: The transcription factor SALL4 is associated with embryonic pluripotency and has proposed as a novel immunohistochemistry (IHC) marker for diagnosing germ cell tumours. SALL4 comprises three isoforms, and SALL4-A being the full-length isoform. Studying its isoforms could revolutionize testicular cancer prognosis and subtype differentiation. METHODS: The expression and clinical significance of isoform 'A' of SALL4 was evaluated in 124 testicular germ cell tumours (TGCTs) subtypes, adjacent 67 normal tissues and 22 benign tumours, using immunohistochemistry on tissue microarrays (TMA). RESULTS: A statistically significant higher expression of nuclear and cytoplasmic SALL4-A was detected in TGCTs histological subtypes and benign tumours compared to the normal tissues. Seminoma and yolk sac tumours had the highest nuclear and cytoplasmic expression of SALL4-A. A significant correlation was detected between the higher nuclear expression of SALL4-A and increased pT stages (P = 0.026) in seminomas. Whereas in embryonal carcinomas, cytoplasmic expression of SALL4-A was associated with the tumour recurrence (P = 0.04) and invasion of the epididymis (P = 0.011). CONCLUSIONS: SALL4-A isoform expression in the cytoplasm and nucleus of TGCTs may be associated with histological differentiation. In the seminoma subtype of TGCTs, higher expression of SALL4-A may be used as a predictive indicator of poorer outcomes and prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias Embrionárias de Células Germinativas , Isoformas de Proteínas , Neoplasias Testiculares , Fatores de Transcrição , Humanos , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Masculino , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Biomarcadores Tumorais/metabolismo , Prognóstico , Progressão da Doença , Imuno-Histoquímica , Seminoma/metabolismo , Seminoma/patologia , Adulto , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Análise Serial de Tecidos
2.
BMC Bioinformatics ; 24(1): 67, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829109

RESUMO

BACKGROUND: Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS: The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION: The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.


Assuntos
COVID-19 , Streptococcus pneumoniae , Criança , Humanos , Pré-Escolar , Idoso , Simulação de Acoplamento Molecular , Escherichia coli , Receptor 4 Toll-Like , Epitopos de Linfócito T/química , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Epitopos de Linfócito B , Biologia Computacional/métodos
3.
Protein Expr Purif ; 203: 106210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473692

RESUMO

Many efforts have been made around the world to combat SARS-CoV-2. Among these are recombinant antibodies considered to be suitable as an alternative for some diagnostics/therapeutics. Based on their importance, this study aimed to investigate the expression, purification, and efficiency of a new potent recombinant scFv in the E. coli BL21 (DE3) system. The expression studies were performed after confirming the scFv cloning into the pET28a vector using specific PCRs. After comprehensive expression studies, a suitable strategy was adopted to extract and purify periplasmic proteins using Ni2+-NTA resin. Besides the purified scFv, the crude bacterial lysate was also used to develop a sandwich ELISA (S-ELISA) for the detection of SARS-CoV-2. The use of PCR, E. coli expression system, western blotting (WB), and S-ELISA confirmed the functionality of this potent scFv. Moreover, the crude bacterial lysate also showed good potential for detecting SARS-CoV-2. This could be decreasing the costs and ease its utilization for large-scale applications. The production of high-quality recombinant proteins is essential for humankind. Moreover, with attention to the more aggressive nature of SARS-CoV-2 than other coronaviruses, the development of an effective detection method is urgent. Based on our knowledge, this study is one of the limited investigations in two fields: (1) The production of anti-SARS-CoV-2 scFv using E. coli [as a cheap heterologous host] in relatively high amounts and with good stability, and (2) Designing a sensitive S-ELISA for its detection. It may also be utilized as potent therapeutics after further investigations.


Assuntos
COVID-19 , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , COVID-19/diagnóstico , SARS-CoV-2/genética , Proteínas Recombinantes/metabolismo , Ensaio de Imunoadsorção Enzimática
4.
J Transl Med ; 20(1): 389, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36059030

RESUMO

BACKGROUND: Streptococcus pneumoniae is the leading reason for invasive diseases including pneumonia and meningitis, and also secondary infections following viral respiratory diseases such as flu and COVID-19. Currently, serotype-dependent vaccines, which have several insufficiency and limitations, are the only way to prevent pneumococcal infections. Hence, it is plain to need an alternative effective strategy for prevention of this organism. Protein-based vaccine involving conserved pneumococcal protein antigens with different roles in virulence could provide an eligible alternative to existing vaccines. METHODS: In this study, PspC, PhtD and PsaA antigens from pneumococcus were taken to account to predict B-cell and helper T-cell epitopes, and epitope-rich regions were chosen to build the construct. To enhance the immunogenicity of the epitope-based vaccine, a truncated N-terminal fragment of pneumococcal endopeptidase O (PepO) was used as a potential TLR2/4 agonist which was identified by molecular docking studies. The ultimate construct was consisted of the chosen epitope-rich regions, along with the adjuvant role (truncated N-PepO) and suitable linkers. RESULTS: The epitope-based vaccine was assessed as regards physicochemical properties, allergenicity, antigenicity, and toxicity. The 3D structure of the engineered construct was modeled, refined, and validated. Molecular docking and simulation of molecular dynamics (MD) indicated the proper and stable interactions between the vaccine and TLR2/4 throughout the simulation periods. CONCLUSIONS: For the first time this work presents a novel vaccine consisting of epitopes of PspC, PhtD, and PsaA antigens which is adjuvanted with a new truncated domain of PepO. The computational outcomes revealed that the suggested vaccine could be deemed an efficient therapeutic vaccine for S. pneumoniae; nevertheless, in vitro and in vivo examinations should be performed to prove the potency of the candidate vaccine.


Assuntos
COVID-19 , Streptococcus pneumoniae , Adjuvantes Imunológicos , Antígenos de Bactérias , Proteínas de Bactérias , Biologia Computacional , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Humanos , Metaloendopeptidases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor 2 Toll-Like , Vacinas de Subunidades Antigênicas/química
5.
Andrologia ; 54(11): e14608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229227

RESUMO

SALL4 transcription factor plays an important role to maintain the pluripotent and self-renewal of embryonic stem cells. It contributes to the growth of many cancers and embryonic development. With the exception of spermatogonia, SALL4 expression is silenced in most adult tissues after birth; nevertheless, it is re-expressed in a subset of different solid malignancies. SALL4 is a new, precise biomarker for testicular germ cell cancers that was just introduced. The whole isoform of SALL4 is called SALL4-A. Regarding the lack of antibody against human SALL4 isoforms, the pattern of expression, the role of each isoform remain unknown. Furthermore, in isoform specific evaluations, we aimed, for the first time, to produce and characterize mAb against human SALL4-A. Immunization of mice were performed with a selected 33-mer synthetic peptide of SALL4-A conjugated with KLH. Hybridoma cells were screened by ELISA for positive reactivity with SALL4-A peptide. From the ascites fluid of mice that had been injected with hybridoma cells, anti-SALL4-A mAbs were isolated using a protein G column. Reactivity of the mAbs was evaluated using the peptide and SALL4-A recombinant protein by ELISA and IHC on testicular cancer tissue as positive control, and normal kidney, stomach and prostate tissues as negative control. The produced mAb could well detect SALL4-A in testicular cancer tissues using IHC, while the reactivity was negative in normal kidney, stomach and prostate tissues. Using ELISA, the mAb affinity for the peptide and SALL4-A recombinant protein was assessed, and it was shown to be reasonably high. The mAb detected SALL4-A in nucleus and cytoplasm of several cancer cells and spermatogonia in testicular cancer tissue. In addition, it could recognize SALL4-A recombinant protein. Our produced monoclonal antibody against isoform-A of human SALL4 can specifically recognize SALL4-A using either IHC or ELISA. We hope that this mAb could help researchers in isoform-specific study of human SALL4.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Adulto , Humanos , Camundongos , Animais , Neoplasias Testiculares/diagnóstico , Anticorpos Monoclonais , Isoformas de Proteínas , Biomarcadores , Peptídeos , Proteínas Recombinantes , Fatores de Transcrição
6.
Exp Parasitol ; 222: 108065, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33428893

RESUMO

Visceral leishmaniasis (VL) is a protozoan disease caused by Leishmania infantum in the Mediterranean region including Iran. In 95% of cases, the disease can be fatal if not rapidly diagnosed and left untreated. We aimed to identify immunoreactive proteins of L. infantum (Iranian strain), and to design and evaluate a recombinant multi-epitope antigen for serodiagnosis of human VL. To detect the immunoreactive proteins of L. infantum promastigotes, 2DE immunoblotting technique was performed using different pooled sera of VL patients. The candidate immunoreactive proteins were identified using MALDI-TOF/TOF mass spectrophotometry. Among 125 immunoreactive spots detected in 2-DE gels, glucose-regulated protein 78 (GRP78), ubiquitin-conjugating enzyme E2, calreticulin, mitochondrial heat shock 70-related protein 1 (mtHSP70), heat shock protein 70-related protein, i/6 autoantigen-like protein, ATPase beta subunit, and proteasome alpha subunit 5 were identified. The potent epitopes from candidate immunodominant proteins including GRP78, mtHSP70 and ubiquitin-conjugating enzyme E2 were then selected to design a recombinant antigenic protein (GRP-UBI-HSP). The recombinant antigen was evaluated by ELISA and compared to direct agglutination test for detection of anti L. infantum human antibodies. We screened 34 sera of VL patients from endemic areas and 107 sera of individuals without L. infantum infection from non-endemic area of VL. The recombinant protein-based ELISA provided a sensitivity of 70.6% and a specificity of 84.1%. These results showed that GRP78, ubiquitin-conjugating enzyme E2, and mtHSP70 proteins are potential immunodominant targets of the host immune system in response to the parasite and they can be considered as potential candidate markers for diagnosis purposes.


Assuntos
Epitopos Imunodominantes/isolamento & purificação , Leishmania infantum/imunologia , Leishmaniose Visceral/diagnóstico , Proteômica/métodos , Sequência de Aminoácidos , Antígenos de Protozoários/isolamento & purificação , Western Blotting , Biologia Computacional/métodos , Eletroforese em Gel Bidimensional , Chaperona BiP do Retículo Endoplasmático , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Epitopos/isolamento & purificação , Humanos , Immunoblotting , Leishmaniose Visceral/imunologia , Conformação Molecular , Estrutura Secundária de Proteína , Proteômica/normas , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Testes Sorológicos/métodos , Testes Sorológicos/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Food Saf ; 41(5): e12917, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34511666

RESUMO

The present investigation was performed to determine the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under several industrial processing situations in dairies, including pasteurization, freezing, and storage in acidic conditions. Ten treatments were selected, including high-temperature short-time (HTST)-pasteurized low-fat milk, low-temperature long-time-pasteurized low-fat milk, extended shelf life (ESL)-pasteurized low-fat milk, HTST-pasteurized full-fat milk, LTLT-pasteurized full-fat milk, ESL-pasteurized full-fat milk, pasteurized cream, ice cream frozen and stored at -20 or -80°C, and Doogh (as a fermented milk drink with initial pH < 3.5) refrigerated for 28 days. The viral particles were quantified by RT-PCR methodology. Besides, the virus infectivity was assessed through fifty-percent tissue culture infective dose (TCID50) assay. These products were seeded with a viral load of 5.65 log TCID50/mL as a simulated cross-contamination condition. Pasteurization techniques were sufficient for complete inactivation of the SARS-CoV-2 in the most dairy products, and 1.85 log TCID50/mL virus reduction in full-fat milk (fat content = 3.22%). Freezing (either -20°C or -80°C) did not result in a virally safe product within 60 days of storage. Storage at high acidic conditions (initial pH < 3.5) completely hampered the viral load at the end of 28 days of refrigerated storage. This research represents an important practical achievement that the routine HTST pasteurization in dairies was inadequate to completely inactivate the viral load in full-fat milk, probably due to the protective effect of fat content. Furthermore, freezing retain the virus infectivity in food products, and therefore, relevant contaminated foods may act as carriers for SARS-CoV-2.

8.
J Res Med Sci ; 25: 101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33273946

RESUMO

Humans have always been encountered to big infectious diseases outbreak throughout the history. In December 2019, novel coronavirus (COVID-19) was first noticed as an agent causing insidious pneumonia in Wuhan, China. COVID-19 was spread rapidly from Wuhan to the rest of the world. Until late June 2020, it infected more than 10,000,000 people and caused more than 500,000 deaths in almost all of countries in the world, creating a global crisis worse than all previous epidemics and pandemics. In the current review, we gathered and summarized the results of various studies on characteristics, diagnosis, treatment, and prevention of this pandemic crisis.

9.
Microb Pathog ; 137: 103788, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605758

RESUMO

Toxoplasmosis caused by an obligatory intracellular protozoan parasite of Toxoplasma gondii threats a wide spectrum of human and animal hosts. It has been shown that the intensity of the disease in humans depends on the host's immune responses. Immunological investigations on whole protein molecules of T. gondii have shown that these antigens are not fully responsible for the immune response, which leads to a decrease in specificity and affinity of the antigen (epitope)-antibody (paratope) binding. Currently, epitopes have shown promising entities to stimulate B, T, cytotoxic T lymphocyte, and NK cells resulting in enhancement of protective immunity against toxoplasmosis patients. Thus, the accurate designing, prediction, and conducting of antigenic epitopes of T. gondii (with linear and/or spatial structures (can augment our understanding about development of new serological diagnostic kits and vaccines. The current review provides an update on the latest advances of current epitopes described against toxoplasmosis including B cell/T cell epitopes, antigen types, parasite strains, epitope sequences, assay settings (in vitro and/or in vivo), and target strategy. Present results disclosed that the designing of effective multiepitopes of T. gondii by in silico modeling and immunoinformatics tools can strengthen our knowledge about triggering of epitope-based vaccine/diagnosis strategies in future perspectives.


Assuntos
Antígenos de Protozoários/administração & dosagem , Toxoplasma/imunologia , Toxoplasmose/diagnóstico , Toxoplasmose/prevenção & controle , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Humanos , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Toxoplasma/genética , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Vacinação , Vacinas/administração & dosagem , Vacinas/genética , Vacinas/imunologia
10.
Comput Biol Med ; 170: 108091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295473

RESUMO

BACKGROUND: The SARS-CoV-2 has led to a worldwide disaster. Thus, developing prophylactics/therapeutics is required to overcome this public health issue. Among these, producing the anti-SARS-CoV-2 single-chain variable fragment (scFv) antibodies has attracted a significant attention. Accordingly, this study aims to address this question: Is it possible to bioinformatics-based design of a potent anti-SARS-CoV-2 scFv as an alternative to current production approaches? METHOD: Using the complexed SARS-CoV-2 spike-antibodies, two sets analyses were performed: (1) B-cell epitopes (BCEs) prediction in the spike receptor-binding domain (RBD) region as a parameter for antibody screening; (2) the computational analysis of antibodies variable domains (VH/VL). Based on these primary screenings, and docking/binding affinity rating, one antibody was selected. The protein-protein interactions (PPIs) among the selected antibody-epitope complex were predicted and its epitope conservancy was also evaluated. Thereafter, some elements were added to the final scFv: (1) the PelB signal peptide; (2) a GSGGGGS linker to connect the VH-VL. Finally, this scFv was analyzed/optimized using various web servers. RESULTS: Among the antibody library, only one met the various criteria for being an efficient scFv candidate. Moreover, no interaction was predicted between its paratope and RBD hot-spot residues of SARS-CoV-2 variants-of-Concern (VOCs). CONCLUSIONS: Herein, a step-by-step bioinformatics platform has been introduced to bypass some barriers of traditional antibody production approaches. Based on existing literature, the current study is one of the pioneer works in the field of bioinformatics-based scFv production. This scFv may be a good candidate for diagnostics/therapeutics design against the SARS-CoV-2 as an emerging aggressive pathogen.


Assuntos
COVID-19 , Anticorpos de Cadeia Única , Vacinas , Humanos , Anticorpos de Cadeia Única/química , SARS-CoV-2 , Anticorpos Antivirais , Epitopos de Linfócito B/química , Biologia Computacional , Teste para COVID-19
11.
Int J Biol Macromol ; 258(Pt 2): 128924, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143051

RESUMO

Pneumococcus is the top cause of diseases such as pneumonia/meningitis, and of secondary infections after viral respiratory diseases like COVID-19/flu. Pneumococcal protein-based vaccines consisting of proteins with various functions in virulence might provide a qualified alternative for present vaccines. In this project, PspC, PsaA, and PhtD proteins were considered to anticipate B/T-cell epitopes using immunoinformatics to develop 4 multi-peptide constructs (C, A, and D individual constructs, and a fusion construct CAD). We tested whether vaccination with CAD is able to elicit more efficient protective responses against infection than vaccination with the individual constructs or combination of C + A + D. Based on the in silico results, the constructs were predicted to be antigenic, soluble, non-toxic, and stable, and also be able to provoke humoral/cellular immune reactions. When mice were immunized with the fusion protein, significantly higher levels of IgG and cytokines were induced in serum. The IgG in the fusion group had an effective bioactivity for pneumococcus clearance utilizing the complement pathway. The mice immunized with fusion protein were the most protected from challenge. This report for the first time presents a novel multi-peptide vaccine composed of immunodominant peptides of PspC, PsaA, and PhtD. In general, the experimental results supported the immunoinformatics predictions.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Camundongos , Proteínas de Bactérias , Vacinas de Subunidades Proteicas , Peptídeos , Epitopos de Linfócito B , Imunoglobulina G , Anticorpos Antibacterianos
12.
Adv Pharm Bull ; 13(3): 563-572, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37646054

RESUMO

Purpose: Among all known human coronaviruses, some viruses (e.g., SARS-CoV-2) cause severe pneumonia or even death. With the regard to its spread and the importance of its rapid identification/treatment, and because pAbs are relatively cheap, able to bind to more sites on antigens and even neutralize them, this study was done for the production and purification of anti-SARS-CoV-2 polyclonal antibodies (pAb) in rats. Methods: Viral antigen purification was performed by PEG/NaCl precipitation. The efficiency of the sucrose cushion method was also investigated to produce a purer antigen. Immunization was done and antibody purification was performed by ammonium sulfate precipitation (33%), dialysis, and ion-exchange chromatography. Western blotting and enzyme-linked immunosorbent assay (ELISA) were performed to verify the antibody specificity. All data were analyzed by SPSS software. Results: The results showed that the amount of concentrated virus increased with the increase of PEG concentration. Moreover, the sucrose cushion method increased its purity. Besides, induction of immune response in rats for pAb production with high titers was reached via these antigens and ELISA/western blot results indicated a suitable antibody-antigen interaction. Additionally, it was shown that ion-exchange chromatography could be a suitable technique for IgG purification. Conclusion: Herein, we presented a simple and cheap method for the purification of whole viral particles with relatively high quality. The results verified that these antigens could elicit a good immune response in the rat. The obtained pAbs showed a good specificity toward SARS-CoV-2 antigens. Accordingly, this study proposes a promising method for viral vaccine development.

13.
Adv Pharm Bull ; 12(2): 206-216, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35620342

RESUMO

After severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, coronavirus disease 2019 (COVID-19) is the third coronavirus epidemic that soon turned into a pandemic. This virus causes acute respiratory syndrome in infected people. The mortality rate of SARS-CoV-2 infection will probably rise unless efficient treatments or vaccines are developed. The global funding and medical communities have started performing more than five hundred clinical examinations on a broad spectrum of repurposed drugs to acquire effective treatments. Besides, other novel treatment approaches have also recently emerged, including cellular host-directed therapies. They counteract the unwanted responses of the host immune system that led to the severe pathogenesis of SARS-CoV-2. This brief review focuses on mesenchymal stem cell (MSC) principles in treating the COVID-19. The US clinical trials database and the world health organization database for clinical trials have reported 82 clinical trials (altogether) exploring the effects of MSCs in COVID-19 treatment. MSCs also had better be tried for treating other pathogens worldwide. MSC treatment may have the potential to end the high mortality rate of COVID-19. Besides, it also limits the long-term inability of survivors.

14.
J Clin Med ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36362544

RESUMO

BACKGROUND: Mutations in spike glycoprotein, a critical protein of SARS-CoV-2, could directly impact pathogenicity and virulence. The D614G mutation, a non-synonymous mutation at position 614 of the spike glycoprotein, is a predominant variant circulating worldwide. This study investigated the occurrence of mutations in the crucial zone of the spike gene and the association of clinical symptoms with spike mutations in isolated viruses from Iranian patients infected with SARS-CoV-2 during the second and third waves of the COVID-19 epidemic in Isfahan, the third-largest city in Iran. METHODS: The extracted RNA from 60 nasopharyngeal samples of COVID-19 patients were subjected to cDNA synthesis and RT-PCR (in three overlapping fragments). Each patient's reverse transcriptase polymerase chain reaction (RT-PCR) products were assembled and sequenced. Information and clinical features of all sixty patients were collected, summarized, and analyzed using the GENMOD procedure of SAS 9.4. RESULTS: Analysis of 60 assembled sequences identified nine nonsynonymous mutations. The D614G mutation has the highest frequency among the amino acid changes. In our study, in 31 patients (51.66%), D614G mutation was determined. For all the studied symptoms, no significant relationship was observed with the incidence of D614G mutation. CONCLUSIONS: D614G, a common mutation among several of the variants of SARS-CoV-2, had the highest frequency among the studied sequences and its frequency increased significantly in the samples of the third wave compared to the samples of the second wave of the disease.

15.
Int J Pept Res Ther ; 27(1): 365-378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32837456

RESUMO

Cervical cancer is the second most common leading cause of women's death due to cancer worldwide, about 528,000 patients' cases and 266,000 deaths per year, related to human papillomavirus (HPV). Peptide-based vaccines being safe, stable, and easy to produce have demonstrated great potential to develop therapeutic HPV vaccine. In this study, the major histocompatibility complex (MHC) class I, class II T cell epitopes of HPV16-E7 were predicted. Therefore, we designed a plan to find the most effective peptides to prompt appropriate immune responses. For this purpose, retrieving protein sequences, conserved region identification, phylogenic tree construction, T cell epitope prediction, epitope-predicted population coverage calculation, and molecular docking were performed consecutively and most effective immune response prompting peptides were selected. Based on different tools index, six CD8+ T cells and six CD4+ epitopes were chosen. This combination of 12 epitopes created a putative global vaccine with a 95.06% population coverage. These identified peptides can be employed further for peptide analysis and can be used as a peptide or poly-epitope candidates for therapeutic vaccine studies to treat HPV-associated cancers.

16.
Iran J Allergy Asthma Immunol ; 20(5): 537-549, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34664813

RESUMO

Nosocomial infections caused by Acinetobacter baumannii (A. baumannii) nosocomial infections caused by Acinetobacter baumannii (A. baumannii) are considered as a global serious problem in hospitalized patients because of emerging antibiotic resistance. Immunotherapy approaches are promising to prevent such infections. In our previous study, five antigenic epitopes of outer membrane protein A (OmpA), as the most dangerous virulence molecule in A. baumanii, were predicted in silico. In this study, the investigators evaluated some immunological aspects of the peptides. Five peptides were separately injected into C5BL/6 mice; then the cytokine production (interleukin-4 and interferon-gamma) of splenocytes and opsonophagocytic activity of immunized serum were assessed. To identify the protective function of the peptides, animal models of sepsis and pneumonia infections were actively and passively immunized with selected peptides and pooled sera of immunized mice, respectively. Then, survival rates of them were compared with the non-infected controls. Based on the results, activated spleen cells in P127 peptide-immunized mice exhibited an increase level of IFN-γ compared with the other experimental groups, but not about the IL-4 concentration. The results of opsonophagocytic assay revealed an appropriate killing activity of produced antibodies against A. baumannii in a dose-dependent manner. Further, the survival rates of the mice under passive immunization with the immunized sera or active immunization with P127 peptide were significantly more than those in the control group. Moreover, the survival rate of the P127 peptide immunized group was considerably higher than that among the other peptide-immunized group. In conclusion, findings indicated that peptides derived from outer membrane protein-A can be used as a promising tool for designing the epitope-based vaccines against infections caused by A. baumannii.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Epitopos/imunologia , Pneumonia Bacteriana/prevenção & controle , Sepse/prevenção & controle , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/mortalidade , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunização , Camundongos , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/mortalidade , Prognóstico , Sepse/imunologia , Sepse/mortalidade , Resultado do Tratamento
17.
Turk J Pharm Sci ; 18(6): 710-717, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34978400

RESUMO

OBJECTIVES: Leishmaniasis is one of the common forms of neglected parasitic diseases that cause a worldwide disease burden without any effective therapeutic strategy. Control of the disease currently relies on chemotherapy because most of the available drugs have toxic side-effects and drug-resistant strains have emerged. Therefore, the development of new therapeutic strategies to treat patients for leishmaniasis has become a priority. The first step in drug discovery is to identify an effective drug target by methods such as system biology. Protein kinases are a promising drug target for different diseases. Due to lack of a functional krebs cycle in Leishmania species, they use glycolysis as the only source of ATP generation. Pyruvate kinase is the enzyme involved in the last step of glycolysis and considered as essential enzyme for the Leishmania survival. MATERIALS AND METHODS: This study sought to discover FDA approved compounds against the leishmanial pyruvate kinase protein. Our approach involved using quantitative proteomics, protein interaction networks and docking to detect new drug targets and potent inhibitors. RESULTS: Pyruvate kinase was determined as the potential drug target based on protein network analysis. The docking studies suggested trametinib and irinotecan with high binding energies of -10.4 and -10.3 kcal/mol, respectively, as the potential chemotherapeutic agents against L. major. CONCLUSION: This study demonstrated the importance of integrating protein network analysis and molecular docking to identify new anti-leishmanial drugs. These potential inhibitors constitute novel drug candidates that should be tested in vitro and in vivo to determine their potential as an alternative chemotherapy in the treatment of leishmaniasis.

18.
Int Immunopharmacol ; 100: 108086, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454291

RESUMO

COVID-19 is still a deadly disease that remains yet a major challenge for humans. In recent times, many large pharmaceutical and non-pharmaceutical companies have invested a lot of time and cost in fighting this disease. In this regard, today's scientific knowledge shows that designing and producing an effective vaccine is the best possible way to diminish the disease burden and dissemination or even eradicate the disease. Due to the urgent need, many vaccines are now available earlier than scheduled. New technologies have also helped to produce much more effective vaccines, although the potential side effects must be taken into account. Thus, in this review, the types of vaccines and vaccine designs made against COVID-19, the vaccination programs, as well as the delivery methods and molecules that have been used to deliver some vaccines that need a carrier will be described.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas contra COVID-19/administração & dosagem , Aprovação de Drogas , Acessibilidade aos Serviços de Saúde , Humanos , Nanopartículas , Vacinação
19.
Artigo em Inglês | MEDLINE | ID: mdl-34849326

RESUMO

COVID-19 is a pandemic disease caused by novel corona virus, SARS-CoV-2, initially originated from China. In response to this serious life-threatening disease, designing and developing more accurate and sensitive tests are crucial. The aim of this study is designing a multi-epitope of spike and nucleocapsid antigens of COVID-19 virus by bioinformatics methods. The sequences of nucleotides obtained from the NCBI Nucleotide Database. Transmembrane structures of proteins were predicted by TMHMM Server and the prediction of signal peptide of proteins was performed by Signal P Server. B-cell epitopes' prediction was performed by the online prediction server of IEDB server. Beta turn structure of linear epitopes was also performed using the IEDB server. Conformational epitope prediction was performed using the CBTOPE and eventually, eight antigenic epitopes with high physicochemical properties were selected, and then, all eight epitopes were blasted using the NCBI website. The analyses revealed that α-helices, extended strands, ß-turns, and random coils were 28.59%, 23.25%, 3.38%, and 44.78% for S protein, 21.24%, 16.71%, 6.92%, and 55.13% for N Protein, respectively. The S and N protein three-dimensional structure was predicted using the prediction I-TASSER server. In the current study, bioinformatics tools were used to design a multi-epitope peptide based on the type of antigen and its physiochemical properties and SVM method (Machine Learning) to design multi-epitopes that have a high avidity against SARS-CoV-2 antibodies to detect infections by COVID-19.

20.
Food Sci Nutr ; 9(9): 5146-5152, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34518780

RESUMO

The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that was first found in 2019 in Wuhan, China, caused coronavirus disease 2019 (COVID-19). It then spread worldwide rapidly, causing the 2019-2020 coronavirus pandemic. To date, it has been indicated that various transmission ways might be participated in outbreaks of COVID-19. Among these, food products, whether raw or processed, might be carriers for SARS-CoV-2. Therefore, this study was aimed to evaluate the effect of cooking and microwave process of meat products and bread on the stability of SARS-CoV-2. In this regard, sausages and hamburger as meat products and toast bread were inoculated with a viral load of 5.70 log fifty percent tissue culture infective dose (TCID50)/mL in order to create a simulated cross-contamination condition. The results showed that frying of hamburger at 225ºC for about either 6 or 10 min resulted in complete inactivation of SARS-CoV-2. Furthermore, a 5-log decrease in SARS-CoV-2 load was observed in sausages as a consequence of cooking process at 78ºC for either 20 or 30 min. Additionally, the effect of microwave oven at power of 630 watt on stability of SARS-CoV-2 showed that exposing toast bread for either 30 s or 1 min in this power led to a 5-log decrease in SARS-CoV-2 load in the toast bread.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA