Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420133

RESUMO

The ectopic expression of the transcription factors OCT4, SOX2, KLF4 and MYC (OSKM) enables reprogramming of differentiated cells into pluripotent embryonic stem cells. Methods based on partial and reversible in vivo reprogramming are a promising strategy for tissue regeneration and rejuvenation. However, little is known about the barriers that impair reprogramming in an in vivo context. We report that natural killer (NK) cells significantly limit reprogramming, both in vitro and in vivo. Cells and tissues in the intermediate states of reprogramming upregulate the expression of NK-activating ligands, such as MULT1 and ICAM1. NK cells recognize and kill partially reprogrammed cells in a degranulation-dependent manner. Importantly, in vivo partial reprogramming is strongly reduced by adoptive transfer of NK cells, whereas it is significantly increased by their depletion. Notably, in the absence of NK cells, the pancreatic organoids derived from OSKM-expressing mice are remarkably large, suggesting that ablating NK surveillance favours the acquisition of progenitor-like properties. We conclude that NK cells pose an important barrier for in vivo reprogramming, and speculate that this concept may apply to other contexts of transient cellular plasticity.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Reprogramação Celular/genética , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Células Matadoras Naturais/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXB1/metabolismo
2.
J Pathol ; 263(4-5): 397-399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38828491

RESUMO

Pancreatic cancer is a highly aggressive disease. Developing new strategies and using powerful methodologies for its early detection, coupled with in-depth comprehension of the mechanisms governing subtype evolution, will not only help to stratify PDAC patients' prognosis but also prevent unfavourable subtype plasticity upon treatment with chemotherapy. Michiels et al have developed a new approach to better capture PDAC heterogeneity at the single tumour duct spatial resolution level, leveraging detection of transcripts for mutant KRAS and multiple subtype markers. Their study sheds light on the association of mutant KRAS and PDAC phenotypic heterogeneity. The findings support functional cooperation of plastic tumour cells and opens new challenges towards PDAC patient stratification and therapeutic intervention. Pathology-based tools will be of prime importance to address these issues in a clinically meaningful manner. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Análise de Célula Única , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Análise de Célula Única/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Heterogeneidade Genética , Fenótipo
3.
Br J Cancer ; 130(3): 434-441, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102226

RESUMO

BACKGROUND: Preclinical and early clinical data suggest that the irreversible ErbB family blocker afatinib may be effective in urothelial cancers harbouring ERBB mutations. METHODS: This open-label, phase II, single-arm trial (LUX-Bladder 1, NCT02780687) assessed the efficacy and safety of second-line afatinib 40 mg/d in patients with metastatic urothelial carcinoma with ERBB1-3 alterations. The primary endpoint was 6-month progression-free survival rate (PFS6) (cohort A); other endpoints included ORR, PFS, OS, DCR and safety (cohorts A and B). Cohort A was planned to have two stages: stage 2 enrolment was based on observed antitumour activity. RESULTS: Thirty-four patients were enroled into cohort A and eight into cohort B. In cohorts A/B, PFS6 was 11.8%/12.5%, ORR was 5.9%/12.5%, DCR was 50.0%/25.0%, median PFS was 9.8/7.8 weeks and median OS was 30.1/29.6 weeks. Three patients (two ERBB2-amplified [cohort A]; one EGFR-amplified [cohort B]) achieved partial responses. Stage 2 for cohort A did not proceed. All patients experienced adverse events (AEs), most commonly (any/grade 3) diarrhoea (76.2%/9.5%). Two patients (4.8%) discontinued due to AEs and one fatal AE was observed (acute coronary syndrome; not considered treatment-related). CONCLUSIONS: An exploratory biomarker analysis suggested that basal-squamous tumours and ERBB2 amplification were associated with superior response to afatinib. CLINICAL TRIAL REGISTRATION: NCT02780687.


Assuntos
Afatinib , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Afatinib/efeitos adversos , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Mutação , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
4.
EMBO J ; 39(9): e102808, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32154941

RESUMO

Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic, and biochemical studies to show that HNF1A recruits KDM6A to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates differentiated acinar cell programs, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. We also identify a subset of non-classical PDAC samples that exhibit the HNF1A/KDM6A-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A deficiency promotes PDAC. They also connect the tumor-suppressive role of KDM6A deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Histona Desmetilases/genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Histona Desmetilases/metabolismo , Humanos , Camundongos , Mutação , Especificidade de Órgãos , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo
5.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519825

RESUMO

MOTIVATION: Transposable elements (TE) have played a major role in configuring the structures of mammalian genomes through evolution. In normal conditions, the expression of these elements is repressed by different epigenetic regulation mechanisms such as DNA methylation, histone modification and regulation by small RNAs. TE re-activation is associated with stemness potential acquisition, regulation of innate immunity and disease, such as cancer. However, the vast majority of current knowledge in the field is based on bulk expression studies, and very little is known on cell-type- or state-specific expression of TE-derived transcripts. Therefore, cost-efficient single-cell-resolution TE expression analytical approaches are needed. RESULTS: We have implemented an analytical approach based on pseudoalignment to consensus sequences to incorporate TE expression information to scRNAseq data. AVAILABILITY AND IMPLEMENTATION: All the data and code implemented are available as Supplementary data and in: https://github.com/jmzvillarreal/kallisto_TE_scRNAseq. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Elementos de DNA Transponíveis , Epigênese Genética , Animais , Análise da Expressão Gênica de Célula Única , Sequenciamento do Exoma , RNA , Mamíferos/genética
6.
Nature ; 554(7693): 533-537, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29443959

RESUMO

Chronic inflammation increases the risk of developing one of several types of cancer. Inflammatory responses are currently thought to be controlled by mechanisms that rely on transcriptional networks that are distinct from those involved in cell differentiation. The orphan nuclear receptor NR5A2 participates in a wide variety of processes, including cholesterol and glucose metabolism in the liver, resolution of endoplasmic reticulum stress, intestinal glucocorticoid production, pancreatic development and acinar differentiation. In genome-wide association studies, single nucleotide polymorphisms in the vicinity of NR5A2 have previously been associated with the risk of pancreatic adenocarcinoma. In mice, Nr5a2 heterozygosity sensitizes the pancreas to damage, impairs regeneration and cooperates with mutant Kras in tumour progression. Here, using a global transcriptomic analysis, we describe an epithelial-cell-autonomous basal pre-inflammatory state in the pancreas of Nr5a2+/- mice that is reminiscent of the early stages of pancreatitis-induced inflammation and is conserved in histologically normal human pancreases with reduced expression of NR5A2 mRNA. In Nr5a2+/-mice, NR5A2 undergoes a marked transcriptional switch, relocating from differentiation-specific to inflammatory genes and thereby promoting gene transcription that is dependent on the AP-1 transcription factor. Pancreatic deletion of Jun rescues the pre-inflammatory phenotype, as well as binding of NR5A2 to inflammatory gene promoters and the defective regenerative response to damage. These findings support the notion that, in the pancreas, the transcriptional networks involved in differentiation-specific functions also suppress inflammatory programmes. Under conditions of genetic or environmental constraint, these networks can be subverted to foster inflammation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Inflamação/genética , Pâncreas/metabolismo , Pâncreas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcriptoma , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Cromatina/genética , Cromatina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Redes Reguladoras de Genes/genética , Genes jun/genética , Heterozigoto , Humanos , Camundongos , Especificidade de Órgãos/genética , Pancreatite/genética , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Fator de Transcrição AP-1/metabolismo
7.
Mol Cell ; 64(1): 25-36, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27642049

RESUMO

Control of the G1/S phase transition by the Retinoblastoma (RB) tumor suppressor is critical for the proliferation of normal cells in tissues, and its inactivation is one of the most fundamental events leading to cancer. Cyclin-dependent kinase (CDK) phosphorylation inactivates RB to promote cell cycle-regulated gene expression. Here we show that, upon stress, the p38 stress-activated protein kinase (SAPK) maximizes cell survival by downregulating E2F gene expression through the targeting of RB. RB undergoes selective phosphorylation by p38 in its N terminus; these phosphorylations render RB insensitive to the inactivation by CDKs. p38 phosphorylation of RB increases its affinity toward the E2F transcription factor, represses gene expression, and delays cell-cycle progression. Remarkably, introduction of a RB phosphomimetic mutant in cancer cells reduces colony formation and decreases their proliferative and tumorigenic potential in mice.


Assuntos
Neoplasias da Mama/genética , Quinases Ciclina-Dependentes/genética , Fatores de Transcrição E2F/genética , Regulação Neoplásica da Expressão Gênica , Proteína do Retinoblastoma/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quinases Ciclina-Dependentes/metabolismo , Fatores de Transcrição E2F/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Mimetismo Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Gut ; 72(3): 535-548, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109153

RESUMO

OBJECTIVE: GATA6 is a key regulator of the classical phenotype in pancreatic ductal adenocarcinoma (PDAC). Low GATA6 expression associates with poor patient outcome. GATA4 is the second most expressed GATA factor in the pancreas. We assessed whether, and how, GATA4 contributes to PDAC phenotype and analysed the association of expression with outcome and response to chemotherapy. DESIGN: We analysed PDAC transcriptomic data, stratifying cases according to GATA4 and GATA6 expression and identified differentially expressed genes and pathways. The genome-wide distribution of GATA4 was assessed, as well as the effects of GATA4 knockdown. A multicentre tissue microarray study to assess GATA4 and GATA6 expression in samples (n=745) from patients with resectable was performed. GATA4 and GATA6 levels were dichotomised into high/low categorical variables; association with outcome was assessed using univariable and multivariable Cox regression models. RESULTS: GATA4 messenger RNA is enriched in classical, compared with basal-like tumours. We classified samples in 4 groups as high/low for GATA4 and GATA6. Reduced expression of GATA4 had a minor transcriptional impact but low expression of GATA4 enhanced the effects of GATA6 low expression. GATA4 and GATA6 display a partially overlapping genome-wide distribution, mainly at promoters. Reduced expression of both proteins in tumours was associated with the worst patient survival. GATA4 and GATA6 expression significantly decreased in metastases and negatively correlated with basal markers. CONCLUSIONS: GATA4 and GATA6 cooperate to maintain the classical phenotype. Our findings provide compelling rationale to assess their expression as biomarkers of poor prognosis and therapeutic response.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Perfilação da Expressão Gênica , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
9.
Nucleic Acids Res ; 49(19): 11005-11021, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648034

RESUMO

Cohesin exists in two variants containing STAG1 or STAG2. STAG2 is one of the most mutated genes in cancer and a major bladder tumor suppressor. Little is known about how its inactivation contributes to tumorigenesis. Here, we analyze the genomic distribution of STAG1 and STAG2 and perform STAG2 loss-of-function experiments using RT112 bladder cancer cells; we then analyze the genomic effects by integrating gene expression and chromatin interaction data. Functional compartmentalization exists between the cohesin complexes: cohesin-STAG2 displays a distinctive genomic distribution and mediates short and mid-ranged interactions that engage genes at higher frequency than those established by cohesin-STAG1. STAG2 knockdown results in down-regulation of the luminal urothelial signature and up-regulation of the basal transcriptional program, mirroring differences between STAG2-high and STAG2-low human bladder tumors. This is accompanied by rewiring of DNA contacts within topological domains, while compartments and domain boundaries remain refractive. Contacts lost upon depletion of STAG2 are assortative, preferentially occur within silent chromatin domains, and are associated with de-repression of lineage-specifying genes. Our findings indicate that STAG2 participates in the DNA looping that keeps the basal transcriptional program silent and thus sustains the luminal program. This mechanism may contribute to the tumor suppressor function of STAG2 in the urothelium.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/química , Mutação com Perda de Função , Proteínas Nucleares/genética , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
10.
Gut ; 71(4): 766-777, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33846140

RESUMO

OBJECTIVE: Molecular taxonomy of tumours is the foundation of personalised medicine and is becoming of paramount importance for therapeutic purposes. Four transcriptomics-based classification systems of pancreatic ductal adenocarcinoma (PDAC) exist, which consistently identified a subtype of highly aggressive PDACs with basal-like features, including ΔNp63 expression and loss of the epithelial master regulator GATA6. We investigated the precise molecular events driving PDAC progression and the emergence of the basal programme. DESIGN: We combined the analysis of patient-derived transcriptomics datasets and tissue samples with mechanistic experiments using a novel dual-recombinase mouse model for Gata6 deletion at late stages of KRasG12D-driven pancreatic tumorigenesis (Gata6LateKO). RESULTS: This comprehensive human-to-mouse approach showed that GATA6 loss is necessary, but not sufficient, for the expression of ΔNp63 and the basal programme in patients and in mice. The concomitant loss of HNF1A and HNF4A, likely through epigenetic silencing, is required for the full phenotype switch. Moreover, Gata6 deletion in mice dramatically increased the metastatic rate, with a propensity for lung metastases. Through RNA-Seq analysis of primary cells isolated from mouse tumours, we show that Gata6 inhibits tumour cell plasticity and immune evasion, consistent with patient-derived data, suggesting that GATA6 works as a barrier for acquiring the fully developed basal and metastatic phenotype. CONCLUSIONS: Our work provides both a mechanistic molecular link between the basal phenotype and metastasis and a valuable preclinical tool to investigate the most aggressive subtype of PDAC. These data, therefore, are important for understanding the pathobiological features underlying the heterogeneity of pancreatic cancer in both mice and human.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
11.
Gut ; 71(7): 1359-1372, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35260444

RESUMO

BACKGROUND: Recent evidence suggests a role for the microbiome in pancreatic ductal adenocarcinoma (PDAC) aetiology and progression. OBJECTIVE: To explore the faecal and salivary microbiota as potential diagnostic biomarkers. METHODS: We applied shotgun metagenomic and 16S rRNA amplicon sequencing to samples from a Spanish case-control study (n=136), including 57 cases, 50 controls, and 29 patients with chronic pancreatitis in the discovery phase, and from a German case-control study (n=76), in the validation phase. RESULTS: Faecal metagenomic classifiers performed much better than saliva-based classifiers and identified patients with PDAC with an accuracy of up to 0.84 area under the receiver operating characteristic curve (AUROC) based on a set of 27 microbial species, with consistent accuracy across early and late disease stages. Performance further improved to up to 0.94 AUROC when we combined our microbiome-based predictions with serum levels of carbohydrate antigen (CA) 19-9, the only current non-invasive, Food and Drug Administration approved, low specificity PDAC diagnostic biomarker. Furthermore, a microbiota-based classification model confined to PDAC-enriched species was highly disease-specific when validated against 25 publicly available metagenomic study populations for various health conditions (n=5792). Both microbiome-based models had a high prediction accuracy on a German validation population (n=76). Several faecal PDAC marker species were detectable in pancreatic tumour and non-tumour tissue using 16S rRNA sequencing and fluorescence in situ hybridisation. CONCLUSION: Taken together, our results indicate that non-invasive, robust and specific faecal microbiota-based screening for the early detection of PDAC is feasible.


Assuntos
Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Biomarcadores Tumorais , Antígeno CA-19-9 , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Estudos de Casos e Controles , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , RNA Ribossômico 16S/genética , Neoplasias Pancreáticas
12.
J Pathol ; 253(2): 174-185, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33079429

RESUMO

Cystic neoplasms of the pancreas are an increasingly important public health problem. The majority of these lesions are benign but some progress to invasive pancreatic ductal adenocarcinoma (PDAC). There is a dearth of mouse models of these conditions. The orphan nuclear receptor NR5A2 regulates development, differentiation, and inflammation. Germline Nr5a2 heterozygosity sensitizes mice to the oncogenic effects of mutant Kras in the pancreas. Here, we show that - unlike constitutive Nr5a2+/- mice - conditional Nr5a2 heterozygosity in pancreatic epithelial cells, combined with mutant Kras (KPN+/- ), leads to a dramatic replacement of the pancreatic parenchyma with cystic structures and an accelerated development of high-grade PanINs and PDAC. Timed histopathological analyses indicated that in KPN+/- mice PanINs precede the formation of cystic lesions and the latter precede PDAC. A single episode of acute caerulein pancreatitis is sufficient to accelerate the development of cystic lesions in KPN+/- mice. Epithelial cells of cystic lesions of KPN+/- mice express MUC1, MUC5AC, and MUC6, but lack expression of MUC2, CDX2, and acinar markers, indicative of a pancreato-biliary/gastric phenotype. In accordance with this, in human samples we found a non-significantly decreased expression of NR5A2 in mucinous tumours, compared with conventional PDAC. These results highlight that the effects of loss of one Nr5a2 allele are time- and cell context-dependent. KPN+/- mice represent a new model to study the formation of cystic pancreatic lesions and their relationship with PanINs and classical PDAC. Our findings suggest that pancreatitis could also contribute to acceleration of cystic tumour progression in patients. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Ductal Pancreático/genética , Progressão da Doença , Células Epiteliais/patologia , Feminino , Heterozigoto , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Cisto Pancreático/patologia , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Citoplasmáticos e Nucleares/genética
13.
Nature ; 538(7625): 378-382, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27732578

RESUMO

Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Rearranjo Gênico/genética , Genoma Humano/genética , Modelos Biológicos , Mutagênese/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma in Situ/genética , Cromotripsia , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Evolução Molecular , Feminino , Genes Neoplásicos/genética , Humanos , Masculino , Mitose/genética , Mutação/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Poliploidia , Lesões Pré-Cancerosas/genética
14.
Gut ; 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330784

RESUMO

OBJECTIVE: The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN: We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS: In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION: In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.

15.
Gut ; 70(2): 319-329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32409590

RESUMO

OBJECTIVES: To characterise the association between type 2 diabetes mellitus (T2DM) subtypes (new-onset T2DM (NODM) or long-standing T2DM (LSDM)) and pancreatic cancer (PC) risk, to explore the direction of causation through Mendelian randomisation (MR) analysis and to assess the mediation role of body mass index (BMI). DESIGN: Information about T2DM and related factors was collected from 2018 PC cases and 1540 controls from the PanGenEU (European Study into Digestive Illnesses and Genetics) study. A subset of PC cases and controls had glycated haemoglobin, C-peptide and genotype data. Multivariate logistic regression models were applied to derive ORs and 95% CIs. T2DM and PC-related single nucleotide polymorphism (SNP) were used as instrumental variables (IVs) in bidirectional MR analysis to test for two-way causal associations between PC, NODM and LSDM. Indirect and direct effects of the BMI-T2DM-PC association were further explored using mediation analysis. RESULTS: T2DM was associated with an increased PC risk when compared with non-T2DM (OR=2.50; 95% CI: 2.05 to 3.05), the risk being greater for NODM (OR=6.39; 95% CI: 4.18 to 9.78) and insulin users (OR=3.69; 95% CI: 2.80 to 4.86). The causal association between T2DM (57-SNP IV) and PC was not statistically significant (ORLSDM=1.08, 95% CI: 0.86 to 1.29, ORNODM=1.06, 95% CI: 0.95 to 1.17). In contrast, there was a causal association between PC (40-SNP IV) and NODM (OR=2.85; 95% CI: 2.04 to 3.98), although genetic pleiotropy was present (MR-Egger: p value=0.03). Potential mediating effects of BMI (125-SNPs as IV), particularly in terms of weight loss, were evidenced on the NODM-PC association (indirect effect for BMI in previous years=0.55). CONCLUSION: Findings of this study do not support a causal effect of LSDM on PC, but suggest that PC causes NODM. The interplay between obesity, PC and T2DM is complex.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Neoplasias Pancreáticas/etiologia , Idoso , Índice de Massa Corporal , Peptídeo C/sangue , Estudos de Casos e Controles , Causalidade , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Escolaridade , Feminino , Hemoglobinas Glicadas/análise , Humanos , Masculino , Análise de Mediação , Pessoa de Meia-Idade , Obesidade/genética , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fatores Sexuais , Fumar/efeitos adversos
16.
Int J Cancer ; 148(8): 2048-2058, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33411965

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, mainly due to late diagnosis at advanced tumor stages. In this study, we aimed to identify plasma protein biomarkers for early detection of PDAC. Totally, 135 PDAC patients (early PDAC, Stage I/II, n = 71; advanced PDAC, Stage III/IV, n = 64), 13 benign lesions/chronic pancreatitis patients and 72 healthy individuals, with corresponding plasma samples from a case-control study in Sweden were included. A proximity extension assay was used to detect 92 cancer-related proteins, and an enzyme-linked immunosorbent assay/electrochemiluminescence immunoassay was used to detect CA19-9. Predictive features were selected from these 93 candidate proteins and three covariates in the Swedish participants, and then validated in Spanish participants, including 37 early PDAC patients, 38 advanced PDAC patients, 19 chronic pancreatitis patients and 36 healthy controls. A panel of eight proteins discriminating early PDAC from healthy individuals was identified, and the cross-validated area under the curves (AUCs) were 0.85 (95% confidence interval, 95% CI, 0.78-0.91) and 0.81 (95% CI, 0.70-0.92) in the Swedish and Spanish participants, respectively. Another eight-protein panel was predictive for classifying advanced PDAC from healthy controls in two populations, with cross-validated AUCs of 0.89 (95% CI, 0.83-0.95) and 0.90 (95% CI, 0.83-0.98), respectively. In conclusion, eight protein biomarkers were identified and externally validated, potentially allowing early detection of PDAC patients if validated in additional prospective studies.


Assuntos
Biomarcadores Tumorais/sangue , Proteínas Sanguíneas/análise , Carcinoma Ductal Pancreático/diagnóstico , Detecção Precoce de Câncer/métodos , Neoplasias Pancreáticas/diagnóstico , Idoso , Antígenos CD/sangue , Antígeno CA-19-9/sangue , Carcinoma Ductal Pancreático/sangue , Estudos de Casos e Controles , Moléculas de Adesão Celular/sangue , Feminino , Humanos , Cadeias beta de Integrinas/sangue , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Curva ROC
17.
J Pathol ; 250(4): 362-373, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31875961

RESUMO

Pancreatic heterotopia is defined as pancreatic tissue outside its normal location in the body and anatomically separated from the pancreas. In this work we have analyzed the stomach glandular epithelium of Gata4 flox/flox ; Pdx1-Cre mice (Gata4KO mice). We found that Gata4KO glandular epithelium displays an atypical morphology similar to the cornified squamous epithelium and exhibits upregulation of forestomach markers. The developing gastric units fail to form properly, and the glandular epithelial cells do not express markers of gastric gland in the absence of GATA4. Of interest, the developing glands of the Gata4KO stomach express pancreatic cell markers. Furthermore, a mass of pancreatic tissue located in the subserosa of the Gata4KO stomach is observed at adult stages. Heterotopic pancreas found in Gata4-deficient mice contains all three pancreatic cell lineages: ductal, acinar, and endocrine. Moreover, Gata4 expression is downregulated in ectopic pancreatic tissue of some human biopsy samples. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Células Epiteliais/patologia , Fator de Transcrição GATA4/genética , Pâncreas/patologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos Transgênicos , Organogênese/fisiologia
18.
Gut ; 68(1): 130-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158237

RESUMO

OBJECTIVE: Resection can potentially cure resectable pancreatic cancer (PaC) and significantly prolong survival in some patients. This large-scale international study aimed to investigate variations in resection for PaC in Europe and USA and determinants for its utilisation. DESIGN: Data from six European population-based cancer registries and the US Surveillance, Epidemiology, and End Results Program database during 2003-2016 were analysed. Age-standardised resection rates for overall and stage I-II PaCs were computed. Associations between resection and demographic and clinical parameters were assessed using multivariable logistic regression models. RESULTS: A total of 153 698 records were analysed. In population-based registries in 2012-2014, resection rates ranged from 13.2% (Estonia) to 21.2% (Slovenia) overall and from 34.8% (Norway) to 68.7% (Denmark) for stage I-II tumours, with great international variations. During 2003-2014, resection rates only increased in USA, the Netherlands and Denmark. Resection was significantly less frequently performed with more advanced tumour stage (ORs for stage III and IV versus stage I-II tumours: 0.05-0.18 and 0.01-0.06 across countries) and increasing age (ORs for patients 70-79 and ≥80 versus those <60 years: 0.37-0.63 and 0.03-0.16 across countries). Patients with advanced-stage tumours (stage III-IV: 63.8%-81.2%) and at older ages (≥70 years: 52.6%-59.5%) receiving less frequently resection comprised the majority of diagnosed cases. Patient performance status, tumour location and size were also associated with resection application. CONCLUSION: Rates of PaC resection remain low in Europe and USA with great international variations. Further studies are warranted to explore reasons for these variations.


Assuntos
Neoplasias Pancreáticas/cirurgia , Padrões de Prática Médica/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/patologia , Sistema de Registros , Programa de SEER , Análise de Sobrevida , Estados Unidos/epidemiologia
19.
Int J Cancer ; 144(7): 1540-1549, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229903

RESUMO

Deciphering the underlying genetic basis behind pancreatic cancer (PC) and its associated multimorbidities will enhance our knowledge toward PC control. The study investigated the common genetic background of PC and different morbidities through a computational approach and further evaluated the less explored association between PC and autoimmune diseases (AIDs) through an epidemiological analysis. Gene-disease associations (GDAs) of 26 morbidities of interest and PC were obtained using the DisGeNET public discovery platform. The association between AIDs and PC pointed by the computational analysis was confirmed through multivariable logistic regression models in the PanGen European case-control study population of 1,705 PC cases and 1,084 controls. Fifteen morbidities shared at least one gene with PC in the DisGeNET database. Based on common genes, several AIDs were genetically associated with PC pointing to a potential link between them. An epidemiologic analysis confirmed that having any of the nine AIDs studied was significantly associated with a reduced risk of PC (Odds Ratio (OR) = 0.74, 95% confidence interval (CI) 0.58-0.93) which decreased in subjects having ≥2 AIDs (OR = 0.39, 95%CI 0.21-0.73). In independent analyses, polymyalgia rheumatica, and rheumatoid arthritis were significantly associated with low PC risk (OR = 0.40, 95%CI 0.19-0.89, and OR = 0.73, 95%CI 0.53-1.00, respectively). Several inflammatory-related morbidities shared a common genetic component with PC based on public databases. These molecular links could shed light into the molecular mechanisms underlying PC development and simultaneously generate novel hypotheses. In our study, we report sound findings pointing to an association between AIDs and a reduced risk of PC.


Assuntos
Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Europa (Continente)/epidemiologia , Feminino , Ontologia Genética , Predisposição Genética para Doença , Humanos , Modelos Logísticos , Masculino , Razão de Chances , Fatores de Risco
20.
Gut ; 67(4): 707-718, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28159836

RESUMO

BACKGROUND AND AIMS: c-Myc is highly expressed in pancreatic multipotent progenitor cells (MPC) and in pancreatic cancer. The transition from MPC to unipotent acinar progenitors is associated with c-Myc downregulation; a role for c-Myc in this process, and its possible relationship to a role in cancer, has not been established. DESIGN: Using coimmunoprecipitation assays, we demonstrate that c-Myc and Ptf1a interact. Using reverse transcriptase qPCR, western blot and immunofluorescence, we show the erosion of the acinar programme. To analyse the genomic distribution of c-Myc and Ptf1a and the global transcriptomic profile, we used ChIP-seq and RNA-seq, respectively; validation was performed with ChIP-qPCR and RT-qPCR. Lineage-tracing experiments were used to follow the effect of c-Myc overexpression in preacinar cells on acinar differentiation. RESULTS: c-Myc binds and represses the transcriptional activity of Ptf1a. c-Myc overexpression in preacinar cells leads to a massive erosion of differentiation. In adult Ela1-Myc mice: (1) c-Myc binds to Ptf1a, and Tcf3 is downregulated; (2) Ptf1a and c-Myc display partially overlapping chromatin occupancy but do not bind the same E-boxes; (3) at the proximal promoter of genes coding for digestive enzymes, we find reduced PTF1 binding and increased levels of repressive chromatin marks and PRC2 complex components. Lineage tracing of committed acinar precursors reveals that c-Myc overexpression does not restore multipotency but allows the persistence of a preacinar-like cell population. In addition, mutant KRas can lead to c-Myc overexpression and acinar dysregulation. CONCLUSIONS: c-Myc repression during development is crucial for the maturation of preacinar cells, and c-Myc overexpression can contribute to pancreatic carcinogenesis through the induction of a dedifferentiated state.


Assuntos
Células Acinares/metabolismo , Regulação para Baixo/genética , Homeostase , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Diferenciação Celular , Modelos Animais de Doenças , Homeostase/genética , Camundongos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA