Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 44(4): 833-46, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27037191

RESUMO

Interleukin-1ß (IL-1ß) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1ß independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1ß-mediated immune responses and immunopathology in humans.


Assuntos
Proteínas de Transporte/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Monócitos/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Caspase 1/imunologia , Linhagem Celular , Transdiferenciação Celular/imunologia , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Potássio/metabolismo , Canais de Potássio/imunologia , Piroptose/imunologia , Transdução de Sinais/imunologia
2.
Immunity ; 45(4): 761-773, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27692612

RESUMO

Imiquimod is a small-molecule ligand of Toll-like receptor-7 (TLR7) that is licensed for the treatment of viral infections and cancers of the skin. Imiquimod has TLR7-independent activities that are mechanistically unexplained, including NLRP3 inflammasome activation in myeloid cells and apoptosis induction in cancer cells. We investigated the mechanism of inflammasome activation by imiquimod and the related molecule CL097 and determined that K+ efflux was dispensable for NLRP3 activation by these compounds. Imiquimod and CL097 inhibited the quinone oxidoreductases NQO2 and mitochondrial Complex I. This induced a burst of reactive oxygen species (ROS) and thiol oxidation, and led to NLRP3 activation via NEK7, a recently identified component of this inflammasome. Metabolic consequences of Complex I inhibition and endolysosomal effects of imiquimod might also contribute to NLRP3 activation. Our results reveal a K+ efflux-independent mechanism for NLRP3 activation and identify targets of imiquimod that might be clinically relevant.


Assuntos
Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , RNA Nuclear Pequeno/farmacologia , Animais , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , Quinases Relacionadas a NIMA/metabolismo , Quinona Redutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 7 Toll-Like/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(12): e2115857119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298334

RESUMO

SignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.


Assuntos
Corpos Estranhos , Inflamassomos , Humanos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Próteses e Implantes
4.
J Enzyme Inhib Med Chem ; 39(1): 2313055, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38416868

RESUMO

Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.


Assuntos
Benzaldeídos , Lisina , Receptor 2 Toll-Like , Humanos , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo
5.
J Biol Chem ; 298(10): 102453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063996

RESUMO

The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.


Assuntos
Criptococose , Cryptococcus neoformans , Hidroximetil e Formil Transferases , Fosforribosilaminoimidazolcarboxamida Formiltransferase , Animais , Humanos , Camundongos , Antifúngicos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Descoberta de Drogas , Inosina Monofosfato , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Purinas , Criptococose/metabolismo
6.
Respir Res ; 24(1): 303, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044426

RESUMO

BACKGROUND: Increased airway NLRP3 inflammasome-mediated IL-1ß responses may underpin severe neutrophilic asthma. However, whether increased inflammasome activation is unique to severe asthma, is a common feature of immune cells in all inflammatory types of severe asthma, and whether inflammasome activation can be therapeutically targeted in patients, remains unknown. OBJECTIVE: To investigate the activation and inhibition of inflammasome-mediated IL-1ß responses in immune cells from patients with asthma. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with non-severe (n = 59) and severe (n = 36 stable, n = 17 exacerbating) asthma and healthy subjects (n = 39). PBMCs were stimulated with nigericin or lipopolysaccharide (LPS) alone, or in combination (LPS + nigericin), with or without the NLRP3 inhibitor MCC950, and the effects on IL-1ß release were assessed. RESULTS: PBMCs from patients with non-severe or severe asthma produced more IL-1ß in response to nigericin than those from healthy subjects. PBMCs from patients with severe asthma released more IL-1ß in response to LPS + nigericin than those from non-severe asthma. Inflammasome-induced IL-1ß release from PBMCs from patients with severe asthma was not increased during exacerbation compared to when stable. Inflammasome-induced IL-1ß release was not different between male and female, or obese and non-obese patients and correlated with eosinophil and neutrophil numbers in the airways. MCC950 effectively suppressed LPS-, nigericin-, and LPS + nigericin-induced IL-1ß release from PBMCs from all groups. CONCLUSION: An increased ability for inflammasome priming and/or activation is a common feature of systemic immune cells in both severe and non-severe asthma, highlighting inflammasome inhibition as a universal therapy for different subtypes of disease.


Assuntos
Asma , Inflamassomos , Humanos , Masculino , Feminino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nigericina/farmacologia , Lipopolissacarídeos , Leucócitos Mononucleares , Interleucina-1beta , Asma/diagnóstico , Asma/tratamento farmacológico , Sulfonamidas
7.
J Allergy Clin Immunol ; 149(4): 1270-1280, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34678326

RESUMO

BACKGROUND: Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE: We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS: We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS: Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION: We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.


Assuntos
Asma , Inflamassomos , Citocinas , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-13 , Interleucina-1beta , Interleucina-5 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Obesidade/complicações
8.
PLoS Pathog ; 16(8): e1008695, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750090

RESUMO

The NLRP3 inflammasome has emerged as a central immune regulator that senses virulence factors expressed by microbial pathogens for triggering inflammation. Inflammation can be harmful and therefore this response must be tightly controlled. The mechanisms by which immune cells, such as macrophages, discriminate benign from pathogenic microbes to control the NLRP3 inflammasome remain poorly defined. Here we used live cell imaging coupled with a compendium of diverse clinical isolates to define how macrophages respond and activate NLRP3 when faced with the human yeast commensal and pathogen Candida albicans. We show that metabolic competition by C. albicans, rather than virulence traits such as hyphal formation, activates NLRP3 in macrophages. Inflammasome activation is triggered by glucose starvation in macrophages, which occurs when fungal load increases sufficiently to outcompete macrophages for glucose. Consistently, reducing Candida's ability to compete for glucose and increasing glucose availability for macrophages tames inflammatory responses. We define the mechanistic requirements for glucose starvation-dependent inflammasome activation by Candida and show that it leads to inflammatory cytokine production, but it does not trigger pyroptotic macrophage death. Pyroptosis occurs only with some Candida isolates and only under specific experimental conditions, whereas inflammasome activation by glucose starvation is broadly relevant. In conclusion, macrophages use their metabolic status, specifically glucose metabolism, to sense fungal metabolic activity and activate NLRP3 when microbial load increases. Therefore, a major consequence of Candida-induced glucose starvation in macrophages is activation of inflammatory responses, with implications for understanding how metabolism modulates inflammation in fungal infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Glucose/deficiência , Interações Hospedeiro-Patógeno/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Células 3T3 BALB , Candida albicans/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Caspase 1/fisiologia , Caspases Iniciadoras/fisiologia , Feminino , Hifas , Inflamação/metabolismo , Inflamação/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/fisiologia , Piroptose
9.
Nat Chem Biol ; 15(6): 556-559, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086327

RESUMO

Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and specific small-molecule inhibitor of the NLRP3 pathway, but its molecular target is not defined. Here, we show that MCC950 directly interacts with the Walker B motif within the NLRP3 NACHT domain, thereby blocking ATP hydrolysis and inhibiting NLRP3 activation and inflammasome formation.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonas/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Hidrólise/efeitos dos fármacos , Indenos , Inflamassomos/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonamidas , Sulfonas/química
10.
J Immunol ; 203(10): 2724-2734, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586037

RESUMO

Alternatively activated macrophages are essential effector cells during type 2 immunity and tissue repair following helminth infections. We previously showed that Ym1, an alternative activation marker, can drive innate IL-1R-dependent neutrophil recruitment during infection with the lung-migrating nematode, Nippostrongylus brasiliensis, suggesting a potential role for the inflammasome in the IL-1-mediated innate response to infection. Although inflammasome proteins such as NLRP3 have important proinflammatory functions in macrophages, their role during type 2 responses and repair are less defined. We therefore infected Nlrp3 -/- mice with N. brasiliensis Unexpectedly, compared with wild-type (WT) mice, infected Nlrp3 -/- mice had increased neutrophilia and eosinophilia, correlating with enhanced worm killing but at the expense of increased tissue damage and delayed lung repair. Transcriptional profiling showed that infected Nlrp3 -/- mice exhibited elevated type 2 gene expression compared with WT mice. Notably, inflammasome activation was not evident early postinfection with N. brasiliensis, and in contrast to Nlrp3 -/- mice, antihelminth responses were unaffected in caspase-1/11-deficient or WT mice treated with the NLRP3-specific inhibitor MCC950. Together these data suggest that NLRP3 has a role in constraining lung neutrophilia, helminth killing, and type 2 immune responses in an inflammasome-independent manner.


Assuntos
Inflamassomos/fisiologia , Pneumopatias Parasitárias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Caspase 1/fisiologia , Quimiotaxia de Leucócito , Eosinofilia/etiologia , Eosinofilia/imunologia , Furanos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis , Imunidade Inata , Indenos , Interleucina-4/farmacologia , Lectinas/biossíntese , Lectinas/genética , Pulmão/patologia , Pulmão/fisiologia , Pneumopatias Parasitárias/complicações , Pneumopatias Parasitárias/patologia , Pneumopatias Parasitárias/fisiopatologia , Macrófagos Alveolares/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/imunologia , Regeneração , Infecções por Strongylida/complicações , Infecções por Strongylida/patologia , Infecções por Strongylida/fisiopatologia , Sulfonamidas/farmacologia , Sulfonas , Transcrição Gênica , beta-N-Acetil-Hexosaminidases/biossíntese , beta-N-Acetil-Hexosaminidases/genética
11.
Brain ; 143(5): 1414-1430, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282893

RESUMO

Primary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings. The RNA sequencing revealed an interleukin 1 beta (IL1B) signature in patients with primary progressive multiple sclerosis. Subsequent immunophenotyping pointed to blood monocytes as responsible for the IL1B signature observed in this group of patients. Functional experiments at baseline measuring apoptosis-associated speck-like protein containing a CARD (ASC) speck formation showed that the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome was overactive in monocytes from patients with primary progressive multiple sclerosis, and canonical NLRP3 inflammasome activation with a combination of ATP plus lipopolysaccharide was associated with increased IL1B production in this group of patients. Primary progressive multiple sclerosis patients with high IL1B gene expression levels in peripheral blood mononuclear cells progressed significantly faster compared to patients with low IL1B levels based on the time to reach an EDSS of 6.0 and the Multiple Sclerosis Severity Score. In agreement with peripheral blood findings, both NLRP3 and IL1B expression in brain tissue from patients with primary progressive multiple sclerosis was mainly restricted to cells of myeloid lineage. Treatment of mice with a specific NLRP3 inflammasome inhibitor attenuated established experimental autoimmune encephalomyelitis disease severity and improved CNS histopathology. NLRP3 inflammasome-specific inhibition was also effective in reducing axonal damage in a model of lipopolysaccharide-neuroinflammation using organotypic cerebellar cultures. Altogether, these results point to a role of IL1B and the NLRP3 inflammasome as prognostic biomarker and potential therapeutic target, respectively, in patients with primary progressive multiple sclerosis.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Adulto , Animais , Biomarcadores/análise , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico
12.
Glia ; 68(2): 407-421, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596526

RESUMO

Microglial NLRP3 inflammasome activation is emerging as a key contributor to neuroinflammation during neurodegeneration. Pathogenic protein aggregates such as ß-amyloid and α-synuclein trigger microglial NLRP3 activation, leading to caspase-1 activation and IL-1ß secretion. Both caspase-1 and IL-1ß contribute to disease progression in the mouse SOD1G93A model of amyotrophic lateral sclerosis (ALS), suggesting a role for microglial NLRP3. Prior studies, however, suggested SOD1G93A mice microglia do not express NLRP3, and SOD1G93A protein generated IL-1ß in microglia independent to NLRP3. Here, we demonstrate using Nlrp3-GFP gene knock-in mice that microglia express NLRP3 in SOD1G93A mice. We show that both aggregated and soluble SOD1G93A activates inflammasome in primary mouse microglia leading caspase-1 and IL-1ß cleavage, ASC speck formation, and the secretion of IL-1ß in a dose- and time-dependent manner. Importantly, SOD1G93A was unable to induce IL-1ß secretion from microglia deficient for Nlrp3, or pretreated with the specific NLRP3 inhibitor MCC950, confirming NLRP3 as the key inflammasome complex mediating SOD1-induced microglial IL-1ß secretion. Microglial NLRP3 upregulation was also observed in the TDP-43Q331K ALS mouse model, and TDP-43 wild-type and mutant proteins could also activate microglial inflammasomes in a NLRP3-dependent manner. Mechanistically, we identified the generation of reactive oxygen species and ATP as key events required for SOD1G93A -mediated NLRP3 activation. Taken together, our data demonstrate that ALS microglia express NLRP3, and that pathological ALS proteins activate the microglial NLRP3 inflammasome. NLRP3 inhibition may therefore be a potential therapeutic approach to arrest microglial neuroinflammation and ALS disease progression.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos Transgênicos , Superóxido Dismutase-1/genética
13.
Bioorg Med Chem Lett ; 30(12): 127186, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32312583

RESUMO

The diaryl sulfonylurea MCC950/CRID3 is a potent NLRP3 inhibitor (IC50 = 8 nM) and, in animal models, MCC950 protects against numerous NLRP3-related neurodegenerative disorders. To evaluate the brain uptake and investigate target engagement of MCC950, we synthesised [11C-urea]MCC950 via carrier added [11C]CO2 fixation chemistry (activity yield = 237 MBq; radiochemical purity >99%; molar activity = 7 GBq/µmol; radiochemical yield (decay-corrected from [11C]CO2) = 1.1%; synthesis time from end-of-bombardment = 31 min; radiochemically stable for >1 h). Despite preclinical efficacy in neurodegeneration studies, preclinical positron emission tomography (PET) imaging studies in mouse, rat and rhesus monkey revealed poor brain uptake of low molar activity [11C]MCC950 and rapid washout. In silico prediction tools suggest efflux transporter liabilities for MCC950 at microdoses, and this information should be taken into account when developing next generation NLRP3 inhibitors and/or PET radiotracers.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonas/farmacologia , Animais , Radioisótopos de Carbono , Relação Dose-Resposta a Droga , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Indenos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonamidas , Sulfonas/síntese química , Sulfonas/química
14.
Immunol Cell Biol ; 97(1): 17-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052286

RESUMO

Inflammasomes are protein complexes activated by infection and cellular stress that promote caspase-1 activation and subsequent inflammatory cytokine processing and cell death. It has been anticipated that inflammasome activity contributes to autoimmunity. However, we previously showed that macrophages from autoimmune New Zealand Black (NZB) mice lack NLRP3 inflammasome function, and their absent in melanoma 2 (AIM2) inflammasome responses are compromised by high expression of the AIM2 antagonist protein p202. Here we found that the point mutation leading to lack of NLRP3 expression occurred early in the NZB strain establishment, as it is shared with the related obese strain New Zealand Obese, but not with the unrelated New Zealand White (NZW) strain. The first cross progeny of NZB and NZW mice develop more severe lupus nephritis than the NZB strain. We have compared AIM2 and NLRP3 inflammasome function in macrophages from NZB, NZW, and NZB/W F1 mice. The NZW parental strain showed strong inflammasome function, whereas the NZB/W F1 have haploinsufficient expression of NLRP3 and show reduced NLRP3 and AIM2 inflammasome responses, particularly at low stimulus strength. It remains to be established whether the low inflammasome function could contribute to loss of tolerance and the onset of autoimmunity in NZB and NZB/W F1. However, with amplifying inflammatory stimuli through the course of disease, the NLRP3 response in the NZB/W F1 may be sufficient to contribute to kidney damage at later stages of disease.


Assuntos
Autoimunidade , Proteínas de Ligação a DNA/deficiência , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Animais , Autoimunidade/genética , Proteínas de Ligação a DNA/imunologia , Feminino , Inflamassomos/genética , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NZB , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Mutação Puntual
15.
Mycopathologia ; 184(2): 273-281, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707338

RESUMO

The fertilizing properties of bird manure, or guano, have played an important role in plant cultivation for thousands of years. Research into its chemical composition by Unger in 1846 identified a novel compound, now known as guanine, a purine base that is essential for DNA and RNA biosynthesis and cell signalling. Nitrogen-rich guano can also harbour human pathogens, one significant example being the fungal pathogen Cryptococcus neoformans. Historically associated with pigeon droppings, C. neoformans is able to infect immunocompromised individuals with the aid of a number of adaptive virulence traits. To gain insight into this niche, a quantitative analysis of pigeon guano was performed by LC/MS to determine the concentrations of purines present. Guanine was found in abundance, in particular, in aged guano samples that contained 156-296 µg/g [w/w] compared to 75 µg/g in fresh guano. Adenine concentrations were more consistent between fresh and aged samples, 13 µg/g compared to 10-15 µg/g, respectively. C. neoformans strains that lack key enzymes of the de novo purine synthesis pathway and are guanine or adenine auxotrophs displayed differences in their ability to exploit this substrate: growth of a guanine auxotrophic mutant (gua1Δ) was partially restored on 30% pigeon guano media, but an adenine auxotrophic mutant (ade13Δ) was unable to grow. We conclude that while purine salvage is likely a useful resource-saving mechanism, alone it is not sufficient to fully provide the purines required by wild-type C. neoformans growing in its guano niche.


Assuntos
Columbidae , Cryptococcus neoformans/crescimento & desenvolvimento , Fezes/química , Purinas/análise , Animais , Cromatografia Líquida , Cryptococcus neoformans/metabolismo , Espectrometria de Massas , Viabilidade Microbiana , Purinas/metabolismo
16.
J Biol Chem ; 292(28): 11829-11839, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28559277

RESUMO

There is significant clinical need for new antifungal agents to manage infections with pathogenic species such as Cryptococcus neoformans Because the purine biosynthesis pathway is essential for many metabolic processes, such as synthesis of DNA and RNA and energy generation, it may represent a potential target for developing new antifungals. Within this pathway, the bifunctional enzyme adenylosuccinate (ADS) lyase plays a role in the formation of the key intermediates inosine monophosphate and AMP involved in the synthesis of ATP and GTP, prompting us to investigate ADS lyase in C. neoformans. Here, we report that ADE13 encodes ADS lyase in C. neoformans. We found that an ade13Δ mutant is an adenine auxotroph and is unable to successfully cause infections in a murine model of virulence. Plate assays revealed that production of a number of virulence factors essential for dissemination and survival of C. neoformans in a host environment was compromised even with the addition of exogenous adenine. Purified recombinant C. neoformans ADS lyase shows catalytic activity similar to its human counterpart, and its crystal structure, the first fungal ADS lyase structure determined, shows a high degree of structural similarity to that of human ADS lyase. Two potentially important amino acid differences are identified in the C. neoformans crystal structure, in particular a threonine residue that may serve as an additional point of binding for a fungal enzyme-specific inhibitor. Besides serving as an antimicrobial target, C. neoformans ADS lyase inhibitors may also serve as potential therapeutics for metabolic disease; rather than disrupt ADS lyase, compounds that improve the stability the enzyme may be used to treat ADS lyase deficiency disease.


Assuntos
Adenilossuccinato Liase/antagonistas & inibidores , Antifúngicos/farmacologia , Cryptococcus neoformans/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Modelos Moleculares , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/uso terapêutico , Sítios de Ligação , Criptococose/tratamento farmacológico , Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Feminino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Camundongos Endogâmicos BALB C , Conformação Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Análise de Sobrevida , Virulência/efeitos dos fármacos
17.
J Biol Chem ; 292(7): 3049-3059, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28062578

RESUMO

Over the last four decades the HIV pandemic and advances in medical treatments that also cause immunosuppression have produced an ever-growing cohort of individuals susceptible to opportunistic pathogens. Of these, AIDS patients are particularly vulnerable to infection by the encapsulated yeast Cryptococcus neoformans Most commonly found in the environment in purine-rich bird guano, C. neoformans experiences a drastic change in nutrient availability during host infection, ultimately disseminating to colonize the purine-poor central nervous system. Investigating the consequences of this challenge, we have characterized C. neoformans GMP synthase, the second enzyme in the guanylate branch of de novo purine biosynthesis. We show that in the absence of GMP synthase, C. neoformans becomes a guanine auxotroph, the production of key virulence factors is compromised, and the ability to infect nematodes and mice is abolished. Activity assays performed using recombinant protein unveiled differences in substrate binding between the C. neoformans and human enzymes, with structural insights into these kinetic differences acquired via homology modeling. Collectively, these data highlight the potential of GMP synthase to be exploited in the development of new therapeutic agents for the treatment of disseminated, life-threatening fungal infections.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Fatores de Virulência/metabolismo , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Carbono-Nitrogênio Ligases/genética , Criptococose/enzimologia , Cryptococcus neoformans/genética , Inibidores Enzimáticos/farmacologia , Genes Fúngicos
18.
J Biol Chem ; 292(3): 826-836, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27913620

RESUMO

The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1ß maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Orthomyxoviridae/imunologia , Peptídeos/imunologia , Proteínas Virais/imunologia , Animais , Linhagem Celular Transformada , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Sulfonamidas , Sulfonas/farmacologia
19.
Clin Immunol ; 191: 100-109, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29183866

RESUMO

The proinflammatory protease caspase-1 plays pivotal roles in central pathways of innate immunity, thereby contributing to pathogen clearance. Beside its physiological role, dysregulated activity of caspase-1 is known to contribute to an increasing number of diseases. In this study, we optimized and validated a low-volume human whole blood assay facilitating the measurement of caspase-1 activation and inflammasome-related gene expression upon stimulation of the NLRP3, NLRC4 or AIM2 inflammasome. Using the NLRP3 inflammasome specific inhibitor MCC950, we were able to measure the activity of canonical or alternative NLRP3 pathways, AIM2 and NLRC4 inflammasomes in whole blood. Based on our data we assume a superposition of NLRP3 and NLRC4 inflammasome activities in human whole blood following stimulation with S. typhimurium. The optimized whole blood assay may be suitable for diagnostic and research purposes for pediatric patients who can only donate small amounts of blood.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/sangue , Proteínas de Ligação ao Cálcio/sangue , Proteínas de Ligação a DNA/sangue , Inflamassomos/sangue , Proteína 3 que Contém Domínio de Pirina da Família NLR/sangue , Coleta de Amostras Sanguíneas , Caspase 1/fisiologia , Humanos , Interleucina-1beta/fisiologia , Salmonella typhimurium
20.
Artigo em Inglês | MEDLINE | ID: mdl-29158283

RESUMO

Resistance to antimicrobials is a growing problem in both developed and developing countries. In nations where AIDS is most prevalent, the human fungal pathogen Cryptococcus neoformans is a significant contributor to mortality, and its growing resistance to current antifungals is an ever-expanding threat. We investigated octapeptin C4, from the cationic cyclic lipopeptide class of antimicrobials, as a potential new antifungal. Octapeptin C4 was a potent, selective inhibitor of this fungal pathogen with an MIC of 1.56 µg/ml. Further testing of octapeptin C4 against 40 clinical isolates of C. neoformans var. grubii or neoformans showed an MIC of 1.56 to 3.13 µg/ml, while 20 clinical isolates of C. neoformans var. gattii had an MIC of 0.78 to 12.5 µg/ml. In each case, the MIC values for octapeptin C4 were equivalent to, or better than, current antifungal drugs fluconazole and amphotericin B. The negatively charged polysaccharide capsule of C. neoformans influences the pathogen's sensitivity to octapeptin C4, whereas the degree of melanization had little effect. Testing synthetic octapeptin C4 derivatives provided insight into the structure activity relationships, revealing that the lipophilic amino acid moieties are more important to the activity than the cationic diaminobutyric acid groups. Octapeptins have promising potential for development as anticryptococcal therapeutic agents.


Assuntos
Antifúngicos/farmacologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Anfotericina B/farmacologia , Antifúngicos/síntese química , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida glabrata/efeitos dos fármacos , Candida glabrata/crescimento & desenvolvimento , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/crescimento & desenvolvimento , Cryptococcus gattii/crescimento & desenvolvimento , Cryptococcus neoformans/crescimento & desenvolvimento , Fluconazol/farmacologia , Humanos , Lipopeptídeos/síntese química , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA