Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 80(6): 941-956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38365182

RESUMO

BACKGROUND & AIMS: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS: Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION: HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.


Assuntos
Matriz Extracelular , Células Estreladas do Fígado , Lipase , Cirrose Hepática , Proteínas de Membrana , Fator de Crescimento Transformador beta1 , Humanos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Lipase/genética , Lipase/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Células Cultivadas , Fígado/patologia , Fígado/metabolismo , Transdução de Sinais/genética , Obesidade/genética , Obesidade/metabolismo , Masculino , Aciltransferases , Fosfolipases A2 Independentes de Cálcio
2.
Liver Transpl ; 29(11): 1226-1233, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728488

RESUMO

An ischemia-reperfusion injury (IRI) results from a prolonged ischemic insult followed by the restoration of blood perfusion, being a common cause of morbidity and mortality, especially in liver transplantation. At the maximum of the potential damage, IRI is characterized by 2 main phases. The first is the ischemic phase, where the hypoxia and vascular stasis induces cell damage and the accumulation of damage-associated molecular patterns and cytokines. The second is the reperfusion phase, where the local sterile inflammatory response driven by innate immunity leads to a massive cell death and impaired liver functionality. The ischemic time becomes crucial in patients with underlying pathophysiological conditions. It is possible to compare this process to a shooting gun, where the loading trigger is the ischemia period and the firing shot is the reperfusion phase. In this optic, this article aims at reviewing the main ischemic events following the phases of the surgical timeline, considering the consequent reperfusion damage.


Assuntos
Hepatopatias , Transplante de Fígado , Traumatismo por Reperfusão , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Hepatopatias/metabolismo , Imunidade Inata
3.
Hepatology ; 73(6): 2527-2545, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33576020

RESUMO

BACKGROUND AND AIMS: Antifibrotic therapy remains an unmet medical need in human chronic liver disease. We report the antifibrotic properties of cytoglobin (CYGB), a respiratory protein expressed in hepatic stellate cells (HSCs), the main cell type involved in liver fibrosis. APPROACH AND RESULTS: Cygb-deficient mice that had bile duct ligation-induced liver cholestasis or choline-deficient amino acid-defined diet-induced steatohepatitis significantly exacerbated liver damage, fibrosis, and reactive oxygen species (ROS) formation. All of these manifestations were attenuated in Cygb-overexpressing mice. We produced hexa histidine-tagged recombinant human CYGB (His-CYGB), traced its biodistribution, and assessed its function in HSCs or in mice with advanced liver cirrhosis using thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). In cultured HSCs, extracellular His-CYGB was endocytosed and accumulated in endosomes through a clathrin-mediated pathway. His-CYGB significantly impeded ROS formation spontaneously or in the presence of ROS inducers in HSCs, thus leading to the attenuation of collagen type 1 alpha 1 production and α-smooth muscle actin expression. Replacement the iron center of the heme group with cobalt nullified the effect of His-CYGB. In addition, His-CYGB induced interferon-ß secretion by HSCs that partly contributed to its antifibrotic function. Momelotinib incompletely reversed the effect of His-CYGB. Intravenously injected His-CYGB markedly suppressed liver inflammation, fibrosis, and oxidative cell damage in mice administered TAA or DDC mice without adverse effects. RNA-sequencing analysis revealed the down-regulation of inflammation- and fibrosis-related genes and the up-regulation of antioxidant genes in both cell culture and liver tissues. The injected His-CYGB predominantly localized to HSCs but not to macrophages, suggesting specific targeting effects. His-CYGB exhibited no toxicity in chimeric mice with humanized livers. CONCLUSIONS: His-CYGB could have antifibrotic clinical applications for human chronic liver diseases.


Assuntos
Citoglobina/metabolismo , Fígado Gorduroso , Células Estreladas do Fígado , Cirrose Hepática , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Colestase/tratamento farmacológico , Colestase/metabolismo , Descoberta de Drogas , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Camundongos , Camundongos Knockout , Substâncias Protetoras/farmacologia , Proteínas Recombinantes/farmacologia , Resultado do Tratamento
4.
Curr Oncol Rep ; 24(10): 1281-1286, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35554845

RESUMO

PURPOSE OF REVIEW: Mesenteric desmoplasia in small intestinal neuroendocrine neoplasms (SINENs) is associated with increased morbidity and mortality. In this paper, we discuss the development of desmoplasia in SINENs. RECENT FINDINGS: The fibrotic reactions associated with these tumours could be limited to the loco-regional environment of the tumour and/or at distant sites. Mesenteric fibrotic mass forms around a local lymph node. Formation of desmoplasia is mediated by interactions between the neoplastic cells and its microenvironment via number of profibrotic mediators and signalling pathways. Profibrotic molecules that are mainly involved in the desmoplastic reaction include serotonin, TGFß (transforming growth factor ß) and CTGF (connective tissue growth factor), although there is some evidence to suggest that there are a number of other molecules involved in this process. Desmoplasia is a result of autocrine and paracrine effects of multiple molecules and signalling pathways. However, more research is needed to understand these mechanisms and to develop targeted therapy to minimise desmoplasia.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Fibrose , Humanos , Neoplasias Intestinais/patologia , Tumores Neuroendócrinos/patologia , Transdução de Sinais , Microambiente Tumoral
5.
Gut ; 70(2): 388-400, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32327527

RESUMO

OBJECTIVE: Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. DESIGN: G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-ß1 (TGFß1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. RESULTS: G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGFß1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGFß1 fibrogenic responses in hHSC. TGFß1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. CONCLUSIONS: Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Células Estreladas do Fígado/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Cirrose Hepática/etiologia , Animais , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferase 1/genética , Epigênese Genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Fator de Crescimento Transformador beta1/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G543-G556, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406006

RESUMO

Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Aminoimidazol Carboxamida/análogos & derivados , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Comunicação Parácrina , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Meios de Cultivo Condicionados , Bases de Dados Genéticas , Ativação Enzimática , Células Hep G2 , Células Estreladas do Fígado/enzimologia , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Fosforilação , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , beta Catenina/genética
7.
Hepatology ; 71(3): 874-892, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31378982

RESUMO

BACKGROUND AND AIMS: In nonalcoholic fatty liver disease (NAFLD), fibrosis is the most important factor contributing to NAFLD-associated morbidity and mortality. Prevention of progression and reduction in fibrosis are the main aims of treatment. Even in early stages of NAFLD, hepatic and systemic hyperammonemia is evident. This is due to reduced urea synthesis; and as ammonia is known to activate hepatic stellate cells, we hypothesized that ammonia may be involved in the progression of fibrosis in NAFLD. APPROACH AND RESULTS: In a high-fat, high-cholesterol diet-induced rodent model of NAFLD, we observed a progressive stepwise reduction in the expression and activity of urea cycle enzymes resulting in hyperammonemia, evidence of hepatic stellate cell activation, and progressive fibrosis. In primary, cultured hepatocytes and precision-cut liver slices we demonstrated increased gene expression of profibrogenic markers after lipid and/or ammonia exposure. Lowering of ammonia with the ammonia scavenger ornithine phenylacetate prevented hepatocyte cell death and significantly reduced the development of fibrosis both in vitro in the liver slices and in vivo in a rodent model. The prevention of fibrosis in the rodent model was associated with restoration of urea cycle enzyme activity and function, reduced hepatic ammonia, and markers of inflammation. CONCLUSIONS: The results of this study suggest that hepatic steatosis results in hyperammonemia, which is associated with progression of hepatic fibrosis. Reduction of ammonia levels prevented progression of fibrosis, providing a potential treatment for NAFLD.


Assuntos
Amônia/metabolismo , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Sprague-Dawley , Distúrbios Congênitos do Ciclo da Ureia/etiologia
8.
J Hepatol ; 73(4): 882-895, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32330605

RESUMO

BACKGROUND & AIMS: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. The molecular role of CYGB in human hepatic stellate cell (HSC) activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which the TGF-ß1/SMAD2 pathway regulates the human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS: Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analyses were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. RESULTS: In culture, TGF-ß1-pretreated human HSCs exhibited lower CYGB levels - together with increased NADPH oxidase 4 (NOX4) expression - and were primed for H2O2-triggered •OH production and 8-OHdG generation; overexpression of human CYGB in human HSCs reversed these effects. Electron spin resonance demonstrated the direct •OH scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2-+13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-ß1/SMAD3 mediated αSMA and collagen expression. Consistent with observations in cultured human HSCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA+pSMAD2+- and αSMA+NOX4+-positive hepatic stellate cells from patients with NASH and advanced fibrosis. CONCLUSIONS: Downregulation of CYGB by the TGF-ß1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from patients with NASH. LAY SUMMARY: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species and protects cells from oxidative DNA damage. Herein, we show that the cytokine TGF-ß1 downregulates human CYGB expression. This leads to oxidative DNA damage in activated hepatic stellate cells. Our findings provide new insights into the relationship between CYGB expression and the pathophysiology of fibrosis in patients with non-alcoholic steatohepatitis.


Assuntos
Citoglobina/genética , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , NADPH Oxidase 4/genética , Hepatopatia Gordurosa não Alcoólica/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/metabolismo , Biópsia , Células Cultivadas , Citoglobina/biossíntese , Regulação para Baixo , Feminino , Células Estreladas do Fígado/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 4/biossíntese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/genética , Proteína Smad3/biossíntese
9.
Hepatology ; 69(2): 587-603, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30014490

RESUMO

Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinoma Hepatocelular/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Cães , Células Hep G2 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Hepáticas Experimentais/enzimologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Nus , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Hepatology ; 68(1): 172-186, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29328499

RESUMO

Autoimmune liver diseases (AILDs) are chronic liver pathologies characterized by fibrosis and cirrhosis due to immune-mediated liver damage. In this study, we addressed the question whether mucosal-associated invariant T (MAIT) cells, innate-like T cells, are functionally altered in patients with AILD and whether MAIT cells can promote liver fibrosis through activation of hepatic stellate cells (HSCs). We analyzed the phenotype and function of MAIT cells from AILD patients and healthy controls by multicolor flow cytometry and investigated the interaction between human MAIT cells and primary human hepatic stellate cells (hHSCs). We show that MAIT cells are significantly decreased in peripheral blood and liver tissue of patients with AILD. Notably, MAIT cell frequency tended to decrease with increasing fibrosis stage. MAIT cells from AILD patients showed signs of exhaustion, such as impaired interferon-γ (IFN-γ) production and high ex vivo expression of the activation and exhaustion markers CD38, HLA-DR, and CTLA-4. Mechanistically, this exhausted state could be induced by repetitive stimulation of MAIT cells with the cytokines interleukin (IL)-12 and IL-18, leading to decreased IFN-γ and increased exhaustion marker expression. Of note, repetitive stimulation with IL-12 further resulted in expression of the profibrogenic cytokine IL-17A by otherwise exhausted MAIT cells. Accordingly, MAIT cells from both healthy controls and AILD patients were able to induce an activated, proinflammatory and profibrogenic phenotype in hHSCs in vitro that was partly mediated by IL-17. CONCLUSION: Our data provide evidence that MAIT cells in AILD patients have evolved towards an exhausted, profibrogenic phenotype and can contribute to the development of HSC-mediated liver fibrosis. These findings reveal a cellular and molecular pathway for fibrosis development in AILD that could be exploited for antifibrotic therapy. (Hepatology 2018;68:172-186).


Assuntos
Doenças Autoimunes/imunologia , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/imunologia , Células T Invariantes Associadas à Mucosa/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Morte Celular , Feminino , Humanos , Interleucinas/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
11.
Hepatology ; 68(3): 1140-1153, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663481

RESUMO

Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSCs), which is associated with higher intracellular pH (pHi). The vacuolar H+ adenosine-triphosphatase (v-ATPase) multisubunit complex is a key regulator of pHi homeostasis. The present work investigated the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific adenosine monophosphate-activated protein kinase (AMPK) subunits. We demonstrate that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSCs compared to nonactivated hHSCs. Specific inhibition of v-ATPase with bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with diflunisal, A769662, and ZLN024 reduced the expression of v-ATPase subunits and profibrogenic markers. v-ATPase expression was differently regulated by the AMPK α1 subunit (AMPKα1) and AMPKα2, as demonstrated in mouse embryo fibroblasts specifically deficient for AMPK α subunits. In addition, activation of v-ATPase in hHSCs was shown to be AMPKα1-dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSCs prevented v-ATPase down-regulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from bile duct-ligated mice and in human cirrhotic livers. CONCLUSION: The down-regulation of v-ATPase might represent a promising target for the development of antifibrotic strategies. (Hepatology 2018).


Assuntos
Células Estreladas do Fígado/enzimologia , Cirrose Hepática/etiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos BALB C
12.
FASEB J ; 32(2): 1099-1107, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29070586

RESUMO

Focal adhesion kinase (FAK) is a key molecule in focal adhesions and regulates fundamental processes in cells such as growth, survival, and migration. FAK is one of the first molecules recruited to focal adhesions in response to external mechanical stimuli and therefore is a pivotal mediator of cell mechanosignaling, and relays these stimuli to other mechanotransducers within the cytoplasm. Yes-associated protein (YAP) has been identified recently as one of these core mechanotransducers. YAP translocates to the nucleus following changes in cell mechanics to promote the expression of genes implicated in motility, apoptosis, proliferation, and organ growth. Here, we show that FAK controls the nuclear translocation and activation of YAP in response to mechanical activation and submit that the YAP-dependent process of durotaxis requires a cell with an asymmetric distribution of active and inactive FAK molecules.-Lachowski, D., Cortes, E., Robinson, B., Rice, A., Rombouts, K., Del Río Hernández, A. E. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proliferação de Células , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Mecanotransdução Celular , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Células Cultivadas , Quinase 1 de Adesão Focal/genética , Adesões Focais/genética , Humanos , Fosfoproteínas/genética , Fatores de Transcrição , Proteínas de Sinalização YAP
13.
Gut ; 67(2): 348-361, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28360097

RESUMO

OBJECTIVE: Chromosomal instability (CIN) is the most common form of genomic instability, which promotes hepatocellular carcinoma (HCC) progression by enhancing tumour heterogeneity, drug resistance and immunity escape. CIN per se is an important factor of DNA damage, sustaining structural chromosome abnormalities but the underlying mechanisms are unknown. DESIGN: DNA damage response protein checkpoint kinase 2 (Chk2) expression was evaluated in an animal model of diethylnitrosamine-induced HCC characterised by DNA damage and elevated mitotic errors. Chk2 was also determined in two discrete cohorts of human HCC specimens. To assess the functional role of Chk2, gain on and loss-of-function, mutagenesis, karyotyping and immunofluorescence/live imaging were performed by using HCT116, Huh7 and human hepatocytes immortalised with hTERT gene (HuS). RESULTS: We demonstrate that mitotic errors during HCC tumorigenesis cause lagging chromosomes/DNA damage and activation of Chk2. Overexpression/phosphorylation and mislocalisation within the mitotic spindle of Chk2 contributes to induce lagging chromosomes. Lagging chromosomes and mitotic activity are reversed by knockdown of Chk2. Furthermore, upregulated Chk2 maintains mitotic activity interacting with Aurora B kinase for chromosome condensation and cytokinesis. The forkhead-associated domain of Chk2 is required for Chk2 mislocalisation to mitotic structures. In addition, retinoblastoma protein phosphorylation contributes to defective mitoses. A cohort and independent validation cohort show a strong cytoplasm to nuclear Chk2 translocation in a subset of patients with HCC. CONCLUSIONS: The study reveals a new mechanistic insight in the coinvolvement of Chk2 in HCC progression. These findings propose Chk2 as a putative biomarker to detect CIN in HCC providing a valuable support for clinical/therapeutical management of patients.


Assuntos
Carcinoma Hepatocelular/genética , Quinase do Ponto de Checagem 2/genética , Instabilidade Cromossômica/genética , DNA de Neoplasias/genética , Neoplasias Hepáticas/genética , Animais , Aurora Quinase B/metabolismo , Transporte Biológico , Carcinógenos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Citoplasma/metabolismo , Dano ao DNA/genética , DNA de Neoplasias/metabolismo , Bases de Dados Genéticas , Dietilnitrosamina , Feminino , Técnicas de Silenciamento de Genes , Células HCT116 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Mitose/genética , Fosforilação , Ratos Wistar , Proteína do Retinoblastoma/metabolismo , Fuso Acromático/genética , Regulação para Cima
14.
Gut ; 67(8): 1517-1524, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28779025

RESUMO

OBJECTIVE: Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. DESIGN: We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. RESULTS: We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10-9). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. CONCLUSION: We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene.


Assuntos
Colangite Esclerosante/genética , Colangite Esclerosante/patologia , Polimorfismo de Nucleotídeo Único/genética , Trombospondinas/genética , Adulto , Colangite Esclerosante/mortalidade , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais
15.
J Biol Chem ; 292(46): 18961-18972, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28916723

RESUMO

Cytoglobin (CYGB) belongs to the mammalian globin family and is exclusively expressed in hepatic stellate cells (HSCs) in the liver. In addition to its gas-binding ability, CYGB is relevant to hepatic inflammation, fibrosis, and cancer because of its anti-oxidative properties; however, the regulation of CYGB gene expression remains unknown. Here, we sought to identify factors that induce CYGB expression in HSCs and to clarify the molecular mechanism involved. We used the human HSC cell line HHSteC and primary human HSCs isolated from intact human liver tissues. In HHSteC cells, treatment with a culture supplement solution that included fibroblast growth factor 2 (FGF2) increased CYGB expression with concomitant and time-dependent α-smooth muscle actin (αSMA) down-regulation. We found that FGF2 is a key factor in inducing the alteration in both CYGB and αSMA expression in HHSteCs and primary HSCs and that FGF2 triggered the rapid phosphorylation of both c-Jun N-terminal kinase (JNK) and c-JUN. Both the JNK inhibitor PS600125 and transfection of c-JUN-targeting siRNA abrogated FGF2-mediated CYGB induction, and conversely, c-JUN overexpression induced CYGB and reduced αSMA expression. Chromatin immunoprecipitation analyses revealed that upon FGF2 stimulation, phospho-c-JUN bound to its consensus motif (5'-TGA(C/G)TCA), located -218 to -222 bases from the transcription initiation site in the CYGB promoter. Of note, in bile duct-ligated mice, FGF2 administration ameliorated liver fibrosis and significantly reduced HSC activation. In conclusion, FGF2 triggers CYGB gene expression and deactivation of myofibroblastic human HSCs, indicating that FGF2 has therapeutic potential for managing liver fibrosis.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Globinas/genética , Células Estreladas do Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Ativação Transcricional , Linhagem Celular , Citoglobina , Globinas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Regiões Promotoras Genéticas
16.
J Hepatol ; 69(4): 905-915, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29981428

RESUMO

BACKGROUND & AIMS: In non-alcoholic steatohepatitis (NASH), the function of urea cycle enzymes (UCEs) may be affected, resulting in hyperammonemia and the risk of disease progression. We aimed to determine whether the expression and function of UCEs are altered in an animal model of NASH and in patients with non-alcoholic fatty liver disease (NAFLD), and whether this process is reversible. METHODS: Rats were first fed a high-fat, high-cholesterol diet for 10 months to induce NASH, before being switched onto a normal chow diet to recover. In humans, we obtained liver biopsies from 20 patients with steatosis and 15 with NASH. Primary rat hepatocytes were isolated and cultured with free fatty acids. We measured the gene and protein expression of ornithine transcarbamylase (OTC) and carbamoylphosphate synthetase (CPS1), as well as OTC activity, and ammonia concentrations. Moreover, we assessed the promoter methylation status of OTC and CPS1 in rats, humans and steatotic hepatocytes. RESULTS: In NASH animals, gene and protein expression of OTC and CPS1, and the activity of OTC, were reversibly reduced. Hypermethylation of Otc promoter genes was also observed. Additionally, in patients with NAFLD, OTC enzyme concentration and activity were reduced and ammonia concentrations were increased, which was further exacerbated in those with NASH. Furthermore, OTC and CPS1 promoter regions were hypermethylated. In primary hepatocytes, induction of steatosis was associated with Otc promoter hypermethylation, a reduction in the gene expression of Otc and Cps1, and an increase in ammonia concentration in the supernatant. CONCLUSION: NASH is associated with a reduction in the gene and protein expression, and activity, of UCEs. This results in hyperammonemia, possibly through hypermethylation of UCE genes and impairment of urea synthesis. Our investigations are the first to describe a link between NASH, the function of UCEs, and hyperammonemia, providing a novel therapeutic target. LAY SUMMARY: In patients with fatty liver disease, the enzymes that convert nitrogen waste into urea may be affected, leading to the accumulation of ammonia, which is toxic. This accumulation of ammonia can lead to scar tissue development, increasing the risk of disease progression. In this study, we show that fat accumulation in the liver produces a reversible reduction in the function of the enzymes that are involved in detoxification of ammonia. These data provide potential new targets for the treatment of fatty liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Ureia/metabolismo , Adulto , Idoso , Amônia/metabolismo , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Células Cultivadas , Metilação de DNA , Feminino , Glutamato-Amônia Ligase/análise , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Ornitina Carbamoiltransferase/genética , Regiões Promotoras Genéticas , Ratos , Ratos Wistar
17.
Cancer ; 123(24): 4770-4790, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29112233

RESUMO

Neuroendocrine tumors are a heterogeneous group of slow-growing neoplasms arising mainly from the enterochromaffin cells of the digestive and respiratory tract. Although they are relatively rare, their incidence is rising. It has long been observed that they often are associated with the development of fibrosis, both local and distant. Fibrotic complications, such as carcinoid heart disease and mesenteric desmoplasia, may lead to considerable morbidity or even affect prognosis. The elucidation of the pathophysiology of fibrosis would be of critical importance for the development of targeted therapeutic strategies. In this article, the authors review the available evidence regarding the biological basis of fibrosis in neuroendocrine tumors. They explore the role of the tumor microenvironment and the interplay between tumor cells and fibroblasts as a key factor in fibrogenesis and tumor development/progression. They also review the role of serotonin, growth factors, and other peptides in the development of carcinoid-related fibrotic reactions. Cancer 2017;123:4770-90. © 2017 American Cancer Society.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/patologia , Fibrose/patologia , Tumores Neuroendócrinos/patologia , Animais , Biópsia por Agulha , Progressão da Doença , Feminino , Fibrose/complicações , Fibrose/fisiopatologia , Humanos , Imuno-Histoquímica , Masculino , Tumores Neuroendócrinos/complicações , Tumores Neuroendócrinos/fisiopatologia , Prognóstico , Doenças Raras , Fatores de Risco
18.
J Hepatol ; 64(4): 823-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26654994

RESUMO

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. METHODS: Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 µM, 100 µM, 300 µM) over 24-72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. RESULTS: Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rß. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 µmol/L±43.65 vs. BDL+OP 149.27 µmol/L±51.1, p<0.05) and portal pressure (BDL 14±0.6 vs. BDL+OP 11±0.3 mmHg, p<0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. CONCLUSIONS: The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension.


Assuntos
Amônia/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Hipertensão Portal/tratamento farmacológico , Amônia/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Retículo Endoplasmático/patologia , Células Estreladas do Fígado/patologia , Humanos , Masculino , Ornitina/análogos & derivados , Ornitina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
19.
Liver Int ; 34(6): 834-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24397349

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer death. Recent epidemiological data indicate that the mortality rate of HCC will double over the next decades in the USA and Europe. Liver cancer progresses in a large percentage of cases during the clinical course of chronic fibro-inflammatory liver diseases leading to cirrhosis. Therefore, HCC development is regarded as the result of different environmental risk factors each involving different genetic, epigenetic- and chromosomal alterations and gene mutations. During tumour progression, the malignant hepatocytes and the activated hepatic stellate cells are accompanied by cancer-associated fibroblasts, myofibroblasts and immune cells generally called tumour stromal cells. This new and dynamic milieu further enhances the responsiveness of tumour cells towards soluble mediators secreted by tumour stromal cells, thus directly affecting the malignant hepatocytes. This results in altered molecular pathways with cell proliferation as the most important mechanism of liver cancer progression. Given this contextual complexity, it is of utmost importance to characterize the molecular pathogenesis of HCC, and to identify the dominant pathways/drivers and aberrant signalling pathways. This will allow an effective therapy for HCC that should combine strategies affecting both cancer and the tumour stromal cells. This review provides an overview of the recent challenges and issues regarding hepatic stellate cells, extracellular matrix dynamics, liver fibrosis/cirrhosis and therapy, tumour microenvironment and HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Matriz Extracelular/metabolismo , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Comunicação Celular , Matriz Extracelular/patologia , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/epidemiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Prognóstico , Fatores de Risco , Transdução de Sinais , Microambiente Tumoral
20.
AIDS ; 37(3): 401-411, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384811

RESUMO

OBJECTIVE: Liver disease is accelerated in people with HIV (PWH) with hepatitis B virus (HBV) coinfection. We hypothesized that liver fibrosis in HIV-HBV is triggered by increased hepatocyte apoptosis, microbial translocation and/or HIV/HBV viral products. DESIGN: Sera from PWH with HBV coinfection versus from those with HBV only or putative mediators were used to examine the pathogenesis of liver disease in HIV-HBV. METHODS: We applied sera from PWH and HBV coinfection versus HBV alone, or putative mediators (including HMGB1), to primary human hepatic stellate cells (hHSC) and examined pro-fibrogenic changes at the single cell level using flow cytometry. High mobility group box 1 (HMGB1) levels in the applied sera were assessed according to donor fibrosis stage. RESULTS: Quantitative flow cytometric assessment of pro-fibrogenic and inflammatory changes at the single cell level revealed an enhanced capacity for sera from PWH with HBV coinfection to activate hHSC. This effect was recapitulated by lipopolysaccharide, HIV-gp120, hepatocyte conditioned-media and the alarmin HMGB1. Induction of hepatocyte cell death increased their pro-fibrogenic potential, an effect blocked by HMGB1 antagonist glycyrrhizic acid. Consistent with a role for this alarmin, HMGB1 levels were elevated in sera from PWH and hepatitis B coinfection compared to HBV alone and higher in those with HIV-HBV with liver fibrosis compared to those without. CONCLUSIONS: Sera from PWH and HBV coinfection have an enhanced capacity to activate primary hHSC. We identified an increase in circulating HMGB1 which, in addition to HIV-gp120 and translocated microbial products, drove pro-fibrogenic changes in hHSC, as mechanisms contributing to accelerated liver disease in HIV-HBV.


Assuntos
Coinfecção , Infecções por HIV , Proteína HMGB1 , Hepatite B , Humanos , Vírus da Hepatite B , Alarminas , Hepatite B/complicações , Cirrose Hepática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA