Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(22): 2135-2148, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34218272

RESUMO

Germline mutation of PTEN is causally observed in Cowden syndrome (CS) and is one of the most common, penetrant risk genes for autism spectrum disorder (ASD). However, the majority of individuals who present with CS-like clinical features are PTEN-mutation negative. Reassessment of PTEN promoter regulation may help explain abnormal PTEN dosage, as only the minimal promoter and coding regions are currently included in diagnostic PTEN mutation analysis. Therefore, we reanalyzed the architecture of the PTEN promoter using next-generation sequencing datasets. Specifically, run-on sequencing assays identified two additional transcription start regions (TSRs) at -2053 and -1906 basepairs from the canonical start of PTEN, thus extending the PTEN 5'UTR and redefining the PTEN promoter. We show that these novel upstream TSRs are active in cancer cell lines, human cancer and normal tissue. Furthermore, these TSRs can produce novel PTEN transcripts due to the introduction of new splice donors at -2041, -1826 and -1355, which may allow for splicing out of the PTEN 5'UTR or the first and second exon in upstream-initiated transcripts. Combining ENCODE ChIP-seq and pertinent literature, we also compile and analyze all transcription factors (TFs) binding at the redefined PTEN locus. Enrichment analyses suggest that TFs bind specifically to the upstream TSRs may be implicated in inflammatory processes. Altogether, these data redefine the architecture of the PTEN promoter, an important step toward a comprehensive model of PTEN transcription regulation, a basis for future investigations into the new promoters' role in disease pathogenesis.


Assuntos
PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Locos de Características Quantitativas , Sítio de Iniciação de Transcrição
2.
Hum Mol Genet ; 28(17): 2826-2834, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127935

RESUMO

Control of gene expression is one of the most complex yet continuous physiological processes impacting cellular homeostasis. RNA polymerase II (Pol II) transcription is tightly regulated at promoter-proximal regions by intricate dynamic processes including Pol II pausing, release into elongation and premature termination. Pol II pausing is a phenomenon where Pol II complex pauses within 30-60 nucleotides after initiating the transcription. Negative elongation factor (NELF) and DRB sensitivity inducing factor (DSIF) contribute in the establishment of Pol II pausing, and positive transcription elongation factor b releases (P-TEFb) paused complex after phosphorylating DSIF that leads to dissociation of NELF. Pol II pausing is observed in most expressed genes across the metazoan. The precise role of Pol II pausing is not well understood; however, it's required for integration of signals for gene regulation. In the present study, we investigated the role of phosphatase and tensin homolog (PTEN) in genome-wide transcriptional regulation using PTEN overexpression and PTEN knock-down models. Here we identify that PTEN alters the expression of hundreds of genes, and its restoration establishes genome-wide Pol II promoter-proximal pausing in PTEN null cells. Furthermore, PTEN re-distributes Pol II occupancy across the genome and possibly impacts Pol II pause duration, release and elongation rate in order to enable precise gene regulation at the genome-wide scale. Our observations demonstrate an imperative role of PTEN in global transcriptional regulation that will provide a new direction to understand PTEN-associated pathologies and its management.


Assuntos
Regulação da Expressão Gênica , PTEN Fosfo-Hidrolase/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Splicing de RNA , Transcriptoma
3.
Hum Mol Genet ; 26(2): 243-257, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011713

RESUMO

Cowden syndrome (CS) is an autosomal dominant disorder that predisposes to breast, thyroid, and other epithelial cancers. Differentiated thyroid carcinoma (DTC), as one of the major component cancers of CS, is the fastest rising incident cancer in the USA, and the most familial of all solid tumours. To identify additional candidate genes of CS and potentially DTC, we analysed a multi-generation CS-like family with papillary thyroid cancer (PTC), applying a combined linkage-based and whole-genome sequencing strategy and identified an in-frame germline compound heterozygous deletion, p.[Gln1478del];[Gln1476-Gln1478del] in USF3 (previously known as KIAA2018). Among 90 unrelated CS/CS-like individuals, 29% were found to have p.[Gln1478del];[Gln1476-Gln1478del]. Of 497 TCGA PTC individuals, 138 (27%) were found to carry this germline compound deletion, with somatically decreased tumour USF3 expression. We demonstrate an increased migration phenotype along with enhanced epithelial-to-mesenchymal transition (EMT) signature after USF3 knockdown or USF3 p.[Gln1478del];[Gln1476-Gln1478del] overexpression, which sensitizes cells to the endoplasmic reticulum (ER) stress. Loss of USF3 function induced cell necrosis-like features and impaired respiratory capacity while providing a glutamine-dependent cell survival advantage, strongly suggests a metabolic survival and migration-favouring microenvironment for carcinogenesis. Therefore, USF3 may be involved in the predisposition of thyroid cancer. Importantly, the results that glutamine-dependent survival and sensitivity to ER stress in USF3-deficient cells provide avenues for therapeutic and adjunct preventive interventions for both sporadic cancer as well as cancer predisposition syndromes with similar mechanisms.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma/genética , Predisposição Genética para Doença , Síndrome do Hamartoma Múltiplo/genética , Neoplasias da Glândula Tireoide/genética , Fatores Estimuladores Upstream/genética , Carcinoma/patologia , Carcinoma Papilar , Movimento Celular , Estresse do Retículo Endoplasmático/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Genoma Humano , Genótipo , Mutação em Linhagem Germinativa , Síndrome do Hamartoma Múltiplo/patologia , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Peptídeos/genética , Deleção de Sequência , Câncer Papilífero da Tireoide , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral/genética
4.
Hum Mutat ; 38(10): 1372-1377, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28677221

RESUMO

Germline mutations in the tumor-suppressor gene PTEN predispose to subsets of Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and autism. Evidence-based classification of PTEN variants as either deleterious or benign is urgently needed for accurate molecular diagnosis and gene-informed genetic counseling. We studied 34 different germline PTEN intronic variants from 61 CS patients, characterized their PTEN mRNA processing, and analyzed PTEN expression and downstream readouts of P-AKT and P-ERK1/2. While we found that many mutations near splice junctions result in exon skipping, we also identified the presence of cryptic splicing that resulted in premature termination or a shift in isoform usage. PTEN protein expression is significantly lower in the group with splicing changes while P-AKT, but not P-ERK1/2, is significantly increased. Our observations of these PTEN intronic variants should contribute to the determination of pathogenicity of PTEN intronic variants and aid in genetic counseling.


Assuntos
Processamento Alternativo/genética , Síndrome do Hamartoma Múltiplo/genética , PTEN Fosfo-Hidrolase/genética , Patologia Molecular , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Mutação em Linhagem Germinativa/genética , Síndrome do Hamartoma Múltiplo/fisiopatologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sítios de Splice de RNA/genética , Adulto Jovem
5.
Hum Mol Genet ; 23(12): 3212-27, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24470394

RESUMO

PTEN Hamartoma Tumor Syndrome (PHTS) is an autosomal-dominant genetic condition underlying a subset of autism spectrum disorder (ASD) with macrocephaly. Caused by germline mutations in PTEN, PHTS also causes increased risks of multiple cancers via dysregulation of the PI3K and MAPK signaling pathways. Conditional knockout models have shown that neural Pten regulates social behavior, proliferation and cell size. Although much is known about how the intracellular localization of PTEN regulates signaling in cancer cell lines, we know little of how PTEN localization influences normal brain physiology and behavior. To address this, we generated a germline knock-in mouse model of cytoplasm-predominant Pten and characterized its behavioral and cellular phenotypes. The homozygous Pten(m3m4) mice have decreased total Pten levels including a specific drop in nuclear Pten and exhibit region-specific increases in brain weight. The Pten(m3m4) model displays sex-specific increases in social motivation, poor balance and normal recognition memory-a profile reminiscent of some individuals with high functioning ASD. The cytoplasm-predominant protein caused cellular hypertrophy limited to the soma and led to increased NG2 cell proliferation and accumulation of glia. The animals also exhibit significant astrogliosis and microglial activation, indicating a neuroinflammatory phenotype. At the signaling level, Pten(m3m4) mice show brain region-specific differences in Akt activation. These results demonstrate that differing alterations to the same autism-linked gene can cause distinct behavioral profiles. The Pten(m3m4) model is the first murine model of inappropriately elevated social motivation in the context of normal cognition and may expand the range of autism-related behaviors replicated in animal models.


Assuntos
Encéfalo/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Citoplasma/metabolismo , Neuroglia/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Comportamento Social , Animais , Núcleo Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Caracteres Sexuais , Transdução de Sinais
6.
Gastroenterology ; 149(4): 886-9.e5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26122142

RESUMO

Hamartomatous polyposis syndromes (HPS) account for a small but appreciable proportion of inherited gastrointestinal cancer predisposition syndromes; patients with HPS have an increased risk for colon and extracolonic malignancies. We present a unique case of familial juvenile polyposis syndrome associated with gastrointestinal ganglioneuromas of unknown etiology. The patient was tested for HPS-associated genes, but no mutation was detected. Exome sequencing identified a germline heterozygous mutation in SMAD9 (SMAD9(V90M)). This mutation was predicted to be an activating mutation. HEK cells transfected to express SMAD9(V90M) had reduced expression of phosphatase and tensin homolog; this reduction was also observed in a polyp from the patient. We have therefore identified a new susceptibility locus for HPS. Patients with hamartomatous polyposis in the colon associated with ganglioneuromatosis should be referred for genetic assessments.


Assuntos
Pólipos do Colo/genética , Neoplasias do Sistema Digestório/genética , Exoma , Ganglioneuroma/genética , Mutação em Linhagem Germinativa , Neoplasia Endócrina Múltipla Tipo 2b/genética , PTEN Fosfo-Hidrolase/metabolismo , Síndrome de Peutz-Jeghers/genética , Proteína Smad8/genética , Adulto , Pólipos do Colo/diagnóstico , Pólipos do Colo/enzimologia , Análise Mutacional de DNA , Neoplasias do Sistema Digestório/diagnóstico , Neoplasias do Sistema Digestório/enzimologia , Regulação para Baixo , Feminino , Ganglioneuroma/diagnóstico , Ganglioneuroma/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Neoplasia Endócrina Múltipla Tipo 2b/diagnóstico , Neoplasia Endócrina Múltipla Tipo 2b/enzimologia , PTEN Fosfo-Hidrolase/genética , Síndrome de Peutz-Jeghers/diagnóstico , Síndrome de Peutz-Jeghers/enzimologia , Fenótipo , Proteína Smad8/metabolismo , Transfecção
7.
Clin Cancer Res ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052240

RESUMO

PURPOSE: There are no effective treatment options for patients with aggressive epithelioid hemangioendothelioma (EHE) driven by the TAZ-CAMTA1 (TC) fusion gene. Here, we aimed to understand the regulation of TC using pharmacological tools and identify vulnerabilities that can potentially be exploited for the treatment of EHE. EXPERIMENTAL DESIGN: TC is a transcriptional co-regulator; we hypothesized that compounds that reduce TC nuclear levels, either through translocation of TC to the cytoplasm, or through degradation, would render TC less oncogenic. TC localization was monitored using immunofluorescence (IF) in an EHE tumor cell line. Two target-selective libraries were used to identify small molecules that reduce TC localization in the nucleus. The ability of the shortlisted hits to affect cell viability, apoptosis, and tumorigenesis was also evaluated. RESULTS: Basal TC remained 'immobile' in the nucleus; administration of cyclin-dependent kinase inhibitors (CDKi) such as CGP60474 and dinaciclib mobilized TC. 'Mobile' TC shuttled between the nucleus and cytoplasm; however, it was eventually degraded through proteasomes. This dramatically suppressed the levels of TC-regulated transcripts and cell viability, promoted apoptosis, and reduced the area of metastatic lesions in the allograft model of EHE. We specifically identified that the inhibition of CDK9, a transcriptional CDK, destabilizes TC. CONCLUSIONS: The CDK inhibitor dinaciclib exhibited anti-tumorigenic properties both in vitro and in vivo in EHE models. Dinaciclib has been rigorously tested in clinical trials and displayed an acceptable toxicity profile. Therefore, there is a potential therapeutic window for repurposing dinaciclib for the treatment of EHE.

8.
Hum Mol Genet ; 20(1): 80-9, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20926450

RESUMO

Somatic and germline mutations in PTEN (phosphatase and tensin homolog deleted on chromosome 10) are found in sporadic cancers and Cowden syndrome patients, respectively. Recent identification of naturally occurring cancer and germline mutations within the ATP-binding motifs of PTEN (heretofore referred to as PTEN ATP-binding mutations) has revealed that these mutations disrupted the subcellular localization and tumor-suppressor activity of PTEN. However, very little is known about the underlying mechanisms of PTEN ATP-binding mutations in tumorigenesis. Here we show that these mutations impair PTEN's function both qualitatively and quantitatively. On the one hand, PTEN ATP-binding mutants lose their phosphatase activity and the effect of downregulation of cyclin D1. On the other, the mislocalized mutant PTEN results in a significantly decreased nuclear p53 protein level and transcriptional activity, enhanced production of reactive oxygen species, induction of Cu/Zn superoxide dismutase as well as dramatically increased DNA double-strand breaks (DSBs). When compared with wild-type PTEN, the ATP-binding mutant PTEN has reduced half-life in vitro and decreased protein expression levels in vivo. Our data, thus, reveal a novel mechanism of tumorigenesis in patients with germline or somatic mutations affecting PTEN ATP-binding motifs, i.e. qualitative and quantitative impairment of PTEN due to the loss of its phosphatase activity, and nuclear mislocalization, resulting in rapid PTEN protein degradation, suppression of p53-mediated transcriptional activity, loss of protection against oxidative stress as well as accumulation of spontaneous DNA DSBs.


Assuntos
Neoplasias da Mama/enzimologia , Mutação em Linhagem Germinativa , Estresse Oxidativo/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ciclina D1/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Síndrome do Hamartoma Múltiplo/enzimologia , Síndrome do Hamartoma Múltiplo/genética , Humanos , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Transporte Proteico , Superóxido Dismutase/genética
9.
NPJ Precis Oncol ; 7(1): 85, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679505

RESUMO

MC1R, a G-protein coupled receptor, triggers ultraviolet light-induced melanin synthesis and DNA repair in melanocytes and is implicated in the pathogenesis of melanoma. Although widely expressed in different tissue types, its function in non-cutaneous tissue is relatively unknown. Herein, we demonstrate that disruptive MC1R variants associated with melanomagenesis are less frequently found in patients with several cancers. Further exploration revealed that breast cancer tissue shows a significantly higher MC1R expression than normal breast tissue, and knocking down MC1R significantly reduced cell proliferation in vitro and in vivo. Mechanistically, MC1R signaling through the MC1R-cAMP-CREB/ATF-1 and MC1R-ERK-NFκB axes accelerated the G1-S transition in breast cancer cells. Our results revealed a new association between MC1R and breast cancer, which could be potentially targeted therapeutically. Moreover, our results suggest that MC1R-enhancing/activating therapies should be used cautiously, as they might be pro-tumorigenic in certain contexts.

10.
Res Sq ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214977

RESUMO

Starting from compound 5 (CCF0058981), a structure-based optimization of the P1 subsite was performed against the severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (3CLpro). Inhibitor 5 and the compounds disclosed bind to 3CLpro using a non-covalent mode of action that utilize a His163 H-bond interaction in the S1 subpocket. In an effort to examine more structurally diverse P1 groups a number of azoles and heterocycles were designed. Several azole ring systems and replacements, including C-linked azoles, with similar or enhanced potency relative to 5 were discovered (28, 29, and 30) with demonstrated IC50 values less than 100 nM. In addition, pyridyl and isoquinoline P1 groups were successful as P1 replacements leading to 3-methyl pyridyl 36 (IC50 = 85 nM) and isoquinoline 27 (IC50 = 26 nM). High resolution X-ray crystal structures of these inhibitors were utilized to confirm binding orientation and guide optimization. These findings have implications towards antiviral development and preparedness to combat SARS-like zoonotic coronavirus outbreaks.

11.
Hum Mol Genet ; 19(22): 4319-29, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20729295

RESUMO

The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/AKT anti-apoptotic pathway; and nuclear PTEN affects the cell cycle by also negatively regulating the MAPK pathway via cyclin D. Decreased PTEN expression is correlated with prostate cancer progression. Over-expression of AR and upregulation of AR transcriptional activity are often observed in the later stages of prostate cancer. Recent studies indicate that PTEN regulates AR activity and stability. However, the mechanism of how AR regulates PTEN has never been studied. Furthermore, resveratrol, a phytoalexin enriched in red grapes, strawberries and peanuts, has been shown to inhibit AR transcriptional activity in prostate cancer cells. In this study, we use prostate cancer cell lines to test the hypothesis that resveratrol inhibits cellular proliferation in both AR-dependent and -independent mechanisms. We show that resveratrol inhibits AR transcriptional activity in both androgen-dependent and -independent prostate cancer cells. Additionally, resveratrol stimulates PTEN expression through AR inhibition. In contrast, resveratrol directly binds epidermal growth factor receptor (EGFR) rapidly inhibiting EGFR phosphorylation, resulting in decreased AKT phosphorylation, in an AR-independent manner. Thus, resveratrol may act as potential adjunctive treatment for late-stage hormone refractory prostate cancer. More importantly, for the first time, our study demonstrates the mechanism by which AR regulates PTEN expression at the transcription level, indicating the direct link between a nuclear receptor and the PI3K/AKT pathway.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Estilbenos/farmacologia , Antagonistas de Androgênios/farmacologia , Androgênios/fisiologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Formazans/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , PTEN Fosfo-Hidrolase/genética , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Resveratrol , Transdução de Sinais , Sais de Tetrazólio/metabolismo , Fatores de Tempo
12.
Hum Mol Genet ; 18(15): 2851-62, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19457929

RESUMO

Germline and somatic PTEN mutations are found in Cowden syndrome (CS) and multiple sporadic malignancies, respectively. PTEN function appears to be modulated by subcellular compartmentalization, and mislocalization may affect function. We have shown that cellular ATP levels affect nuclear PTEN levels. Here, we examined the ATP-binding capabilities of PTEN and functional consequences, relevant to cancer-associated mutations. PTEN mutation analysis of CS patients and sporadic colorectal carcinomas and comparative aminoacid analysis were utilized to identify mutations in ATP-binding motifs. The ability of wild-type (WT) or mutant PTEN to bind ATP was assessed by ATP-agarose-binding assays. Subcellular fractionation, western blotting, confocal microscopy and growth assays were used to determine relative nuclear-cytoplasmic localization and function. Somatic colorectal carcinoma-derived PTEN missense mutations were associated with nuclear mislocalization. These mutations altered cellular proliferation, apoptosis and anchorage-dependent growth. Examination of PTEN's amino acid sequence revealed these mutations resided in previously undescribed ATP-binding motifs (c.60-73; c.122-136). In contrast to WT PTEN, both cancer-associated somatic and germline-derived PTEN missense mutations, which lie within the ATP-binding motifs, result in mutant PTEN that does not bind ATP efficiently. We also show that CS patients with germline ATP-binding motif-mutations had nuclear PTEN mislocalization. Of four unrelated patients with functional germline ATP-binding domain mutations, all three female patients had breast cancers. Germline and somatic mutations within PTEN's ATP-binding domain play important pathogenic roles in both heritable and sporadic carcinogenesis by PTEN nuclear mislocalization resulting in altered signaling and growth. Manipulation of ATP may represent novel therapies in tumors with such PTEN alterations.


Assuntos
Trifosfato de Adenosina/metabolismo , Síndrome do Hamartoma Múltiplo/genética , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Feminino , Mutação em Linhagem Germinativa , Síndrome do Hamartoma Múltiplo/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , PTEN Fosfo-Hidrolase/química , Ligação Proteica , Transporte Proteico , Alinhamento de Sequência
13.
JAMA ; 306(4): 410-9, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21791690

RESUMO

CONTEXT: Barrett esophagus (BE) occurs in 1% to 10% of the general population and is believed to be the precursor of esophageal adenocarcinoma (EAC). The incidence of EAC has increased 350% in the last 3 decades without clear etiology. Finding predisposition genes may improve premorbid risk assessment, genetic counseling, and management. Genome-wide multiplatform approaches may lead to the identification of genes important in BE/EAC development. OBJECTIVE: To identify risk alleles or mutated genes associated with BE/EAC. DESIGN, SETTING, AND PATIENTS: Model-free linkage analyses of 21 concordant-affected sibling pairs with BE/EAC and 11 discordant sibling pairs (2005-2006). Significant germline genomic regions in independent prospectively accrued series of 176 white patients with BE/EAC and 200 ancestry-matched controls (2007-2010) were validated and fine mapped. Integrating data from these significant genomic regions with somatic gene expression data from 19 BE/EAC tissues yielded 12 "priority" candidate genes for mutation analysis (2010). Genes that showed mutations in cases but not in controls were further screened in an independent prospectively accrued validation series of 58 cases (2010). MAIN OUTCOME MEASURES: Identification of germline mutations in genes associated with BE/EAC cases. Functional interrogation of the most commonly mutated gene. RESULTS: Three major genes, MSR1, ASCC1, and CTHRC1 were associated with BE/EAC (all P < .001). In addition, 13 patients (11.2%) with BE/EAC carried germline mutations in MSR1, ASCC1, or CTHRC1. MSR1 was the most frequently mutated, with 8 of 116 (proportion, 0.069; 95% confidence interval [CI], 0.030-0.130; P < .001) cases with c.877C>T (p.R293X). An independent validation series confirmed germline MSR1 mutations in 2 of 58 cases (proportion, 0.035; 95% CI, 0.004-0.120; P = .09). MSR1 mutation resulted in CCND1 up-regulation in peripheral-protein lysate. Immunohistochemistry of BE tissues in MSR1-mutation carriers showed increased nuclear expression of CCND1. CONCLUSION: MSR1 was significantly associated with the presence of BE/EAC in derivation and validation samples, although it was only present in a small percentage of the cases.


Assuntos
Adenocarcinoma/genética , Esôfago de Barrett/genética , Neoplasias Esofágicas/genética , Proteínas da Matriz Extracelular/genética , Mutação em Linhagem Germinativa , Receptores Depuradores Classe A/genética , Fatores de Transcrição/genética , Alelos , Proteínas da Matriz Extracelular/metabolismo , Ligação Genética , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Receptores Depuradores Classe A/metabolismo , Irmãos
14.
Hum Mol Genet ; 17(18): 2877-85, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18579579

RESUMO

The tumour suppressor gene PTEN plays an important somatic role in both hereditary and sporadic breast carcinogenesis. While the role of PTEN's lipid phosphatase activity, as a negative regulator of the cytoplasmic phosphatidylinositol-3-kinase/Akt pathway is well known, it is now well established that PTEN exists and functions in the nucleus. Multiple mechanisms of regulating PTEN's subcellular localization have been reported. However none are ubiquitous across multiple cancer cell lines and tissue types. We show here that adenosine triphosphate (ATP) regulates PTEN subcellular localization in a variety of different cancer cell lines, including those derived from breast, colon and thyroid carcinomas. Cells deficient in ATP show an increased level of nuclear PTEN protein. This increase in PTEN is reversed when cells are supplemented with ATP, ADP or AMP. In contrast, the addition of the non-hydrolyzable analogue ATPgammaS, did not reverse nuclear PTEN protein levels in all the cell types tested. To our knowledge, this is the first report that describes a regulation of PTEN subcellular localization that is not specific to one cell line or tissue type, but appears to be common across a variety of cell lineages.


Assuntos
Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias Colorretais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Mama/química , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Neoplasias Colorretais/química , Humanos , PTEN Fosfo-Hidrolase/análise , PTEN Fosfo-Hidrolase/genética , Transporte Proteico , Neoplasias da Glândula Tireoide/química
15.
Int J Cancer ; 124(6): 1285-92, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19089912

RESUMO

The tumor suppressor C/CAAT enhancer binding protein alpha (C/EBPalpha) is a transcription factor involved in cell cycle control and cellular differentiation. A recent study showed that C/EBPalpha is frequently downregulated in head and neck squamous cell carcinoma (HNSCC) by DNA methylation in an upstream regulatory region. Here, we investigated how DNA methylation in the upstream regulatory region disrupts the transcriptional regulation of C/EBPalpha in HNSCC. The results reveal that aberrant methylation correlates with methyl binding domain protein binding and repressive histone modifications. This methylated region contains previously uninvestigated AP2alpha binding sites. AP2alpha suppresses C/EBPalpha promoter activity and protein expression. Interestingly, silencing AP2alpha by shRNA increases the antiproliferative isoform of C/EBPalpha (p42(C/EBPalpha)). Furthermore, growth analysis revealed that these 2 isoforms yield very different proliferative properties in HNSCC.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Ciclo Celular , Diferenciação Celular , Divisão Celular , Linhagem Celular Tumoral , Primers do DNA , DNA Complementar/genética , Regulação para Baixo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Mutagênese Sítio-Dirigida , Plasmídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Transfecção
16.
Oncotarget ; 10(48): 4951-4959, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31452836

RESUMO

Gene transcription is a highly complex and strictly regulated process. RNA polymerase II (Pol II) C-terminal domain (CTD) undergoes massive cycles of phosphorylation and dephosphorylation during the process of gene transcription. These post-translational modifications of CTD provide an interactive platform for various factors required for transcription initiation, elongation, termination, and co-transcriptional RNA processing. Pol II CTD kinases and phosphatases are key regulators and any deviation may cause genome-wide transcriptional dysregulation leading to various pathological conditions including cancer. PTEN, a well known tumor suppressor, is one of the most commonly somatically altered in diverse malignancies. When mutated in the germline, PTEN causes cancer predisposition. Numerous studies have demonstrated that PTEN regulates the expression of hundreds of genes, however, no mechanism is known so far. PTEN is a dual specificity phosphatase, using both lipid and protein as substrates. In the present study, we demonstrate that PTEN interacts with the RNA Pol II and that PTEN expression is inversely correlated with global phosphorylation of Pol II CTD. Furthermore, PTEN dephosphorylates Pol II CTD in vitro with a significant specificity for Ser5p. Interestingly, ChIP-seq data analysis revealed that PTEN globally binds to promoter proximal regions, and PTEN loss increases genome-wide Pol II Ser5p occupancy, suggest that PTEN is a Pol II CTD phosphatase. Our observations demonstrate an unexplored function of PTEN with the potential of global transcriptional regulation, adding a new dimension to somatic carcinogenesis and germline cancer predisposition.

18.
Mol Autism ; 6: 63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579216

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairment in social communication/interaction and inflexible/repetitive behavior. Several lines of evidence support genetic factors as a predominant cause of ASD. Among those autism susceptibility genes that have been identified, the PTEN tumor suppressor gene, initially identified as predisposing to Cowden heritable cancer syndrome, was found to be mutated in a subset of ASD patients with extreme macrocephaly. However, the ASD-relevant molecular mechanism mediating the effect of PTEN mutations remains elusive. METHODS: We developed a Pten knock-in murine model to study the effects of Pten germline mutations, specifically altering subcellular localization, in ASD. Proteins were isolated from the hemispheres of the male littermates, and Western blots were performed to determine protein expression levels of tyrosine hydroxylase (TH). Immunohistochemical stains were carried out to validate the localization of TH and dopamine D2 receptors (D2R). PC12 cells ectopically expressing either wild-type or missense mutant PTEN were then compared for the differences in TH expression. RESULTS: Mice carrying Pten mutations have high TH and D2R in the striatum and prefrontal cortex. They also have increased phosphorylation of cAMP response element-binding protein (CREB) and TH. Mechanistically, PTEN downregulates TH production in PC12 cells via inhibiting the phosphoinositide 3-kinase (PI3K)/CREB signaling pathway, while PTEN reduces TH phosphorylation via suppressing MAPK pathway. Unlike wild-type PTEN but similar to the mouse knock-in mutant Pten, three naturally occurring missense mutations of PTEN that we previously identified in ASD patients, H93R, F241S, and D252G, were not able to suppress TH when overexpressed in PC12 cells. In addition, two other PTEN missense mutations, C124S (pan phosphatase dead) and G129E (lipid phosphatase dead), failed to suppress TH when ectopically expressed in PC12 cells. CONCLUSIONS: Our data reveal a non-canonical PTEN-TH pathway in the brain that may work as a core regulator of dopamine signaling, which when dysfunctional is pathogenic in ASD.

19.
Mol Cancer Ther ; 13(2): 517-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24356815

RESUMO

NVP-BEZ235 is a newly developed dual PI3K/mTOR inhibitor, being tested in multiple clinical trials, including breast cancer. NVP-BEZ235 selectively induces cell growth inhibition in a subset, but not all, breast cancer cell lines. However, it remains a challenge to distinguish between sensitive and resistant tumors, particularly in the pretreatment setting. Here, we used ten breast cancer cell lines to compare NVP-BEZ235 sensitivity and in the context of androgen receptor (AR) activation during NVP-BEZ235 treatment. We also used female SCID mice bearing breast tumor xenografts to investigate the beneficial effect of dihydrotestosterone/NVP-BEZ235 combination treatment compared with each alone. We found that AR-positive breast cancer cell lines are much more sensitive to NVP-BEZ235 compared with AR-negative cells, regardless of PTEN or PI3KCA status. Reintroducing AR expression in NVP-BEZ235 nonresponsive AR-negative cells restored the response. DHT/NVP-BEZ235 combination not only resulted in a more significant growth inhibition than either drug alone, but also achieved tumor regression and complete responses for AR(+)/ER(+) tumors. This beneficial effect was mediated by dihydrotestosterone (DHT)-induced PTEN and KLLN expression. Furthermore, DHT could also reverse NVP-BEZ235-induced side effects such as skin rash and weight loss. Our data suggest that AR expression may be an independent predictive biomarker for response to NVP-BEZ235. AR induction could add benefit during NVP-BEZ235 treatment in patients, especially with AR(+)/ER(+) breast carcinomas.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Imidazóis/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Quinolinas/farmacologia , Receptores Androgênicos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Di-Hidrotestosterona/administração & dosagem , Di-Hidrotestosterona/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Imidazóis/administração & dosagem , Células MCF-7 , Camundongos Nus , Quinolinas/administração & dosagem , Receptores Androgênicos/genética , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Res ; 73(10): 3029-40, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23475934

RESUMO

Germline mutations in PTEN have been described in a spectrum of syndromes that are collectively known as PTEN hamartoma tumor syndrome (PHTS). In addition to being mutated in the germline in PHTS, somatic loss-of-function PTEN mutations are seen in a wide range of sporadic human tumors. Here, we show evidence of upregulated proteasome activity in PHTS-derived lymphoblasts, Pten knock-in mice and cell lines expressing missense and nonsense PTEN mutations. Notably, elevated nuclear proteasome activity occurred in cells expressing the nuclear mislocalized PTEN-K62R mutant, whereas elevated cytosolic proteasome activity was observed in cells expressing the cytosolic-predominant mutant PTEN (M3M4 and C136R). Treatment with proteasome inhibitor MG-132 was able to restore both nonsense and missense mutant PTEN protein levels in vitro. PHTS patients with destabilizing PTEN mutations and proteasome hyperactivity are more susceptible to develop neurologic symptoms such as mental retardation and autism than mutation-positive patients with normal proteasome activity. A detailed molecular and functional analysis shows that PTEN mutants most likely cause proteasome hyperactivity via 2 different mechanisms, namely, induction of proteotoxic stress and loss of protein phosphatase activity. These results provide novel insights into the cellular functions of PTEN and reveal molecular mechanisms whereby PTEN mutations increase proteasome activity and lead to neurologic phenotypes.


Assuntos
Síndrome do Hamartoma Múltiplo/genética , Mutação de Sentido Incorreto , PTEN Fosfo-Hidrolase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , PTEN Fosfo-Hidrolase/análise , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA