Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853614

RESUMO

BACKGROUND: We report data from Stage 1 of an ongoing two-staged, phase I/II randomized clinical trial (NCT05073003) with a 4-component Generalized Modules for Membrane Antigens-based vaccine against Shigella sonnei and S. flexneri 1b, 2a and 3a (altSonflex1-2-3, GSK). METHODS: 18-50-year-old Europeans (N=102) were randomized (2:1) to receive two injections of altSonflex1-2-3 or placebo at 3- or 6-month interval. Safety and immunogenicity were assessed at pre-specified timepoints. RESULTS: The most common solicited administration-site event (until 7 days post-each injection) and unsolicited adverse event (until 28 days post-each injection) were pain (altSonflex1-2-3: 97.1%; Placebo: 58.8%) and headache (32.4%; 23.5%), respectively. All serotype-specific functional IgG antibodies peaked 14-28 days post-injection 1 and remained substantially higher than pre-vaccination at 3 or 6 months post-vaccination; the second injection did not boost but restored the initial immune response. The highest seroresponse rates (≥4-fold increase in titers over baseline) were obtained against S. flexneri 2a (ELISA: post-injection 1: 91.0%; post-injection 2 [Day {D}113; D197]: 100%; 97.0%; serum bactericidal activity (SBA): post-injection 1: 94.4%; post-injection 2: 85.7%; 88.9%) followed by S. sonnei (ELISA: post-injection 1: 77.6%; post-injection 2: 84.6%; 78.8%; SBA: post-injection 1: 83.3%; post-injection 2: 71.4%; 88.9%). Immune responses against S. flexneri 1b and S. flexneri 3a, as measured by both ELISA and SBA, were numerically lower compared to those against S. sonnei and S. flexneri 2a. CONCLUSIONS: No safety signals or concerns were identified. altSonflex1-2-3 induced functional serotype-specific immune responses, allowing further clinical development in the target population.


What is the context? Shigella bacteria cause severe and often bloody diarrhea, called shigellosis, that affects mostly young children and can be life-threatening. Shigellosis is particularly common in low- and middle-income countries due to inadequate sanitation and limited access to healthcare. Since the immune response to Shigella is serotype-specific, an ideal vaccine should include multiple Shigella serotypes to ensure broad protection. What is new? We developed a novel vaccine against Shigella that includes Shigella sonnei and three prevalent Shigella flexneri serotypes. In Stage 1 (phase I) of the study, healthy European adults received two vaccine injections given 3 or 6 months apart. We found that: The vaccine was well tolerated, and no safety signals or concerns were identified.Regardless of the interval between injections, specific antibodies were elicited against all four Shigella serotypes, with highest levels against Shigella flexneri 2a and Shigella sonnei.Functional antibody levels peaked after the first injection, remaining higher than the baseline up to 6 months. A second injection did not boost responses but restored functional antibody levels to those after the first injection. What is the impact? The vaccine can now be tested in Stage 2 (phase II) of the study in Africa, a region highly affected by shigellosis.

2.
J Infect Dis ; 228(7): 957-965, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37246259

RESUMO

BACKGROUND: Immunity to Streptococcus pyogenes in high burden settings is poorly understood. We explored S. pyogenes nasopharyngeal colonization after intranasal live attenuated influenza vaccine (LAIV) among Gambian children aged 24-59 months, and resulting serological response to 7 antigens. METHODS: A post hoc analysis was performed in 320 children randomized to receive LAIV at baseline (LAIV group) or not (control). S. pyogenes colonization was determined by quantitative polymerase chain reaction (qPCR) on nasopharyngeal swabs from baseline (day 0), day 7, and day 21. Anti-streptococcal IgG was quantified, including a subset with paired serum before/after S. pyogenes acquisition. RESULTS: The point prevalence of S. pyogenes colonization was 7%-13%. In children negative at day 0, S. pyogenes was detected at day 7 or 21 in 18% of LAIV group and 11% of control group participants (P = .12). The odds ratio (OR) for colonization over time was significantly increased in the LAIV group (day 21 vs day 0 OR, 3.18; P = .003) but not in the control group (OR, 0.86; P = .79). The highest IgG increases following asymptomatic colonization were seen for M1 and SpyCEP proteins. CONCLUSIONS: Asymptomatic S. pyogenes colonization appears modestly increased by LAIV, and may be immunologically significant. LAIV could be used to study influenza-S. pyogenes interactions. Clinical Trials Registration. NCT02972957.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Criança , Gâmbia/epidemiologia , Streptococcus pyogenes , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vacinas Atenuadas , Imunoglobulina G
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769063

RESUMO

Shigellosis is the leading cause of diarrheal disease, especially in children of low- and middle-income countries, and is often associated with anti-microbial resistance. Currently, there are no licensed vaccines widely available against Shigella, but several candidates based on the O-antigen (OAg) portion of lipopolysaccharides are in development. We have proposed Generalized Modules for Membrane Antigens (GMMA) as an innovative delivery system for OAg, and a quadrivalent vaccine candidate containing GMMA from S. sonnei and three prevalent S. flexneri serotypes (1b, 2a and 3a) is moving to a phase II clinical trial, with the aim to elicit broad protection against Shigella. GMMA are able to induce anti-OAg-specific functional IgG responses in animal models and healthy adults. We have previously demonstrated that antibodies against protein antigens are also generated upon immunization with S. sonnei GMMA. In this work, we show that a quadrivalent Shigella GMMA-based vaccine is able to promote a humoral response against OAg and proteins of all GMMA types contained in the investigational vaccine. Proteins contained in GMMA provide T cell help as GMMA elicit a stronger anti-OAg IgG response in wild type than in T cell-deficient mice. Additionally, we observed that only the trigger of Toll-like Receptor (TLR) 4 and not of TLR2 contributed to GMMA immunogenicity. In conclusion, when tested in mice, GMMA of a quadrivalent Shigella vaccine candidate combine both adjuvant and carrier activities which allow an increase in the low immunogenic properties of carbohydrate antigens.


Assuntos
Disenteria Bacilar , Shigella , Vacinas , Animais , Camundongos , Metilmetacrilatos , Antígenos O , Disenteria Bacilar/prevenção & controle , Imunoglobulina G , Anticorpos Antibacterianos
4.
Proc Natl Acad Sci U S A ; 115(41): 10428-10433, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30262653

RESUMO

Nontyphoidal Salmonellae cause a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. Vaccination has potential for a major global health impact, but no licensed vaccine is available. The lack of commercial incentive makes simple, affordable technologies the preferred route for vaccine development. Here we compare equivalent Generalized Modules for Membrane Antigens (GMMA) outer membrane vesicles and O-antigen-CRM197 glycoconjugates to deliver lipopolysaccharide O-antigen in bivalent Salmonella Typhimurium and Enteritidis vaccines. Salmonella strains were chosen and tolR deleted to induce GMMA production. O-antigens were extracted from wild-type bacteria and conjugated to CRM197 Purified GMMA and glycoconjugates were characterized and tested in mice for immunogenicity and ability to reduce Salmonella infection. GMMA and glycoconjugate O-antigen had similar structural characteristics, O-acetylation, and glucosylation levels. Immunization with GMMA induced higher anti-O-antigen IgG than glycoconjugate administered without Alhydrogel adjuvant. With Alhydrogel, antibody levels were similar. GMMA induced a diverse antibody isotype profile with greater serum bactericidal activity than glycoconjugate, which induced almost exclusively IgG1. Immunization reduced bacterial colonization of mice subsequently infected with SalmonellaS Typhimurium numbers were lower in tissues of mice vaccinated with GMMA compared with glycoconjugate. S. Enteritidis burden in the tissues was similar in mice immunized with either vaccine. With favorable immunogenicity, low cost, and ability to induce functional antibodies and reduce bacterial burden, GMMA offer a promising strategy for the development of a nontyphoidal Salmonella vaccine compared with established glycoconjugates. GMMA technology is potentially attractive for development of vaccines against other bacteria of global health significance.


Assuntos
Anticorpos Antibacterianos/imunologia , Glicoconjugados/imunologia , Antígenos O/imunologia , Infecções por Salmonella/imunologia , Vacinas contra Salmonella/uso terapêutico , Salmonella enteritidis/imunologia , Salmonella typhimurium/imunologia , Animais , Anticorpos Antibacterianos/sangue , Camundongos , Infecções por Salmonella/prevenção & controle , Vacinação
5.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32601109

RESUMO

Salmonella causes grave systemic infections in humans and other animals and provides a paradigm for other diseases in which the bacteria have both intracellular and extracellular lifestyles. New generations of vaccines rely on the essential contribution of the antibody responses for their protection. The quality, antigen specificity, and functions associated with antibody responses to this pathogen have been elusive for a long time. Recent approaches that combine studies in humans and genetically manipulated experimental models and that exploit awareness of the location and within-host life cycle of the pathogen are shedding light on how humoral immunity to Salmonella operates. However, this area of research remains full of controversy and discrepancies. The overall scenario indicates that antibodies are essential for resistance against systemic Salmonella infections and can express the highest protective function when operating in conjunction with cell-mediated immunity. Antigen specificity, isotype profile, Fc-gamma receptor usage, and complement activation are all intertwined factors that still arcanely influence antibody-mediated protection to Salmonella.


Assuntos
Anticorpos Antibacterianos/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Especificidade de Anticorpos/imunologia , Ativação do Complemento , Humanos , Imunidade Celular , Imunidade Humoral , Isotipos de Imunoglobulinas/imunologia , Receptores de IgG , Salmonella/crescimento & desenvolvimento , Salmonella/patogenicidade , Infecções por Salmonella/microbiologia
6.
Int J Mol Sci ; 21(12)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575921

RESUMO

Outer Membrane Vesicles (OMVs) are bacterial nanoparticles that are spontaneously released during growth both in vitro and in vivo by Gram-negative bacteria. They are spherical, bilayered membrane nanostructures that contain many components found within the external surface of the parent bacterium. Naturally, OMVs serve the bacteria as a mechanism to deliver DNA, RNA, proteins, and toxins, as well as to promote biofilm formation and remodel the outer membrane during growth. On the other hand, as OMVs possess the optimal size to be uptaken by immune cells, and present a range of surface-exposed antigens in native conformation and Toll-like receptor (TLR) activating components, they represent an attractive and powerful vaccine platform able to induce both humoral and cell-mediated immune responses. This work reviews the TLR-agonists expressed on OMVs and their capability to trigger individual TLRs expressed on different cell types of the immune system, and then focuses on their impact on the immune responses elicited by OMVs compared to traditional vaccines.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Membrana Externa Bacteriana/imunologia , Vacinas Bacterianas/imunologia , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Receptores Toll-Like/imunologia , Imunidade Adaptativa , Animais , Antígenos de Bactérias/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Humanos , Imunidade Inata
7.
Immunology ; 156(1): 69-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179254

RESUMO

Vaccines can serve as essential tools to prevent bacterial diseases via the induction of long-lasting IgG responses. The efficacy of such vaccines depends on the effector mechanisms triggered by IgG. The complement system and Fc-gamma receptors (FcγRs) can potentially play a crucial role in IgG-mediated immunity against bacterial diseases. However, their relative importance in vivo is unclear, and has been the object of controversy and debate. In this brief study, we have used gene-targeted mice lacking either FcγRI, II, II and IV or the C3 complement component as well as a novel mouse strain lacking both C3 and FcγRs to conclusively show the essential role of complement in antibody-mediated host resistance to Salmonella enterica systemic infection. By comparing the effect of IgG2a antibodies against Salmonella O-antigen in gene-targeted mice, we demonstrate that the complement system is essential for the IgG-mediated reduction of bacterial numbers in the tissues.


Assuntos
Complemento C3/metabolismo , Antígenos O/imunologia , Receptores de IgG/metabolismo , Infecções por Salmonella/imunologia , Vacinas contra Salmonella/imunologia , Salmonella enterica/fisiologia , Animais , Carga Bacteriana , Ativação do Complemento , Complemento C3/genética , Humanos , Imunidade Humoral , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG/genética
8.
PLoS Pathog ; 11(3): e1004749, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25794007

RESUMO

Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.


Assuntos
Cápsulas Bacterianas/metabolismo , Antígenos O/biossíntese , Shigella sonnei/metabolismo , Shigella sonnei/patogenicidade , Animais , Cápsulas Bacterianas/genética , Técnicas de Silenciamento de Genes , Antígenos O/genética , Coelhos , Shigella sonnei/genética
9.
Int J Med Microbiol ; 306(2): 99-108, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26746581

RESUMO

Outer membrane blebs are naturally shed by Gram-negative bacteria and are candidates of interest for vaccines development. Genetic modification of bacteria to induce hyperblebbing greatly increases the yield of blebs, called Generalized Modules for Membrane Antigens (GMMA). The composition of the GMMA from hyperblebbing mutants of Shigella flexneri 2a and Shigella sonnei were quantitatively analyzed using high-sensitivity mass spectrometry with the label-free iBAQ procedure and compared to the composition of the solubilized cells of the GMMA-producing strains. There were 2306 proteins identified, 659 in GMMA and 2239 in bacteria, of which 290 (GMMA) and 1696 (bacteria) were common to both S. flexneri 2a and S. sonnei. Predicted outer membrane and periplasmic proteins constituted 95.7% and 98.7% of the protein mass of S. flexneri 2a and S. sonnei GMMA, respectively. Among the remaining proteins, small quantities of ribosomal proteins collectively accounted for more than half of the predicted cytoplasmic protein impurities in the GMMA. In GMMA, the outer membrane and periplasmic proteins were enriched 13.3-fold (S. flexneri 2a) and 8.3-fold (S. sonnei) compared to their abundance in the parent bacteria. Both periplasmic and outer membrane proteins were enriched similarly, suggesting that GMMA have a similar surface to volume ratio as the surface to periplasmic volume ratio in these mutant bacteria. Results in S. flexneri 2a and S. sonnei showed high reproducibility indicating a robust GMMA-producing process and the low contamination by cytoplasmic proteins support the use of GMMA for vaccines. Data are available via ProteomeXchange with identifier PXD002517.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Superfície/análise , Proteômica , Shigella flexneri/imunologia , Shigella sonnei/imunologia , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Vacinas Bacterianas , Membrana Celular/imunologia , Membrana Celular/ultraestrutura , Disenteria Bacilar/prevenção & controle , Proteínas de Membrana/imunologia , Proteínas Periplásmicas/imunologia , Shigella flexneri/ultraestrutura , Shigella sonnei/ultraestrutura
10.
J Biol Chem ; 289(36): 24922-35, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25023285

RESUMO

Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Lipídeo A/imunologia , Shigella/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Acilação/imunologia , Aciltransferases/genética , Aciltransferases/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Lipídeo A/análise , Lipídeo A/metabolismo , Microscopia Eletrônica de Transmissão , Monócitos/imunologia , Monócitos/metabolismo , Mutação , Shigella/genética , Shigella/metabolismo , Shigella flexneri/genética , Shigella flexneri/imunologia , Shigella flexneri/metabolismo , Shigella sonnei/genética , Shigella sonnei/imunologia , Shigella sonnei/metabolismo , Transdução de Sinais/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
J Immunol Methods ; 528: 113652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458312

RESUMO

Streptococcus pyogenes, commonly referred to as Group A Streptococcus (Strep A), causes a spectrum of diseases, with the potential to progress into life-threatening illnesses and autoimmune complications. The escalating threat of antimicrobial resistance, stemming from the prevalent reliance on antibiotic therapies to manage Strep A infections, underscores the critical need for the development of disease control strategies centred around vaccination. Phagocytes play a critical role in controlling Strep A infections, and phagocytosis-replicating assays are essential for vaccine development. Traditionally, such assays have employed whole-blood killing or opsonophagocytic methods using HL-60 cells as neutrophil surrogates. However, assays mimicking Fcγ receptors- phagocytosis in clinical contexts are lacking. Therefore, here we introduce a flow cytometry-based method employing undifferentiated THP-1 cells as monocytic/macrophage model to swiftly evaluate the ability of human sera to induce phagocytosis of Strep A. We extensively characterize the assay's precision, linearity, and quantification limit, ensuring robustness. By testing human pooled serum, the assay proved to be suitable for the comparison of human sera's phagocytic capability against Strep A. This method offers a valuable complementary assay for clinical studies, addressing the gap in assessing FcγR-mediated phagocytosis. By facilitating efficient evaluation of Strep A -phagocyte interactions, it may contribute to elucidating the mechanisms required for the prevention of infections and inform the development of future vaccines and therapeutic advancements against Strep A infections.


Assuntos
Fagocitose , Infecções Estreptocócicas , Humanos , Citometria de Fluxo/métodos , Anticorpos Antibacterianos , Neutrófilos , Streptococcus pyogenes
12.
Pharmaceutics ; 16(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675229

RESUMO

Shigellosis is one of the leading causes of diarrheal disease in low- and middle-income countries, particularly in young children, and is more often associated with antimicrobial resistance. Therefore, a preventive vaccine against shigellosis is an urgent medical need. We have proposed Generalised Modules for Membrane Antigens (GMMA) as an innovative delivery system for Shigella sonnei O-antigen, and an Alhydrogel formulation (1790GAHB) has been extensively tested in preclinical and clinical studies. Alhydrogel has been used as an adsorbent agent with the main purpose of reducing potential GMMA systemic reactogenicity. However, the immunogenicity and systemic reactogenicity of this GMMA-based vaccine formulated with or without Alhydrogel have never been compared. In this work, we investigated the potential adjuvant effect of aluminium salt-based adjuvants (Alhydrogel and AS37) on S. sonnei GMMA immunogenicity in mice and rabbits, and we found that S. sonnei GMMA alone resulted to be strongly immunogenic. The addition of neither Alhydrogel nor AS37 improved the magnitude or the functionality of vaccine-elicited antibodies. Interestingly, rabbits injected with either S. sonnei GMMA adsorbed on Alhydrogel or S. sonnei GMMA alone showed a limited and transient body temperature increase, returning to baseline values within 24 h after each vaccination. Overall, immunisation with unadsorbed GMMA did not raise any concern for animal health. We believe that these data support the clinical testing of GMMA formulated without Alhydrogel, which would allow for further simplification of GMMA-based vaccine manufacturing.

13.
Front Cell Infect Microbiol ; 14: 1347813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487353

RESUMO

Introduction: Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods: These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results: Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion: Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Salmonella enterica , Humanos , Animais , Camundongos , Coelhos , Antígenos O/genética , Salmonella enterica/genética , Salmonella typhimurium/genética , Sorogrupo , Imunidade , Modelos Animais , Vacinas contra Salmonella/genética
14.
J Immunol Methods ; 526: 113618, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237697

RESUMO

The high burden of disease and the long-lasting sequelae following Streptococcus pyogenes (Strep A) infections make the development of an effective vaccine a global health priority. Streptolysin O (SLO), is a key toxin in the complex pathogenesis of Strep A infection. Antibodies are elicited against SLO after natural exposure and represent a key target for vaccine-induced immunity. Here we present the setup and characterization of a hemolysis assay to measure functionality of anti-SLO antibodies in human sera. Assay specificity, precision, linearity, reproducibility, and repeatability were determined. The assay was demonstrated to be highly sensitive, specific, reproducible, linear and performed well in assessing functionality of anti-SLO antibodies induced by exposed individuals. Moreover, different sources of critical reagents, in particular red- blood cells, have been compared and had minimal impact on assay performance. The assay presented here has throughput suitable for evaluating sera in vaccine clinical trials and sero-epidemiological studies to gain further insights into the functionality of infection- and vaccine-induced antibodies.


Assuntos
Infecções Estreptocócicas , Vacinas , Humanos , Streptococcus pyogenes , Hemólise , Reprodutibilidade dos Testes , Estreptolisinas/farmacologia , Proteínas de Bactérias , Anticorpos/farmacologia , Infecções Estreptocócicas/diagnóstico
15.
Front Immunol ; 15: 1374293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680489

RESUMO

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Assuntos
Anticorpos Antibacterianos , Aderência Bacteriana , Disenteria Bacilar , Humanos , Aderência Bacteriana/imunologia , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/diagnóstico , Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Shigella/imunologia , Shigella/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Shigella sonnei/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Células HeLa
16.
NPJ Vaccines ; 9(1): 56, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459072

RESUMO

Shigella spp. are a leading bacterial cause of diarrhea. No widely licensed vaccines are available and there is no generally accepted correlate of protection. We tested a S. sonnei Generalized Modules for Membrane Antigen (GMMA)-based vaccine (1790GAHB) in a phase 2b, placebo-controlled, randomized, controlled human infection model study (NCT03527173) enrolling healthy United States adults aged 18-50 years. We report analyses evaluating immune responses to vaccination, with the aim to identify correlates of risk for shigellosis among assessed immunomarkers. We found that 1790GAHB elicited S. sonnei lipopolysaccharide specific α4ß7+ immunoglobulin (Ig) G and IgA secreting B cells which are likely homing to the gut, indicating the ability to induce a mucosal in addition to a systemic response, despite parenteral delivery. We were unable to establish or confirm threshold levels that predict vaccine efficacy facilitating the evaluation of vaccine candidates. However, serum anti-lipopolysaccharide IgG and bactericidal activity were identified as potential correlates of risk for shigellosis.

17.
Front Immunol ; 15: 1340425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361949

RESUMO

Background: Shigellosis mainly affects children under 5 years of age living in low- and middle-income countries, who are the target population for vaccination. There are, however, limited data available to define the appropriate timing for vaccine administration in this age group. Information on antibody responses following natural infection, proxy for exposure, could help guide vaccination strategies. Methods: We undertook a retrospective analysis of antibodies to five of the most prevalent Shigella serotypes among children aged <5 years in Kenya. Serum samples from a cross-sectional serosurvey in three Kenyan sites (Nairobi, Siaya, and Kilifi) were analyzed by standardized ELISA to measure IgG against Shigella sonnei and Shigella flexneri 1b, 2a, 3a, and 6. We identified factors associated with seropositivity to each Shigella serotype, including seropositivity to other Shigella serotypes. Results: A total of 474 samples, one for each participant, were analyzed: Nairobi (n = 169), Siaya (n = 185), and Kilifi (n = 120). The median age of the participants was 13.4 months (IQR 7.0-35.6), and the male:female ratio was 1:1. Geometric mean concentrations (GMCs) for each serotype increased with age, mostly in the second year of life. The overall seroprevalence of IgG antibodies increased with age except for S. flexneri 6 which was high across all age subgroups. In the second year of life, there was a statistically significant increase of antibody GMCs against all five serotypes (p = 0.01-0.0001) and a significant increase of seroprevalence for S. flexneri 2a (p = 0.006), S. flexneri 3a (p = 0.006), and S. sonnei (p = 0.05) compared with the second part of the first year of life. Among all possible pairwise comparisons of antibody seropositivity, there was a significant association between S. flexneri 1b and 2a (OR = 6.75, 95% CI 3-14, p < 0.001) and between S. flexneri 1b and 3a (OR = 23.85, 95% CI 11-54, p < 0.001). Conclusion: Children living in low- and middle-income settings such as Kenya are exposed to Shigella infection starting from the first year of life and acquire serotype-specific antibodies against multiple serotypes. The data from this study suggest that Shigella vaccination should be targeted to infants, ideally at 6 or at least 9 months of age, to ensure children are protected in the second year of life when exposure significantly increases.


Assuntos
Disenteria Bacilar , Shigella , Lactente , Criança , Humanos , Masculino , Feminino , Pré-Escolar , Quênia/epidemiologia , Sorogrupo , Imunoglobulina G , Estudos Retrospectivos , Estudos Soroepidemiológicos , Estudos Transversais , Vacinação
18.
Methods Mol Biol ; 2700: 249-269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603186

RESUMO

Vaccines adjuvants are critically needed to enhance the effectiveness of subunit vaccines. Due to their ability to link the innate with the adaptive immune response, Toll-like receptor (TLR) agonists have received great attention as adjuvants in vaccines against severe and complex diseases such as cancer, AIDS, and malaria. Here, we describe in vitro assays, e.g., the Monocyte Activation Test, TLR-specific activation assay, and TLR-blocking experiments, used to assess TLR agonists adjuvanted vaccines' safety and to characterize their ability to stimulate the innate immunity. Such assays are physiologically relevant as they work with human cells and allow to overcome the complexity and variability related to in vivo assays.


Assuntos
Adjuvantes Imunológicos , Adjuvantes de Vacinas , Humanos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Apresentação de Antígeno , Bioensaio
19.
Front Cell Infect Microbiol ; 13: 1171213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260708

RESUMO

Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.


Assuntos
Disenteria Bacilar , Shigella , Animais , Humanos , Anticorpos Antibacterianos , Shigella/fisiologia , Imunoglobulinas , Mucosa Intestinal/microbiologia , Shigella flexneri
20.
Carbohydr Polym ; 314: 120920, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173008

RESUMO

Outer membrane vesicles (OMV) represent an innovative platform for the design of polysaccharide based vaccines. Generalized Modules for Membrane Antigens (GMMA), OMV released from engineered Gram-negative bacteria, have been proposed for the delivery of the O-Antigen, key target for protective immunity against several pathogens including Shigella. altSonflex1-2-3 is a GMMA based vaccine, including S. sonnei and S. flexneri 1b, 2a and 3a O-Antigens, with the aim to elicit broad protection against the most prevalent Shigella serotypes, especially affecting children in low-middle income countries. Here we developed an In Vitro Relative Potency assay, based on recognition of O-Antigen by functional monoclonal antibodies selected to bind the key epitopes of the different O-Antigen active ingredients, directly applied to our Alhydrogel-formulated vaccine. Heat-stressed altSonflex1-2-3 formulations were generated and extensively characterized. The impact of detected biochemical changes in in vivo and in vitro potency assays was assessed. The overall results showed how the in vitro assay can replace the use of animals, overcoming the inherently high variability of in vivo potency studies. The entire panel of physico-chemical methods developed will contribute to detect suboptimal batches and will be valuable to perform stability studies. The work on Shigella vaccine candidate can be easily extended to other O-Antigen based vaccines.


Assuntos
Vacinas contra Shigella , Shigella , Animais , Antígenos O , Shigella sonnei/metabolismo , Vacinas contra Shigella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA