Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Biomed Online ; 45(1): 125-134, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523710

RESUMO

RESEARCH QUESTION: What is the genetic cause of sporadic and recurrent pregnancy loss and does the frequency and nature of chromosomal abnormalities play a role? Types and frequency of all identifiable chromosomal abnormalities were determined to inform our understanding, medical management and recurrence risk for patients experiencing pregnancy loss. DESIGN: Genome-wide single-nucleotide polymorphism-based chromosomal microarray (SNP-CMA) were used to evaluate 24,900 products of conception samples from various forms of pregnancy losses. RESULTS: Sporadic miscarriage (64.7%) or recurrent pregnancy loss (RPL) (22%) were the most common referrals. Clinically significant abnormalities were observed in 55.8% (13,910) of samples, variants of uncertain significance in 1.8%, and normal results in 42.4%. In addition to autosomal trisomies (in 36% of samples), polyploidy and large segmental imbalances were identified in 7.8% and 2.8% of samples, respectively. Analysis of sequential samples from 1103 patients who had experienced RPL provided important insight into possible predispositions to RPL. CONCLUSIONS: This expansive chromosomal microarray analyses of pregnancy loss samples illuminates our understanding of the full spectrum, relative frequencies and the role of genomic abnormalities in pregnancy loss. The empiric observations described here provide useful insight for clinicians and highlight the importance of high-resolution genomic testing for comprehensive evaluation and risk assessment of individuals experiencing pregnancy loss.


Assuntos
Aborto Habitual , Aborto Induzido , Aborto Habitual/genética , Aberrações Cromossômicas , Feminino , Testes Genéticos , Genômica , Humanos , Gravidez
2.
Am J Hum Genet ; 103(5): 740-751, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388401

RESUMO

Androgenetic complete hydatidiform moles are human pregnancies with no embryos and affect 1 in every 1,400 pregnancies. They have mostly androgenetic monospermic genomes with all the chromosomes originating from a haploid sperm and no maternal chromosomes. Androgenetic complete hydatidiform moles were described in 1977, but how they occur has remained an open question. We identified bi-allelic deleterious mutations in MEI1, TOP6BL/C11orf80, and REC114, with roles in meiotic double-strand breaks formation in women with recurrent androgenetic complete hydatidiform moles. We investigated the occurrence of androgenesis in Mei1-deficient female mice and discovered that 8% of their oocytes lose all their chromosomes by extruding them with the spindles into the first polar body. We demonstrate that Mei1-/- oocytes are capable of fertilization and 5% produce androgenetic zygotes. Thus, we uncover a meiotic abnormality in mammals and a mechanism for the genesis of androgenetic zygotes that is the extrusion of all maternal chromosomes and their spindles into the first polar body.


Assuntos
Androgênios/genética , Mola Hidatiforme/genética , Mutação/genética , Alelos , Animais , Cromossomos/genética , Feminino , Humanos , Masculino , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/patologia , Gravidez , Zigoto/patologia
4.
Mod Pathol ; 33(5): 880-892, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31857680

RESUMO

Hydatidiform mole (HM) is an aberrant human pregnancy characterized by excessive trophoblastic proliferation and abnormal embryonic development. HM has two morphological types, complete (CHM) and partial (PHM), and non-recurrent ones have three genotypic types, androgenetic monospermic, androgenetic dispermic, and triploid dispermic. Most available studies on risk factors predisposing to different types of HM and their malignant transformation mainly suffer from the lack of comprehensive genotypic analysis of large cohorts of molar tissues combined with accurate postmolar hCG follow-up. Moreover, 10-20% of patients with one HM have at least one non-molar miscarriage, which is higher than the frequency of two pregnancy losses in the general population (2-5%), suggesting a common genetic susceptibility to HM and miscarriages. However, the underlying causes of the miscarriages in these patients are unknown. Here, we comprehensively analyzed 204 HM, mostly from patients referred to the Quebec Registry of Trophoblastic Diseases and for which postmolar hCG monitoring is available, and 30 of their non-molar miscarriages. We revisited the risk of maternal age and neoplastic transformation across the different HM genotypic categories and investigated the presence of chromosomal abnormalities in their non-molar miscarriages. We confirm that androgenetic CHM is more prone to gestational trophoblastic neoplasia (GTN) than triploid dispermic PHM, and androgenetic dispermic CHM is more prone to high-risk GTN and choriocarcinoma (CC) than androgenetic monospermic CHM. We also confirm the association between increased maternal age and androgenetic CHM and their malignancies. Most importantly, we demonstrate for the first time that patients with an HM and miscarriages are at higher risk for aneuploid miscarriages [83.3%, 95% confidence interval (CI): 0.653-0.944] than women with sporadic (51.5%, 95% CI: 50.3-52.7%, p value = 0.0003828) or recurrent miscarriages (43.8%, 95% CI: 40.7-47.0%, p value = 0.00002). Our data suggest common genetic female germline defects predisposing to HM and aneuploid non-molar miscarriages in some patients.


Assuntos
Mola Hidatiforme/genética , Neoplasias Uterinas/genética , Aborto Habitual/genética , Adulto , Feminino , Genótipo , Humanos , Idade Materna , Pessoa de Meia-Idade , Gravidez , Fatores de Risco
5.
Genet Med ; 21(5): 1121-1130, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30293986

RESUMO

PURPOSE: Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test. METHODS: We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases. RESULTS: We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs. CONCLUSION: Robust identification of CNVs by GS is possible within a clinical testing environment.


Assuntos
Variações do Número de Cópias de DNA/genética , Doenças Raras/genética , Doenças não Diagnosticadas/genética , Adolescente , Criança , Pré-Escolar , Mapeamento Cromossômico/métodos , Estudos de Coortes , Feminino , Testes Genéticos/métodos , Genoma Humano , Genômica/métodos , Humanos , Lactente , Masculino , Doenças Raras/diagnóstico , Doenças não Diagnosticadas/diagnóstico , Sequenciamento Completo do Genoma/métodos , Adulto Jovem
6.
Mod Pathol ; 31(7): 1116-1130, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29463882

RESUMO

Hydatidiform mole is an aberrant human pregnancy characterized by early embryonic arrest and excessive trophoblastic proliferation. Recurrent hydatidiform moles are defined by the occurrence of at least two hydatidiform moles in the same patient. Fifty to eighty percent of patients with recurrent hydatidiform moles have biallelic pathogenic variants in NLRP7 or KHDC3L. However, in the remaining patients, the genotypic types of the moles are unknown. We characterized 80 new hydatidiform mole tissues, 57 of which were from patients with no mutations in the known genes, and we reviewed the genotypes of a total of 123 molar tissues. We also reviewed mutation analysis in 113 patients with recurrent hydatidiform moles. While all hydatidiform moles from patients with biallelic NLRP7 or KHDC3L mutations are diploid biparental, we demonstrate that those from patients without mutations are highly heterogeneous and only a small minority of them are diploid biparental (8%). The other mechanisms that were found to recur in patients without mutations are diploid androgenetic monospermic (24%) and triploid dispermic (32%); the remaining hydatidiform moles were misdiagnosed as moles due to errors in the analyses and/or their unusual mechanisms. We compared three parameters of genetic susceptibility in patients with and without mutations and show that patients without mutations are mostly from non-familial cases, have fewer reproductive losses, and more live births. Our data demonstrate that patients with recurrent hydatidiform moles and no mutations in the known genes are, in general, different from those with mutations; they have a milder genetic susceptibility and/or a multifactorial etiology underlying their recurrent hydatidiform moles. Categorizing these patients according to the genotypic types of their recurrent hydatidiform moles may facilitate the identification of novel genes for this entity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Mola Hidatiforme/genética , Segunda Neoplasia Primária/genética , Proteínas/genética , Neoplasias Uterinas/genética , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Gravidez
7.
Prenat Diagn ; 38(3): 184-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315677

RESUMO

OBJECTIVE: The American College of Obstetricians and Gynecologists (ACOG) and Society for Maternal-Fetal Medicine (SMFM) recommend chromosomal microarray analysis (CMA) for prenatal diagnosis in cases with 1 or more fetal structural abnormalities. For patients who elect prenatal diagnosis and have a structurally normal fetus, either microarray or karyotype is recommended. This study evaluates the frequency of clinically significant chromosomal abnormalities (CSCA) that would have been missed if all patients offered the choice between CMA and karyotyping chose karyotyping. METHODS: A total of 3223 prenatal samples undergoing CMA were evaluated. Cases were categorized into 2 groups: those that met ACOG guidelines for CMA versus those that met ACOG guidelines for either CMA or karyotype. RESULTS: Of the 3223 cases, 1475 (45.8%) met ACOG recommendations for CMA, and 1748 (54.2%) met recommendations for either CMA or karyotype. In patients who could have elected either CMA or karyotype, 2.5% had CSCA that would have been missed if the patient had elected to pursue karyotype. CONCLUSION: This study suggests that 2.5% of patients will have a CSCA that may be missed if the guidelines continue to suggest that CMA and karyotyping have equivalent diagnostic value for patients without a fetal structural abnormality.


Assuntos
Aberrações Cromossômicas , Cariotipagem , Análise de Sequência com Séries de Oligonucleotídeos , Diagnóstico Pré-Natal/normas , Feminino , Fidelidade a Diretrizes , Humanos , Guias de Prática Clínica como Assunto , Gravidez , Estudos Retrospectivos , Sociedades Médicas
8.
Genet Med ; 19(1): 83-89, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27337029

RESUMO

PURPOSE: Chromosomal microarray analysis (CMA) is currently considered first-tier testing in pediatric care and prenatal diagnosis owing to its high diagnostic sensitivity for chromosomal imbalances. The aim of this study was to determine the efficacy and diagnostic power of CMA in both fresh and formalin-fixed paraffin-embedded (FFPE) samples of products of conception (POCs). METHODS: Over a 44-month period, 8,118 consecutive samples were received by our laboratory for CMA analysis. This included both fresh (76.4%) and FFPE samples (22.4%), most of which were ascertained for recurrent pregnancy loss and/or spontaneous abortion (83%). The majority of samples were evaluated by a whole-genome single-nucleotide polymorphism (SNP)-based array (81.6%); the remaining samples were evaluated by array-comparative genomic hybridization (CGH). RESULTS: A successful result was obtained in 7,396 of 8,118 (91.1%), with 92.4% of fresh tissue samples and 86.4% of FFPE samples successfully analyzed. Clinically significant abnormalities were identified in 53.7% of specimens (3,975 of 7,396), 94% of which were considered causative. CONCLUSION: Analysis of POC specimens by karyotyping fails in 20-40% of cases. SNP-based CMA is a robust platform, with successful results obtained in >90% of cases. SNP-based CMA can identify aneuploidy, polyploidy, whole-genome homozygosity, segmental genomic imbalances, and maternal cell contamination, thus maximizing sensitivity and decreasing false-negative results. Understanding the etiology of fetal loss enables clarification of recurrence risk and assists in determining appropriate management for future family planning.Genet Med 19 1, 83-89.


Assuntos
Aborto Espontâneo/genética , Hibridização Genômica Comparativa/métodos , Testes Genéticos , Diagnóstico Pré-Natal , Aborto Espontâneo/diagnóstico , Adulto , Fatores Etários , Aneuploidia , Aberrações Cromossômicas , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Cariotipagem/métodos , Pessoa de Meia-Idade , Inclusão em Parafina , Polimorfismo de Nucleotídeo Único , Gravidez
9.
Genet Med ; 17(3): 234-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25101914

RESUMO

PURPOSE: Recent published studies have demonstrated the incremental value of the use of cell-free DNA for noninvasive prenatal testing with 100% sensitivity for trisomies 21 and 18 and a specificity of ≥99.7% for both. Data presented by two independent groups suggesting positive results by noninvasive prenatal testing were not confirmed by cytogenetic studies. METHODS: Concordance of results among cases with noninvasive prenatal testing referred for cytogenetic prenatal and/or postnatal studies by karyotyping, fluorescence in situ hybridization, and/or oligo-single-nucleotide polymorphism microarray was evaluated for 109 consecutive specimens. RESULTS: Cytogenetic results were positive for trisomy 21 in 38 of the 41 noninvasive prenatal testing-positive cases (true-positive rate: 93%) and for trisomy 18 in 16 of the 25 noninvasive prenatal testing-positive cases (true-positive rate: 64%). The true-positive rate was only 44% (7/16 cases) for trisomy 13 and 38% (6/16 cases) for sex chromosome aneuploidy. CONCLUSION: These findings raise concerns about the limitations of noninvasive prenatal testing and the need for analysis of a larger number of false-positive cases to provide true positive predictive values for noninvasive testing and to search for potential biological or technical causes. Our data suggest the need for a careful interpretation of noninvasive prenatal testing results and cautious transmission of the same to providers and patients.


Assuntos
Análise Citogenética/métodos , Síndrome de Down/diagnóstico , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Sistema Livre de Células , Cromossomos Humanos Par 18 , Feminino , Humanos , Gravidez , Sensibilidade e Especificidade , Síndrome da Trissomía do Cromossomo 18
10.
Appl Opt ; 54(30): 8867-71, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26560372

RESUMO

A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

11.
Appl Opt ; 54(18): 5639-44, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26193007

RESUMO

Spectral emission/absorption-based sensors are commonly used to monitor explosives, narcotics, and other restricted materials in high-security zones such as airports. Monitoring a broad range of spectral wavelengths with high spectral resolution would increase the repertoire of chemicals that can be monitored. However, a portable unit will have limitations in meeting these requirements. Optical fibers can be employed for collecting and transmitting spectral signals from portable sensor heads (PSHs) to a sensitive central spectral analyzer. However, simultaneous detection by sensors in multiple PSHs needs to be differentiated for identifying individual PSHs. An optical encoding method is presented in this paper for use of a portable unit for highly sensitive measurement. The methodology is demonstrated through a simulation using MATLAB Simulink.

12.
Am J Med Genet A ; 161A(7): 1695-701, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686718

RESUMO

Angelman and Prader-Willi syndromes are reciprocal imprinting disorders caused by loss of maternally or paternally expressed genes, respectively, within 15q11.2-q13. Angelman syndrome (AS; OMIM 105830) is a neurodevelopmental disorder and is due to the loss of maternally expressed UBE3A gene. Prader-Willi syndrome (PWS; OMIM 176270) is a clinically distinct disorder caused by the loss of paternally expressed genes in the human chromosome region 15q11.2-q13. Recently published data strongly suggest a role for the paternally expressed small nucleolar RNA (snoRNA) cluster, SNORD116, in PWS etiology. Uniparental disomy (UPD) 15 is one of the important causes of PWS and AS. Interestingly, balanced and unbalanced chromosomal aberrations in the form of Robertsonian translocation, isochromosomes, supernumerary marker chromosomes and copy number variations have been strongly linked with the occurrence of UPD. Here we report on a very unique case with a mosaic isochromosome for the entire long arm of 15, that is, i(15)(q10), resulting in mosaic uniparental isodisomy for 15q and with no copy number alterations. This is the first report of UPD15 constituted by a mosaic, but copy number neutral chromosomal rearrangement in a patient with a variant PWS-like phenotype.


Assuntos
Cromossomos Humanos Par 15 , Isocromossomos , Obesidade Mórbida/genética , Síndrome de Prader-Willi/genética , Dissomia Uniparental , Adolescente , Feminino , Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas Centrais de snRNP/genética
13.
Biomedicines ; 11(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38137484

RESUMO

Structural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization (FISH), which have been employed globally for the past three decades, have significant limitations in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither cultured cells nor amplification of DNA, addressing the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) according to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes), 18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total of 215 datasets, Inc.luding replicates, were generated, and analyzed successfully. Sample data were then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at higher resolution. The results of this validation study demonstrate the superiority of OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.

14.
Neurogenetics ; 13(1): 31-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22218741

RESUMO

Interstitial deletions of 6q are associated with variable phenotypes, including growth retardation, dysmorphic features, upper limb malformations, and Prader-Willi (PW)-like features. Only a minority of cases in the literature have been characterized with high resolution techniques, making genotype-phenotype correlations difficult. We report 12 individuals with overlapping, 200-kb to 16.4-Mb interstitial deletions within 6q15q22.33 characterized by microarray-based comparative genomic hybridization to better correlate deletion regions with specific phenotypes. Four individuals have a PW-like phenotype, though only two have deletion of SIM1, the candidate gene for this feature. Therefore, other genes on 6q may contribute to this phenotype including multiple genes on 6q16 and our newly proposed candidate, the transcription cofactor gene VGLL2 on 6q22.2. Two individuals present with movement disorders as a major feature, and ataxia is present in a third. The 4.1-Mb 6q22.1q22.2 critical region for movement disorders includes the cerebellar-expressed candidate gene GOPC. Observed brain malformations include thick corpus callosum in two subjects, cerebellar vermal hypoplasia in two subjects, and cerebellar atrophy in one subject. Seven subjects' deletions overlap a ~250-kb cluster of four genes on 6q22.1 including MARCKS, HDAC2, and HS3ST5, which are involved in neural development. Two subjects have only this gene cluster deleted, and one deletion was apparently de novo, suggesting at least one of these genes plays an important role in development. Although the phenotypes associated with 6q deletions can vary, using overlapping deletions to delineate critical regions improves genotype-phenotype correlation for interstitial 6q deletions.


Assuntos
Estudos de Associação Genética , Anormalidades Múltiplas/genética , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 6/genética , Biologia Computacional , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Análise em Microsséries , Adulto Jovem
15.
Opt Express ; 20(3): 2116-23, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330452

RESUMO

Optical properties of InGaN/GaN multi-quantum-well (MQW) structures with a nanolayer of Ag/SiO2 nanoparticle (NP) on top were studied. Modeling and optical absorption (OA) measurements prove that the NPs form localized surface plasmons (LSP) structure with a broad OA band peaked near 440-460 nm and the fringe electric field extending down to about 10 nm into the GaN layer. The presence of this NP LSP electrical field increases the photoluminescence (PL) intensity of the MQW structure by about 70% and markedly decreases the time-resolved PL (TRPL) relaxation time due to the strong coupling of MQW emission to the LSP mode.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Teóricos , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
16.
Am J Med Genet A ; 158A(10): 2602-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22965764

RESUMO

Disturbances in the form of microduplications and microdeletions have been found throughout the genome and have been associated with autism, intellectual disability, and recognizable malformation syndromes. In our study of 187 probands with autism, we have identified a duplication in Xq25 including full gene duplication of OCRL and six flanking genes. Activity of the enzyme gene product in fibroblasts was elevated to over twice the level in control fibroblasts. The boy had no somatic or neurological findings reminiscent of Lowe syndrome.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos X/genética , Duplicação Gênica , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Humanos , Masculino
17.
Hum Mol Genet ; 18(12): 2188-203, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19324899

RESUMO

Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from approximately 250 kb to approximately 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.


Assuntos
Duplicação Gênica , Rearranjo Gênico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Transcrição Gênica , Estudos de Coortes , Quebras de DNA , Reparo do DNA , Feminino , Humanos , Sequências Repetidas Invertidas , Masculino , Moldes Genéticos
19.
Genet Med ; 13(10): 868-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21792059

RESUMO

PURPOSE: : Recently, molecular cytogenetic techniques have identified novel copy number variants in individuals with schizophrenia. However, no large-scale prospective studies have been performed to characterize the broader spectrum of phenotypes associated with such copy number variants in individuals with unexplained physical and intellectual disabilities encountered in a diagnostic setting. METHODS: : We analyzed 38,779 individuals referred to our diagnostic laboratory for microarray testing for the presence of copy number variants encompassing 20 putative schizophrenia susceptibility loci. We also analyzed the indications for study for individuals with copy number variants overlapping those found in six individuals referred for schizophrenia. RESULTS: : After excluding larger gains or losses that encompassed additional genes outside the candidate loci (e.g., whole-arm gains/losses), we identified 1113 individuals with copy number variants encompassing schizophrenia susceptibility loci and 37 individuals with copy number variants overlapping those present in the six individuals referred to our laboratory for schizophrenia. Of these, 1035 had a copy number variant of one of six recurrent loci: 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11, and 22q11.2. The indications for study for these 1150 individuals were diverse and included developmental delay, intellectual disability, autism spectrum, and multiple congenital anomalies. CONCLUSION: : The results from our study, the largest genotype-first analysis of schizophrenia susceptibility loci to date, suggest that the phenotypic effects of copy number variants associated with schizophrenia are pleiotropic and imply the existence of shared biologic pathways among multiple neurodevelopmental conditions.


Assuntos
Sintomas Comportamentais/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Loci Gênicos , Transtornos do Desenvolvimento da Linguagem/genética , Esquizofrenia/genética , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos , Hibridização Genômica Comparativa , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Hereditariedade , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem
20.
Am J Med Genet A ; 155A(12): 3110-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22065534

RESUMO

Fragile X E (FRAXE) is an X-linked form of intellectual disability characterized by mild to moderate cognitive impairment, speech delay, hyperactivity, and autistic behavior. The folate-sensitive fragile site FRAXE is located in Xq28 approximately 600 kb distal to the fragile X syndrome fragile site (FRAXA) and harbors an unstable GCC (CCG) triplet repeat adjacent to a CpG island in the 5' untranslated region of the AFF2 (FMR2) gene. The disorder results from amplification and methylation of the GCC repeat and resultant silencing of AFF2. Although chromosome abnormalities that disrupt AFF2 have been reported in two individuals with mild-moderate intellectual disability, microdeletions of Xq28 that delete only AFF2 have not been described as a potential cause of FRAXE-intellectual disability. We performed clinical and molecular characterization of two males with 240 and 499 kb deletions, respectively, at Xq28, both of which encompassed only one gene, AFF2. The 240 kb deletion in Patient 1 was intragenic and lead to the loss of 5' exons 2-4 of AFF2; the 499 kb deletion in Patient 2 removed the 5' exons 1-2 of AFF2 including approximately 350 kb upstream of the gene. Both individuals had developmental and speech delay, and one had mild dysmorphism. We predict disruption of AFF2 in these two patients is likely the cause of their overlapping phenotypes.


Assuntos
Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Proteínas Nucleares/genética , Aberrações dos Cromossomos Sexuais , Pré-Escolar , Cromossomos Humanos X , Deficiências do Desenvolvimento/diagnóstico , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA