Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 188: 106537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211834

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. The interaction mediated by the presence of adhesins on the fungal surface and receptors in the extracellular matrix of the host, as well as the biofilm formation, is essential in its pathogenesis. Adhesins such as gp43, enolase, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 14-3-3 have been demonstrated in the Paracoccidioides brasiliensis (Pb18) strain and recognized as necessary in the fungus-host interaction. The Pb 18 strain silenced to 14-3-3 showed changes in morphology, virulence, and adhesion capacity. The study aimed to evaluate the role of adhesin 14-3-3 in P. brasiliensis biofilm formation and the differential expression of genes related to adhesins, comparing planktonic and biofilm forms. The presence of biofilm was also verified in sutures in vitro and in vivo. The silenced strain (Pb14-3-3 aRNA) was compared with the wild type Pb18, determining the differential metabolic activity between the strains by the XTT reduction assay; the biomass by violet crystal and the polysaccharides by safranin, even as morphological differences by microscopic techniques. Differential gene expression for adhesins was also analyzed, comparing the relative expression of these in planktonic and biofilm forms at different times. The results suggested that the silencing of 14-3-3 protein altered the ability to form biofilm and its metabolism. The quantity of biomass was similar in both strains; however, the formation of exopolymeric substances and polysaccharide material was lower in the silenced strain. Our results showed increased expression of enolase, GAPDH, and 14-3-3 genes in the first periods of biofilm formation in the Pb18 strain. In contrast, the silenced strain showed a lower expression of these genes, indicating that gene silencing can influence the expression of other genes and be involved in the biofilm formation of P. brasiliensis. In vitro and in vivo assays using sutures confirmed this yeast's ability to form biofilm and may be implicated in the pathogenesis of paracoccidioidomycosis.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Paracoccidioides/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases , Biofilmes , Adesinas Bacterianas/metabolismo , Fosfopiruvato Hidratase/genética
2.
Arch Biochem Biophys ; 753: 109884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218361

RESUMO

The spread of fungi resistant to conventional drugs has become a threatening problem. In this context, antimicrobial peptides (AMPs) have been considered as one of the main alternatives for controlling fungal infections. Here, we report the antifungal and antibiofilm activity and some clues about peptide RQ18's mechanism of action against Candida and Cryptococcus. This peptide inhibited yeast growth from 2.5 µM and killed all Candida tropicalis cells within 2 h incubation. Moreover, it showed a synergistic effect with antifungal agent the amphotericin b. RQ18 reduced biofilm formation and promoted C. tropicalis mature biofilms eradication. RQ18's mechanism of action involves fungal cell membrane damage, which was confirmed by the results of RQ18 in the presence of free ergosterol in the medium and fluorescence microscopy by Sytox green. No toxic effects were observed in murine macrophage cell lines and Galleria mellonella larvae, suggesting fungal target selectivity. Therefore, peptide RQ18 represents a promising strategy as a dual antifungal and antibiofilm agent that contributes to infection control without damaging mammalian cells.


Assuntos
Anfotericina B , Antifúngicos , Animais , Camundongos , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Peptídeos/farmacologia , Candida tropicalis , Biofilmes , Testes de Sensibilidade Microbiana , Mamíferos
3.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499446

RESUMO

Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.


Assuntos
Arthrodermataceae , Curcumina , Curcumina/análogos & derivados , Antifúngicos/farmacologia , Candida , Curcumina/farmacologia , Testes de Sensibilidade Microbiana , Ergosterol , Trichophyton
4.
Mem Inst Oswaldo Cruz ; 116: e200592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787770

RESUMO

BACKGROUND: Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES: In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS: The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS: In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS: In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.


Assuntos
Fibroblastos , Macrófagos , Paracoccidioides/genética , Paracoccidioidomicose/genética , Fatores de Virulência/genética , Expressão Gênica , Humanos , América Latina , Paracoccidioides/patogenicidade
5.
Biofouling ; 36(5): 516-527, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32619153

RESUMO

Candida yeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide-PEP-IA18-was evaluated against Candida species. PEP-IA18 was designed from the primary sequence of profilin, a protein from Spodoptera frugiperda, and displayed potent activity against Candida albicans and Candida tropicalis, showing a minimum inhibitory concentration (MIC) of 2.5 µM. Furthermore, the mechanism of action of PEP-IA18 involved interaction with the cell membrane (ergosterol complexation). Treatment at MIC and/or 10 × MIC significantly reduced biofilm formation and viability. PEP-IA18 showed low toxicity toward human fibroblasts and only revealed hemolytic activity at high concentrations. Thus, PEP-IA18 exhibited antifungal and anti-biofilm properties with potential applicability in the treatment of infections caused by Candida species.


Assuntos
Antifúngicos/farmacologia , Biofilmes , Candida , Profilinas/farmacologia , Spodoptera/microbiologia , Animais , Candida albicans , Humanos , Testes de Sensibilidade Microbiana , Peptídeos
6.
Mem Inst Oswaldo Cruz ; 115: e200349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997002

RESUMO

BACKGROUND: Essential oils (EO) extracted from Cinnamomum verum has been used as an antimicrobial agents for centuries. The effects of C. verum leaf oil against virulence of microorganisms is not well studied yet. OBJECTIVES: This study evaluates the effect of C. verum leaf oil against three virulence factors of Candida albicans, C. tropicalis and C. dubliniensis and its in-vivo toxicity. METHODS: Chemical composition of EO was determined using gas chromatography-mass spectrometry (GC-MS). Minimum inhibitory concentration (MIC) was determined using clinical and laboratory standards institute (CLSI) M27-A3 broth microdilution. Effect of EO on initial adhesion was quantified using XTT assay after allowing Candida cells to adhere to the polystyrene surface for 2 h. Biofilm formation of Candida in the presence of EO was quantified using XTT viability assay. Efficacy on reduction of germ tube formation was evaluated using standard protocol. Visualisation of biofilm formation and progression under the EO treatment were done using scanning electron microscope (SEM) and Time lapses microscope respectively. In-vivo toxicity of EO was determined using Galleria mellonella larvae. Chlorhexidine digluconate: positive control. RESULTS: Eugenol was the main compound of EO. MIC was 1.0 mg/mL. 50% reduction in initial adhesion was achieved by C. albicans, C. tropicalis and C. dubliniensis with 1.0, > 2.0 and 0.34 mg/mL respectively. 0.5 and 1.0 mg/mL significantly inhibit the germ tube formation. MBIC50 for forming biofilms were ≤ 0.35 mg/mL. 1.0 mg/mL prevent biofilm progression of Candida. SEM images exhibited cell wall damages, cellular shrinkages and decreased hyphal formation. No lethal effect was noted with in-vivo experiment model at any concentration tested. CONCLUSION: C. verum leaf oil acts against virulence factors of Candida and does not show any toxicity.


Assuntos
Candida/efeitos dos fármacos , Cinnamomum zeylanicum/química , Óleos Voláteis , Antifúngicos , Humanos , Fatores de Virulência
7.
Biofouling ; 35(3): 340-349, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31066298

RESUMO

This study evaluated the effect of antimicrobial photodynamic therapy (aPDT) on S. mutans using diacetylcurcumin (DAC) and verified DAC toxicity. In vitro, S. mutans biofilms were exposed to curcumin (CUR) and DAC and were light-irradiated. Biofilms were collected, plated and incubated for colony counts. DAC and CUR toxicity assays were conducted with Human Gingival Fibroblast cells (HGF). In vivo, G. mellonella larvae were injected with S. mutans and treated with DAC, CUR and aPDT. The hemolymph was plated and incubated for colony counts. Significant reductions were observed when DAC and CUR alone were used and when aPDT was applied. HGF assays demonstrated no differences in cell viability for most groups. DAC and CUR reduced the S. mutans load in G. mellonella larvae both alone and with aPDT. Systematic toxicity assays on G. mellonella demonstrated no effect of DAC and CUR or aPDT on the survival curve.


Assuntos
Antibacterianos/farmacologia , Curcumina/análogos & derivados , Fármacos Fotossensibilizantes/farmacologia , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Curcumina/farmacologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Fotoquimioterapia , Streptococcus mutans/fisiologia
8.
Biofouling ; 35(2): 129-142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30950296

RESUMO

The present study investigated the antimicrobial, anti-adhesion and anti-biofilm activity of the modified synthetic molecules nitrochalcone (NC-E05) and pentyl caffeate (C5) against microorganisms which have a high incidence in hospital-acquired infections. The compounds were further tested for their preliminary systemic toxicity in vivo. NC-E05 and C5 showed antimicrobial activity, with minimum inhibitory concentrations (MICs) ranging between 15.62 and 31.25 µg ml-1. Treatment with NC-E05 and C5 at 1 × MIC and/or 10 × MIC significantly reduced mono or mixed-species biofilm formation and viability. At MIC/2, the compounds decreased microbial adhesion to HaCaT keratinocytes from 1 to 3 h (p < 0.0001). In addition, NC-E05 and C5 demonstrated low toxicity in vivo in the Galleria mellonella model at anti-biofilm concentrations. Thus, the chemical modification of these molecules proved to be effective in the proposed anti-biofilm activity, opening opportunities for the development of new antimicrobials.


Assuntos
Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Chalconas/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Anti-Infecciosos/toxicidade , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Biofilmes/crescimento & desenvolvimento , Ácidos Cafeicos/toxicidade , Candida albicans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chalconas/toxicidade , Infecção Hospitalar/prevenção & controle , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
9.
Microb Pathog ; 105: 280-287, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28259673

RESUMO

Brazilian endemic fruit species have aroused attention due to their highly valuable, yet unexplored, agro-industrial, food and therapeutic potential. Herein, we describe the antifungal activity of four Eugenia spp. against Candida albicans biofilms, and further demonstrate insights into their potential mode(s) of action and toxicity in vitro and in vivo. Extracts from different parts (seeds, pulps, leaves) of E. leitonii (EL), E. brasiliensis (EB), E. myrcianthes (EM) and E. involucrata (EI) were obtained (S23°23',W45°39') and chemically characterized by GC/MS. The active extracts were tested against C. albicans biofilm viability and architecture, as well as mode of action, and toxicology using RAW 264.7 macrophages and Galleria mellonella larvae. The MIC values ranged from 15.62 to >2000 µg/mL. The most active extracts were EL (seed, 15.62 µg/mL) and EB (leaf and seeds, 31.25 and 15.62 µg/mL, respectively). Treatment with these extracts at 10xMIC reduced biofilm viability by 54-55% (P < 0.0001) as compared to 42% by nystatin. At 10xMIC, all extracts caused damages to biofilm architecture and integrity, and fewer hyphae remained attached to treated biofilms. None of them was found to interfere with cell wall biosynthesis or complexation with ergosterol. The extracts had low toxicity against macrophages in vitro (P > 0.05) and G. mellonella larvae, with mean in vivo LD50 of 1500 mg/kg (EL, seeds); 2500 mg/kg (EB, seeds); and 1250 mg/kg (EB, leaf). The phenolic compounds epicatechin and gallic acid were the major constituents in the extracts. Our findings may open avenues for the application of these yet unexplored native fruits in the food and pharmaceutical industry.


Assuntos
Biofilmes/efeitos dos fármacos , Eugenia/química , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Plantas Tóxicas/química , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Brasil , Candida albicans/efeitos dos fármacos , Parede Celular/metabolismo , Ergosterol/metabolismo , Ácido Gálico/química , Camundongos , Testes de Sensibilidade Microbiana , Nistatina/farmacologia , Fenóis/química , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química , Células RAW 264.7 , Sementes/química
10.
Pharm Res ; 34(4): 681-686, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27858217

RESUMO

Mammalian models have served as a basis for R&D over the past decades. Nevertheless, these models are expensive, laborious, may yield results that cannot always be translated into the human in vivo situation and, more recently, have reverberated great social and ethical dilemmas. Hence, the prospect of changes in the global scientific scenario and the Three Rs principle (Reduction, Replacement and Refinement) have encouraged the development of alternative methods to the use of mammals. Despite the efforts, suitable alternative tests are not available in all areas of biomedical research, as regulatory acceptance requires time, prior validation and robust financial and scientific investment. In this perspective, we aim to shed light on the concepts, challenges and perspectives for implementation of innovative alternative animal and non-animal methods in scientific research. The applicability and meaningfulness of invertebrate animal models, in silico analysis and reverse pharmacology are discussed, among other aspects of relevance in today's scenario. Overall, the use of alternative models, including Artemia salina (brine shrimp), Caenorhabditis elegans (roundworm), Danio rerio (zebra fish), Drosophila melanogaster (fruit fly), Galleria mellonella (greater waxmoth) and in silico modelling, increased 909% from 1990 to 2015, as compared to 154% of conventional mammals in the same period. Thus, technological and scientific advancements in the fields of toxicology and drug development seem to have diminished the need for mammalian models. Today, however, mammals still remain critically indispensable to provide - in most cases -reliable data subsidizing and validating translation into the clinical setting.


Assuntos
Alternativas aos Testes com Animais/métodos , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Animais , Pesquisa Biomédica/métodos , Simulação por Computador , Humanos , Farmacologia/métodos , Toxicologia/métodos
11.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794203

RESUMO

Drug-resistant bacteria constitute a big barrier against current pharmacotherapy. Efforts are urgent to discover antibacterial drugs with novel chemical and biological features. Our work aimed at the synthesis, evaluation of antibacterial effects, and toxicity of licochalcone C (LCC), a naturally occurring chalcone. The synthetic route included six steps, affording a 10% overall yield. LCC showed effects against Gram-positive bacteria (MIC = 6.2-50.0 µg/mL), Mycobacterium species (MIC = 36.2-125 µg/mL), and Helicobacter pylori (MIC = 25 µg/mL). LCC inhibited the biofilm formation of MSSA and MRSA, demonstrating MBIC50 values of 6.25 µg/mL for both strains. The investigations by fluorescence microscopy, using PI and SYTO9 as fluorophores, indicated that LCC was able to disrupt the S. aureus membrane, similarly to nisin. Systemic toxicity assays using Galleria mellonella larvae showed that LCC was not lethal at 100 µg/mL after 80 h treatment. These data suggest new uses for LCC as a compound with potential applications in antibacterial drug discovery and medical device coating.

12.
Biochim Biophys Acta Gen Subj ; 1868(5): 130583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360076

RESUMO

Antimicrobial peptides (AMP) represent an alternative in the treatment of fungal infections associated with countless deaths. Here, we report a new AMP, named KWI-19, which was designed based on a peptide encrypted in the sequence of an Inga laurina Kunitz-type inhibitor (ILTI). KWI-19 inhibited the growth of Candida species and acted as a fungicidal agent from 2.5 to 20 µmol L-1, also showing synergistic activity with amphotericin B. Kinetic assays showed that KWI-19 killed Candida tropicalis cells within 60 min. We also report the membrane-associated mechanisms of action of KWI-19 and its interaction with ergosterol. KWI-19 was also characterized as a potent antibiofilm peptide, with activity against C. tropicalis. Finally, non-toxicity was reported against Galleria mellonella larvae, thus strengthening the interest in all the bioactivities mentioned above. This study extends our knowledge on how AMPs can be engineered from peptides encrypted in larger proteins and their potential as candicidal agents.


Assuntos
Antifúngicos , Candida , Animais , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Peptídeos/farmacologia , Candida tropicalis , Inibidores de Proteases , Peptídeo Hidrolases
13.
Med Mycol ; 51(7): 759-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23566224

RESUMO

Paracoccidioidomycosis (PCM) is a chronic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis, endemic in Latin America. P. brasiliensis has been observed in epithelial cells in vivo and in vitro, as well as within the macrophages. The identification of the mechanism by which it survives within the host cell is fertile ground for the discovery of its pathogenesis since this organism has the ability to induce its own endocytosis in epithelial cells and most likely in macrophages. The study of the expression of endocytic proteins pathway and co-localization of microorganisms enable detection of the mechanism by which microorganisms survive within the host cell. The aim of this study was to evaluate the expression of the endocytic protein EEA1 (early endosome antigen 1) in macrophages infected with P. brasiliensis. For detection of EEA1, three different techniques were employed: immunofluorescence, real-time polymerase chain reaction (PCR) and immunoblotting. In the present study, decreased expression of EEA1 as well as the rearrangement of the actin was observed when the fungus was internalized, confirming that the input mechanism of the fungus in macrophages occurs through phagocytosis.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/química , Macrófagos/microbiologia , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioides/imunologia , Proteínas de Transporte Vesicular/análise , Actinas/metabolismo , Animais , Linhagem Celular , Imunofluorescência , Perfilação da Expressão Gênica , Immunoblotting , Camundongos , Fagocitose , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Transporte Vesicular/genética
14.
Foods ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613302

RESUMO

The mechanical extraction of oils from Brazilian açaí (Euterpe oleracea Mart) produces significant amounts of a byproduct known as "meal", which is frequently discarded in the environment as waste material. Nevertheless, plant byproducts, especially those from oil extraction, may contain residual polyphenols in their composition and be a rich source of natural bioactive compounds. In this study, the phenolic composition and in vitro biological properties of a hydroethanolic açaí meal extract were elucidated. The major compounds tentatively identified in the extract by high-resolution mass spectrometry were anthocyanins, flavones, and flavonoids. Furthermore, rhamnocitrin is reported in an açaí byproduct for the first time. The extract showed reducing power and was effective in scavenging the ABTS radical cation (820.0 µmol Trolox equivalent∙g-1) and peroxyl radical (975.7 µmol Trolox equivalent∙g-1). NF-κB activation was inhibited at 10 or 100 µg∙mL-1 and TNF-α levels were reduced at 100 µg∙mL-1. However, the antibacterial effects against ESKAPE pathogens was not promising due to the high concentration needed (1250 or 2500 µg∙mL-1). These findings can be related to the diverse polyphenol-rich extract composition. To conclude, the polyphenol-rich extract obtained from açaí meal showed relevant biological activities that may have great applicability in the food and nutraceutical industries.

15.
Microorganisms ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36557578

RESUMO

Honey has been shown to have antimicrobial activity against different microorganisms, but its effects on oral biofilms are largely unknown. In this review, we analyzed the currently available literature on the antimicrobial activity of honey against oral biofilms in order to determine its potential as a functional food in the treatment and/or prevention of oral diseases. Here, we compare studies reporting on the antimicrobial activity of honey against systemic and oral bacteria, discuss methodological strategies, and point out current gaps in the literature. To date, there are no consistent studies supporting the use of honey as a therapy for oral diseases of bacterial origin, but current evidence in the field is promising. The lack of studies examining the antibiofilm activity of honey against oral microorganisms reveals a need for additional research to better define aspects such as chemical composition, the mechanism(s) of action, and antimicrobial action.

16.
J Fungi (Basel) ; 7(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477397

RESUMO

Histoplasma capsulatum affects healthy and immunocompromised individuals, sometimes causing a severe disease. This fungus has two morphotypes, the mycelial (infective) and the yeast (parasitic) phases. MicroRNAs (miRNAs) are small RNAs involved in the regulation of several cellular processes, and their differential expression has been associated with many disease states. To investigate miRNA expression in host cells during H. capsulatum infection, we studied the changes in the miRNA profiles of differentiated human macrophages infected with yeasts from two fungal strains with different virulence, EH-315 (high virulence) and 60I (low virulence) grown in planktonic cultures, and EH-315 grown in biofilm form. MiRNA profiles were evaluated by means of reverse transcription-quantitative polymerase chain reaction using a commercial human miRNome panel. The target genes of the differentially expressed miRNAs and their corresponding signaling pathways were predicted using bioinformatics analyses. Here, we confirmed biofilm structures were present in the EH-315 culture whose conditions facilitated producing insoluble exopolysaccharide and intracellular polysaccharides. In infected macrophages, bioinformatics analyses revealed especially increased (hsa-miR-99b-3p) or decreased (hsa-miR-342-3p) miRNAs expression levels in response to infection with biofilms or both growth forms of H. capsulatum yeasts, respectively. The results of miRNAs suggested that infection by H. capsulatum can affect important biological pathways of the host cell, targeting two genes: one encoding a protein that is important in the cortical cytoskeleton; the other, a protein involved in the formation of stress granules. Expressed miRNAs in the host's response could be proposed as new therapeutic and/or diagnostic tools for histoplasmosis.

17.
Biomed Pharmacother ; 144: 112198, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656058

RESUMO

Erythrina poeppigiana belongs to Fabaceae family (subfamily Papillionoideae) and is commonly found in tropical and subtropical regions in Brazil. Herein, we described the purification and characterization of a new Kunitz-type inhibitor, obtained from E. poeppigiana seeds (EpTI). EpTI is composed by three isoforms of identical amino-terminal sequences with a molecular weight ranging from 17 to 20 kDa. The physicochemical features showed by EpTI are common to Kunitz inhibitors, including the dissociation constant (13.1 nM), stability against thermal (37-100 °C) and pH (2-10) ranging, and the presence of disulfide bonds stabilizing its reactive site. Furthermore, we investigated the antimicrobial, anti-adhesion, and anti-biofilm properties of EpTI against Gram-positive and negative bacteria. The inhibitor showed antimicrobial activity with a minimum inhibitory concentration (MIC, 5-10 µM) and minimum bactericidal concentration (MBC) of 10 µM for Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Staphylococcus aureus, and Staphylococcus haemolyticus. The combination of EpTI with ciprofloxacin showed a marked synergistic effect, reducing the antibiotic concentration by 150%. The increase in crystal violet uptake for S. aureus and K. pneumoniae strains was approximately 30% and 50%, respectively, suggesting that the bacteria plasma membrane is targeted by EpTI. Treatment with EpTI at 1x and 10 x MIC significantly reduced the biofilm formation and prompted the disruption of a mature biofilm. At MIC/2, EpTI decreased the bacterial adhesion to polystyrene surface within 2 h. Finally, EpTI showed low toxicity in animal model Galleria mellonella. Given its antimicrobial and anti-biofilm properties, the EpTI sequence might be used to design novel drug prototypes.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Erythrina , Extratos Vegetais/farmacologia , Inibidores da Tripsina/farmacologia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/toxicidade , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/farmacologia , Sinergismo Farmacológico , Erythrina/química , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Sementes , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/toxicidade
18.
Food Funct ; 11(10): 8905-8917, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32996526

RESUMO

Brazilian native fruits (BNF) have aroused interest of researchers and consumers for their great human health benefits. In this study, five BNF (Byrsonima lancifolia, Campomanesia phaea, Jacaratia spinosa, Solanum alternatopinnatum and Acnistus arborescens) were tested for their polyphenolic compounds by LC-ESI-MS/MS, reactive species deactivation (ROO˙, O2˙-, HOCl and NO˙), anti-inflammatory properties in vivo, and in vitro antimicrobial activity - with determination of putative mechanism(s) of action. Eighty-one polyphenols were identified, which exhibited a significant capacity to deactivate both ROS and RNS. C. phaea extract had the highest capacity to scavenge ROO˙ (68.94 µmol TE per g), O2˙- (IC50: 575.36 µg mL-1) and NO˙ (IC50: 16.96 µg mL-1), which may be attributed to the presence of ellagitanins. B. lancifolia decreased neutrophil influx into the peritoneal cavity of mice by 50% as compared to carrageenan and reduced Candida albicans biofilm viability by 3 log10 possibly due to complexation with cell membrane ergosterol. In summary, the BNF presented herein are good sources of bioactive compounds with positive effects on deactivation of biological reactive species, as well as with anti-inflammatory and antimicrobial activities, which can be altogether highly beneficial to human health.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Brasil , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Braz Oral Res ; 34: e050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578760

RESUMO

Candida infection is an important cause of morbidity and mortality in immunocompromised patients. The increase in its incidence has been associated with resistance to antimicrobial therapy and biofilm formation. The aim of this study was to evaluate the efficacy of tea tree oil (TTO) and its main component - terpinen-4-ol - against resistant Candida albicans strains (genotypes A and B) identified by molecular typing and against C. albicans ATCC 90028 and SC 5314 reference strains in planktonic and biofilm cultures. The minimum inhibitory concentration, minimum fungicidal concentration, and rate of biofilm development were used to evaluate antifungal activity. Results were obtained from analysis of the biofilm using the cell proliferation assay 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and confocal laser scanning microscopy (CLSM). Terpinen-4-ol and TTO inhibited C. albicans growth. CLSM confirmed that 17.92 mg/mL of TTO and 8.86 mg/mL of terpinen-4-ol applied for 60 s (rinse simulation) interfered with biofilm formation. Hence, this in vitro study revealed that natural substances such as TTO and terpinen-4-ol present promising results for the treatment of oral candidiasis.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Terpenos/farmacologia , Resinas Acrílicas , Análise de Variância , Antifúngicos/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Bases de Dentadura/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Confocal , Valores de Referência , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Óleo de Melaleuca/química , Terpenos/química
20.
J Agric Food Chem ; 68(10): 2861-2871, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31369255

RESUMO

Brazilian organic propolis (BOP) is an unexplored Brazilian propolis that is produced organically and certified according to international legislation. Our results showed that BOP has strong anti-inflammatory effects and acts by reducing nuclear factor κB activation, tumor necrosis factor α release, and neutrophil migration. In addition, BOP6 exhibited antifungal activity on planktonic and biofilm cultures of Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parapsisolis and reduced in vitro yeast cell adhesion to human keratinocytes at sub-inhibitory concentrations. BOP demonstrated significantly low toxicity in Galleria melonella larvae at antifungal doses. Lastly, a chemical analysis revealed the presence of caffeoyltartaric acid, 3,4-dicaffeoylquinic acid, quercetin, and gibberellins A7, A9, and A20, which may be responsible for the biological properties observed. Thus, our data indicate that BOP is a promising source of anti-inflammatory and antifungal molecules that may be used as a functional food.


Assuntos
Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Alimento Funcional/análise , Própole/farmacologia , Animais , Anti-Inflamatórios/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Brasil , Candida/fisiologia , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Própole/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA