Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 770, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135170

RESUMO

BACKGROUND: Unfavorable temperatures significantly constrain the quality formation of Dendrobium officinale, severely limiting its food demand. Salicylic acid (SA) enhances the resistance of D. officinale to stress and possesses various analogs. The impact and mechanism of the SA family on improving the quality of D. officinale under adverse temperature conditions remains unclear. RESULTS: Combined with molecular docking analysis, chlorophyll fluorescence and metabolic analysis after treatments with SA analogues or extreme temperatures are performed in this study. The results demonstrate that both heat and cold treatments impede several main parameters of chlorophyll fluorescence of D. officinale, including the ΦPSII parameter, a sensitive growth indicator. However, this inhibition is mitigated by SA or its chemically similar compounds. Comprehensive branch imaging of ΦPSII values revealed position-dependent improvement of tolerance. Molecular docking analysis using a crystal structure model of NPR4 protein reveals that the therapeutic effects of SA analogs are determined by their binding energy and the contact of certain residues. Metabolome analysis identifies 17 compounds are considered participating in the temperature-related SA signaling pathway. Moreover, several natural SA analogs such as 2-hydroxycinnamic acid, benzamide, 2-(formylamino) benzoic acid and 3-o-methylgallic acid, are further found to have high binding ability to NPR4 protein and probably enhance the tolerance of D. officinale against unfavorable temperatures through flavone and guanosine monophosphate degradation pathways. CONCLUSIONS: These results reveal that the SA family with a high binding capability of NPR4 could improve the tolerance of D. officinale upon extreme temperature challenges. This study also highlights the collaborative role of SA-related natural compounds present in D. officinale in the mechanism of temperature resistance and offers a potential way to develop protective agents for the cultivation of D. officinale.


Assuntos
Dendrobium , Simulação de Acoplamento Molecular , Ácido Salicílico , Dendrobium/metabolismo , Dendrobium/efeitos dos fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Temperatura , Clorofila/metabolismo
2.
Plant Physiol ; 192(2): 1638-1655, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36943294

RESUMO

Auxin can inhibit or promote fruit ripening, depending on the species. Melting flesh (MF) peach fruit (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high concentrations of indole-3-acetic acid (IAA), which leads to rapid fruit softening at the late stage of development. In contrast, due to the low concentrations of IAA, the fruit of stony hard (SH) peach cultivars does not soften and produces little ethylene. Auxin seems necessary to trigger the biosynthesis of ethylene in peach fruit; however, the mechanism is not well understood. In this study, we identified miRNA gene family members ppe-miR393a and ppe-miR393b that are differentially expressed in SH and MF fruits. RNA ligase-mediated 5' rapid amplification of cDNA ends and transient transformation of Nicotiana benthamiana revealed TRANSPORT INHIBITOR RESPONSE 1 (PpTIR1), part of the auxin perception and response system, as a target of ppe-miR393a and b. Yeast 2-hybrid assay and bimolecular fluorescence complementation assay revealed that PpTIR1 physically interacts with an Aux/IAA protein PpIAA13. The results of yeast 1-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay indicated that PpIAA13 could directly bind to and trans-activate the promoter of 1-aminocyclopropane-1-carboxylic acid synthase 1 (PpACS1), required for ethylene biosynthesis. Transient overexpression and suppression of ppe-miR393a and PpIAA13 in peach fruit induced and repressed the expression of PpACS1, confirming their regulatory role in ethylene synthesis. Gene expression analysis in developing MF and SH fruits, combined with postharvest α-naphthalene acetic acid (NAA) treatment, supports a role for a ppe-miR393-PpTIR1-PpIAA13-PpACS1 module in regulating auxin-related differences in ethylene production and softening extent in different types of peach.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Frutas , Saccharomyces cerevisiae/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
BMC Plant Biol ; 23(1): 663, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129812

RESUMO

BACKGROUND: Plant HSP20s are not only synthesized in response to heat stress but are also involved in plant biotic and abiotic stress resistance, normal metabolism, development, differentiation, survival, ripening, and death. Thus, HSP20 family genes play very important and diverse roles in plants. To our knowledge, HSP20 family genes in peach have not yet been characterized in detail, and little is known about their possible function in the development of red flesh in peach. RESULTS: In total, 44 PpHSP20 members were identified in the peach genome in this study. Forty-four PpHSP20s were classified into 10 subfamilies, CI, CII, CIII, CV, CVI, CVII, MII, CP, ER, and Po, containing 18, 2, 2, 10, 5, 1, 1, 2, 1, and 2 proteins, respectively. Among the 44 PpHSP20 genes, 6, 4, 4, 3, 7, 11, 5, and 4 PpHSP20 genes were located on chromosomes 1 to 8, respectively. In particular, approximately 15 PpHSP20 genes were located at both termini or one terminus of each chromosome. A total of 15 tandem PpHSP20 genes were found in the peach genome, which belonged to five tandemly duplicated groups. Overall, among the three cultivars, the number of PpHSP20 genes with higher expression levels in red flesh was greater than that in yellow or white flesh. The expression profiling for most of the PpHSP20 genes in the red-fleshed 'BJ' was higher overall at the S3 stage than at the S2, S4-1, and S4-2 stages, with the S3 stage being a very important period of transformation from a white color to the gradual anthocyanin accumulation in the flesh of this cultivar. The subcellular localizations of 16 out of 19 selected PpHSP20 proteins were in accordance with the corresponding subfamily classification and naming. Additionally, to our knowledge, Prupe.3G034800.1 is the first HSP20 found in plants that has the dual targets of both the endoplasmic reticulum and nucleus. CONCLUSIONS: This study provides a comprehensive understanding of PpHSP20s, lays a foundation for future analyses of the unknown function of PpHSP20 family genes in red-fleshed peach fruit and advances our understanding of plant HSP20 genes.


Assuntos
Prunus persica , Genoma de Planta , Genes de Plantas/genética , Resposta ao Choque Térmico , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Filogenia
4.
Neuromodulation ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37125972

RESUMO

OBJECTIVE: The purpose of this study is to determine whether adaptively stepwise increasing the intensity of a high-frequency (10 kHz) biphasic stimulation (HFBS) can produce nerve conduction block without generating a large initial response. MATERIALS AND METHODS: In anesthetized cats, three cuff electrodes were implanted on the left pudendal nerve for stimulation or block. The urethral pressure increase induced by pudendal nerve stimulation was used to measure the pudendal nerve block induced by HFBS. RESULTS: HFBS applied suddenly with a large step increase in intensity induced a large (86 ± 16 cmH2O) urethral pressure increase before it blocked pudendal nerve conduction. However, HFBS applied by adaptively stepwise increasing the intensity every 10 to 60 seconds over a long period (33-301 minutes; average 108 ± 35 minutes) with many small intensity increases (0.005-0.1 mA) induced no response or low-amplitude high-frequency urethral pressure changes before it blocked pudendal nerve conduction. The minimal HFBS intensities required by the two different methods to block pudendal nerve conduction are similar. CONCLUSION: This study is important for better understanding the possible mechanisms underlying the HFBS-induced nerve block and provides the possibility of developing a new nerve block method for clinical applications in which an initial large response is a concern.

5.
Neuromodulation ; 26(8): 1817-1822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35941016

RESUMO

OBJECTIVE: This study aimed at determining whether stimulation of sacral spinal roots can induce penile erection in cats. MATERIALS AND METHODS: In anesthetized cats, a 20-gauge catheter was inserted into the corpus cavernosum to measure the penile pressure. Stimulus pulses (5-80 Hz, 0.2 ms) were applied through bipolar hook electrodes to sacral ventral roots alone or to combined ventral and dorsal roots of a single S1-S3 segment to induce penile pressure increases and penile erection. RESULTS: Stimulation of the S1 or S2 ventral root at 30 to 40 Hz induced observable penile erection with rigidity and the largest increase (169 ± 11 cmH2O) in penile pressure. Continuous stimulation (10 minutes) of afferent and efferent axons by simultaneous stimulation of the S1 or S2 dorsal and ventral roots at 30 Hz also produced a large increase (190 ± 8 cmH2O) in penile pressure that was sustainable during the entire stimulation period. After a complete spinal cord transection at the T9-T10 level, simultaneous stimulation of the S1 or S2 dorsal and ventral roots induced large (186 ± 9 cmH2O) and sustainable increases in penile pressure. CONCLUSION: This study indicates the possibility to develop a novel neuromodulation device to restore penile erection after spinal cord injury using a minimally invasive surgical approach to insert a lead electrode through the sacral foramen to stimulate a sacral spinal root.


Assuntos
Ereção Peniana , Traumatismos da Medula Espinal , Masculino , Gatos , Animais , Ereção Peniana/fisiologia , Raízes Nervosas Espinhais/fisiologia , Estimulação Elétrica
6.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835642

RESUMO

Dietary lipids induce apolipoprotein A4 (APOA4) production and brown adipose tissue (BAT) thermogenesis. Administration of exogenous APOA4 elevates BAT thermogenesis in chow-fed mice, but not high-fat diet (HFD)-fed mice. Chronic feeding of HFD attenuates plasma APOA4 production and BAT thermogenesis in wildtype (WT) mice. In light of these observations, we sought to determine whether steady production of APOA4 could keep BAT thermogenesis elevated, even in the presence of HFD consumption, with an aim toward eventual reduction of body weight, fat mass and plasma lipid levels. Transgenic mice with overexpression of mouse APOA4 in the small intestine (APOA4-Tg mice) produce greater plasma APOA4 than their WT controls, even when fed an atherogenic diet. Thus, we used these mice to investigate the correlation of levels of APOA4 and BAT thermogenesis during HFD consumption. The hypothesis of this study was that overexpression of mouse APOA4 in the small intestine and increased plasma APOA4 production would increase BAT thermogenesis and consequently reduce fat mass and plasma lipids of HFD-fed obese mice. To test this hypothesis, BAT thermogenic proteins, body weight, fat mass, caloric intake, and plasma lipids in male APOA4-Tg mice and WT mice fed either a chow diet or a HFD were measured. When fed a chow diet, APOA4 levels were elevated, plasma triglyceride (TG) levels were reduced, and BAT levels of UCP1 trended upward, while body weight, fat mass, caloric intake, and plasma lipids were comparable between APOA4-Tg and WT mice. After a four-week feeding of HFD, APOA4-Tg mice maintained elevated plasma APOA4 and reduced plasma TG, but UCP1 levels in BAT were significantly elevated in comparison to WT controls; body weight, fat mass and caloric intake were still comparable. After 10-week consumption of HFD, however, while APOA4-Tg mice still exhibited increased plasma APOA4, UCP1 levels and reduced TG levels, a reduction in body weight, fat mass and levels of plasma lipids and leptin were finally observed in comparison to their WT controls and independent of caloric intake. Additionally, APOA4-Tg mice exhibited increased energy expenditure at several time points when measured during the 10-week HFD feeding. Thus, overexpression of APOA4 in the small intestine and maintenance of elevated levels of plasma APOA4 appear to correlate with elevation of UCP1-dependent BAT thermogenesis and subsequent protection against HFD-induced obesity in mice.


Assuntos
Tecido Adiposo Marrom , Obesidade , Camundongos , Masculino , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos Transgênicos , Obesidade/metabolismo , Gorduras na Dieta/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Termogênese , Camundongos Endogâmicos C57BL , Proteína Desacopladora 1/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R535-R541, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319898

RESUMO

This study examined the effect of sacral neuromodulation on persistent bladder underactivity induced by prolonged pudendal nerve stimulation (PudNS). In 10 α-chloralose-anesthetized cats, repetitive application of 30-min PudNS induced bladder underactivity evident as an increase in bladder capacity during a cystometrogram (CMG). S1 or S2 dorsal root stimulation (15 or 30 Hz) at 1 or 1.5 times threshold intensity (T) for inducing reflex hindlimb movement (S1) or anal sphincter twitch (S2) was applied during a CMG to determine if the stimulation can reverse the bladder underactivity. Persistent (>3 h) bladder underactivity consisting of a significant increase in bladder capacity to 163.1 ± 11.3% of control was induced after repetitive (1-10 times) application of 30-min PudNS. S2 but not S1 dorsal root stimulation at 15 Hz and 1 T intensity reversed the PudNS-induced bladder underactivity by significantly reducing the large bladder capacity to 124.3 ± 12.9% of control. Other stimulation parameters were not effective. After the induction of persistent underactivity, recordings of reflex bladder activity under isovolumetric conditions revealed that S2 dorsal root stimulation consistently induced the largest bladder contraction at 15 Hz and 1 T when compared with other frequencies (5-40 Hz) or intensities (0.25-1.5 T). This study provides basic science evidence consistent with the hypothesis that abnormal pudendal afferent activity contributes to the bladder underactivity in Fowler's syndrome and that sacral neuromodulation treats this disorder by reversing the bladder inhibition induced by pudendal nerve afferent activity.


Assuntos
Terapia por Estimulação Elétrica , Nervo Pudendo , Animais , Gatos , Modelos Animais de Doenças , Estimulação Elétrica , Nervo Pudendo/fisiologia , Reflexo/fisiologia , Bexiga Urinária/inervação
8.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R136-R143, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984922

RESUMO

The purpose of this study is to determine whether superficial peroneal nerve stimulation (SPNS) can improve nonobstructive urinary retention (NOUR) induced by prolonged pudendal nerve stimulation (PNS). In this exploratory acute study using eight cats under anesthesia, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. A double lumen catheter was inserted via the bladder dome for bladder infusion and pressure measurement and to allow voiding without a physical urethral outlet obstruction. The voided and postvoid residual (PVR) volumes were also recorded. NOUR induced by repetitive (4-13 times) application of 30-min PNS significantly (P < 0.05) reduced voiding efficiency by 49.5 ± 16.8% of control (78.3 ± 7.9%), with a large PVR volume at 208.2 ± 82.6% of control bladder capacity. SPNS (1 Hz, 0.2 ms) at 1.5-2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during cystometrograms to improve the PNS-induced NOUR. SPNSc and SPNSi applied by nerve cuff electrodes significantly (P < 0.05) increased voiding efficiency to 74.5 ± 18.9% and 67.0 ± 15.3%, respectively, and reduced PVR volume to 54.5 ± 39.0% and 88.3 ± 56.0%, respectively. SPNSc and SPNSi applied noninvasively by skin surface electrodes also improved NOUR similar to the stimulation applied by a cuff electrode. This study indicates that abnormal pudendal afferent activity could be a pathophysiological cause for the NOUR occurring in Fowler's syndrome and a noninvasive superficial peroneal neuromodulation therapy might be developed to treat NOUR in patients with Fowler's syndrome.


Assuntos
Canal Anal/inervação , Nervo Fibular , Nervo Pudendo/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea , Uretra/inervação , Bexiga Urinária/inervação , Retenção Urinária/terapia , Animais , Gatos , Modelos Animais de Doenças , Feminino , Masculino , Retenção Urinária/fisiopatologia , Urodinâmica
9.
J Exp Bot ; 73(5): 1357-1369, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022695

RESUMO

The green peach aphid (GPA), Myzus persicae, is a polyphagous, sap-sucking aphid and a vector of many plant viruses. In peach, Prunus persica, three individual dominant GPA resistance loci have been genetically defined (Rm1-3), but knowledge of the underlying genes is limited. In this study, we focused on the Rm3 locus. Bulk segregant analysis (BSA) mapping in segregating progeny populations delimited Rm3 to an interval spanning 160 kb containing 21 genes on chromosome 1. RNA-seq data provided no evidence of candidate genes, but chromosomal structural variations were predicted around a nucleotide-binding site-leucine-rich repeat (NLR) gene (ppa000596m) within the Rm3 fine-mapping interval. Following bacterial artificial chromosome (BAC) library construction for a GPA-resistant peach cultivar and the sequencing of three target BAC clones, a chromosomal structural variation encompassing two novel TIR-NLR-class disease resistance (R) protein-coding genes was identified, and the expressed NLR gene (NLR1) was identified as a candidate for M. persicae resistance. Consistent with its proposed role in controlling GPA resistance, NLR1 was only expressed in the leaves of resistant peach phenotypes. A molecular marker that was designed based on the NLR1 sequence co-segregated with the GPA-resistant phenotype in four segregating populations, 162 peach cultivars, and 14 wild relatives, demonstrating the dominant inheritance of the Rm3 locus. Our findings can be exploited to facilitate future breeding for GPA-resistance in peach.


Assuntos
Afídeos , Prunus persica/genética , Animais , Resistência à Doença/genética , Genes de Plantas , Insetos Vetores , Fenótipo , Melhoramento Vegetal , Folhas de Planta
10.
J Sex Med ; 19(10): 1517-1523, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057523

RESUMO

BACKGROUND: Vaginal lubrication and contractions are among the top difficulties affecting sexual intercourse in women after spinal cord injury. AIM: This study aimed at determining if pudendal nerve stimulation (PNS) can improve vaginal lubrication and induce increases in vaginal pressure. METHODS: In anesthetized cats, a small piece of cotton was inserted into the vagina for 10 minutes with or without PNS to measure vaginal wetness by the weight increase of the vaginal cotton. Then, a small balloon catheter was inserted into the vagina to measure the pressure increase induced by PNS. Intensity response of the vagina to PNS (30 Hz, 0.2 ms, 5 seconds) was determined at 1-4 times of intensity threshold (T) for PNS to induce an observable vaginal pressure increase. Frequency response was determined at 2T intensity in a range of PNS frequencies (5-50 Hz). Finally, fatigue in vaginal pressure was determined by applying PNS (30 Hz, 2T) either continuously or intermittently (5 seconds on and 5 seconds off) for 4 minutes. OUTCOMES: The effectiveness of PNS in increasing vaginal wetness and pressure is evaluated. RESULTS: PNS significantly (P = .0327) increased the measurement of vaginal wetness from 15.8 ± 3.8 mg during control without stimulation to 32.4 ± 4.7 mg after stimulation. Vaginal pressure increased as PNS intensity or frequency increased. PNS (30 Hz, 2T) induced vaginal pressure increase ≥80% of the maximal response. Intermittent PNS induced significantly (P = .0354) smaller fatigue (45.6 ± 3.7%) in vaginal pressure than continuous PNS (69.1 ± 3.0%) during the 4-minute stimulation. CLINICAL TRANSLATION: This study raises the possibility of developing a novel pudendal neuromodulation device to improve female sexual function after spinal cord injury. STRENGTHS & LIMITATIONS: This study provides preclinical data supporting the development of a novel pudendal neuromodulation device. The limitation includes the lack of chemical analysis of the vaginal secretion. CONCLUSION: PNS can improve vaginal lubrication and induce increases in vaginal pressure. Chen J, Zhong Y, Wang J, et al. Vaginal Lubrication and Pressure Increase Induced by Pudendal Nerve Stimulation in Cats. J Sex Med 2022;19:1517-1523.


Assuntos
Nervo Pudendo , Vagina , Animais , Gatos , Estimulação Elétrica , Feminino , Lubrificação , Fadiga Muscular , Pressão , Nervo Pudendo/fisiologia , Vagina/fisiologia
11.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G735-G742, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855517

RESUMO

The aim of this study was to determine whether stimulation of sacral spinal nerve roots can induce defecation in cats. In anesthetized cats, bipolar hook electrodes were placed on the S1-S3 dorsal and/or ventral roots. Stimulus pulses (1-50 Hz, 0.2 ms) were applied to an individual S1-S3 root to induce proximal/distal colon contractions and defecation. Balloon catheters were inserted into the proximal and distal colon to measure contraction pressure. Glass marbles were inserted into the rectum to demonstrate defecation by videotaping the elimination of marbles. Stimulation of the S2 ventral root at 7 Hz induced significantly (P < 0.05) larger contractions (32 ± 9 cmH2O) in both proximal and distal colon than stimulation of the S1 or S3 ventral root. Intermittent (5 times) stimulation (1 min on and 1 min off) of both dorsal and ventral S2 roots at 7 Hz produced reproducible colon contractions without fatigue, whereas continuous stimulation of 5-min duration caused significant fatigue in colon contractions. Stimulation (7 Hz) of both dorsal and ventral S2 roots together successfully induced defecation that eliminated 1 or 2 marbles from the rectum. This study indicates the possibility to develop a novel neuromodulation device to restore defecation function after spinal cord injury using a minimally invasive surgical approach to insert a lead electrode via the sacral foramen to stimulate a sacral spinal root.NEW & NOTEWORTHY This study in cats determined the optimal stimulation parameters and the spinal segment for sacral spinal root stimulation to induce colon contraction. The results have significant implications for design of a novel neuromodulation device to restore defecation function after spinal cord injury (SCI) and for optimizing sacral neuromodulation parameters to treat non-SCI people with chronic constipation.


Assuntos
Defecação , Raízes Nervosas Espinhais/fisiologia , Animais , Gatos , Colo/inervação , Colo/fisiologia , Estimulação Elétrica , Feminino , Região Lombossacral/fisiologia , Masculino
12.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R675-R682, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719564

RESUMO

The purpose of this study is to determine whether superficial peroneal nerve stimulation (SPNS) can reverse persistent bladder underactivity induced by prolonged pudendal nerve stimulation (PNS). In 16 α-chloralose-anesthetized cats, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. Bladder underactivity consisting of a significant increase in bladder capacity to 157.8 ± 10.9% of control and a significant reduction in bladder contraction amplitude to 56.0 ± 5.0% of control was induced by repetitive (4-16 times) application of 30-min PNS. SPNS (1 Hz, 0.2 ms) at 1.5-2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during a cystometrogram (CMG) to determine whether the stimulation can reverse the PNS-induced bladder underactivity. SPNSc or SPNSi applied by nerve cuff electrodes during the prolonged PNS inhibition significantly reduced bladder capacity to 124.4 ± 10.7% and 132.4 ± 14.2% of control, respectively, and increased contraction amplitude to 85.3 ± 6.2% and 75.8 ± 4.7%, respectively. Transcutaneous SPNSc and SPNSi also significantly reduced bladder capacity and increased contraction amplitude. Additional PNS applied during the bladder underactivity further increased bladder capacity, whereas SPNSc applied simultaneously with the PNS reversed the increase in bladder capacity. This study indicates that a noninvasive superficial peroneal neuromodulation therapy might be developed to treat bladder underactivity caused by abnormal pudendal nerve somatic afferent activation that is hypothesized to occur in patients with Fowler's syndrome.


Assuntos
Nervo Fibular/fisiopatologia , Nervo Pudendo/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea , Bexiga Inativa/terapia , Bexiga Urinária/inervação , Urodinâmica , Animais , Gatos , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Masculino , Inibição Neural , Recuperação de Função Fisiológica , Fatores de Tempo , Bexiga Inativa/etiologia , Bexiga Inativa/fisiopatologia
13.
Nitric Oxide ; 111-112: 14-30, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839259

RESUMO

Hydrogen sulfide (H2S) is an important gaseous signal molecule which participates in various abiotic stress responses. However, the underlying mechanism of H2S associated salt tolerance remains elusive. In this study, sodium hydrosulfide (NaHS, donor of H2S) was used to investigate the protective role of H2S against salt stress at the biochemical and proteomic levels. Antioxidant activity and differentially expressed proteins (DEPs) of rice seedlings treated by NaCl or/and exogenous H2S were investigated by the methods of biochemical approaches and comparative proteomic analysis. The protein-protein interaction (PPI) analysis was used for understanding the interaction networks of stress responsive proteins. In addition, relative mRNA levels of eight selected identified DEPs were analyzed by quantitative real-time PCR. The result showed that H2S alleviated oxidative damage caused by salt stress in rice seedling. The activities of some antioxidant enzymes and glutathione metabolism were mediated by H2S under salt stress. Proteomics analyses demonstrated that NaHS regulated antioxidant related proteins abundances and affected related enzyme activities under salt stress. Proteins related to light reaction system (PsbQ domain protein, plastocyanin oxidoreductase iron-sulfur protein), Calvin cycle (phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase precursor, ribulose-1,5-bisphosphate carboxylase/oxygenase) and chlorophyll biosynthesis (glutamate-1-semialdehyde 2,1-aminomutase, coproporphyrinogen III oxidase) are important for NaHS against salt stress. ATP synthesis related proteins, malate dehydrogenase and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase were up-regulated by NaHS under salt stress. Protein metabolism related proteins and cell structure related proteins were recovered or up-regulated by NaHS under salt stress. The PPI analysis further unraveled a complicated regulation network among above biological processes to enhance the tolerance of rice seedling to salt stress under H2S treatment. Overall, our results demonstrated that H2S takes protective roles in salt tolerance by mitigating oxidative stress, recovering photosynthetic capacity, improving primary and energy metabolism, strengthening protein metabolism and consolidating cell structure in rice seedlings.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Oryza/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Estresse Salino/efeitos dos fármacos , Plântula/efeitos dos fármacos , Enzimas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sulfetos/farmacologia
14.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513710

RESUMO

Stimulation of thermogenesis in brown adipose tissue (BAT) could have far-reaching health benefits in combatting obesity and obesity-related complications. Apolipoprotein A-IV (ApoA-IV), produced by the gut and the brain in the presence of dietary lipids, is a well-known short-term satiating protein. While our previous studies have demonstrated reduced diet-induced thermogenesis in ApoA-IV-deficient mice, it is unclear whether this reduction is due to a loss of peripheral or central effects of ApoA-IV. We hypothesized that central administration of ApoA-IV stimulates BAT thermogenesis and that sympathetic and sensory innervation is necessary for this action. To test this hypothesis, mice with unilateral denervation of interscapular BAT received central injections of recombinant ApoA-IV protein or artificial cerebrospinal fluid (CSF). The effects of central ApoA-IV on BAT temperature and thermogenesis in mice with unilateral denervation of the intrascapular BAT were monitored using transponder probe implantation, qPCR, and immunoblots. Relative to CSF, central administration of ApoA-IV significantly increased temperature and UCP expression in BAT. However, all of these effects were significantly attenuated or prevented in mice with unilateral denervation. Together, these results clearly demonstrate that ApoA-IV regulates BAT thermogenesis centrally, and this effect is mediated through sympathetic and sensory nerves.


Assuntos
Tecido Adiposo Marrom/fisiologia , Apolipoproteínas A/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Termogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Animais , Apolipoproteínas A/deficiência , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Regulação da Expressão Gênica/genética , Lipase/genética , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes , Terceiro Ventrículo/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
J Cell Mol Med ; 24(1): 114-125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568644

RESUMO

Exosomes have recently emerged as key mediators of different physiological and pathological processes. However, there has been few report about proteomic analysis of exosomes derived from human follicular fluid and their association with the occurrence of PCOS. Herein, we used TMT-tagged quantitative proteomic approach to identify proteomic profiles in exosomes derived from follicular fluid of PCOS patients and healthy controls. We identified 662 proteins in exosomes derived from human ovarian follicular fluid. Eighty-six differently expressed proteins (P < .05) were found between PCOS and healthy women. The alterations in the proteomic profile were related to the inflammation process, reactive oxygen species metabolic process, cell migration and proliferation. Importantly, we observed that follicular fluid exosomes contain S100 calcium-binding protein A9 (S100-A9) protein. Exosome-enriched S100-A9 significantly enhanced inflammation and disrupted steroidogenesis via activation of nuclear factor kappa B (NF-κB) signalling pathway. These data demonstrate that exosomal proteins are differentially expressed in follicular fluid during disease process, and some proteins may play important roles in the regulation of granulosa cell function. These results highlight the importance of exosomes as extracellular communicators in ovarian follicular development.


Assuntos
Calgranulina B/metabolismo , Exossomos/metabolismo , Líquido Folicular/química , Inflamação/patologia , NF-kappa B/metabolismo , Síndrome do Ovário Policístico/complicações , Proteoma/metabolismo , Apoptose , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Ovário/metabolismo , Proteoma/análise , Transdução de Sinais
16.
Eur J Neurosci ; 52(7): 3710-3722, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32302450

RESUMO

A subset of presynaptic glutamatergic vesicles in the brain co-releases zinc (Zn2+ ) with glutamate into the synapse. However, the role of synaptically released Zn2+ is still under investigation. Here, we studied the effect of Zn2+ on glutamate homeostasis by measuring the evoked extracellular glutamate level (EGL) and the probability of evoked action potential (PEAP ) at the Zn2+ -containing or zincergic mossy fiber-CA3 synapses of the rat hippocampus. We found that the application of Zn2+ (ZnCl2 ) exerted bidirectional effects on both EGL and PEAP : facilitatory at low concentration (~1 µM) while repressive at high concentration (~50 µM). To determine the action of endogenous Zn2+ , we also used extracellular Zn2+ chelator to remove the synaptically released Zn2+ . Zn2+ chelation reduced both EGL and PEAP , suggesting that endogenous Zn2+ has mainly a facilitative role in glutamate secretion on physiological condition. We revealed that calcium/calmodulin-dependent protein kinase II was integral to the mechanism by which Zn2+ facilitated the release of glutamate. Moreover, a glutamate transporter was the molecular entity for the action of Zn2+ on glutamate uptake by which Zn2+ decreases glutamate availability. Taken together, we show a novel action of Zn2+ , which is to biphasically regulate glutamate homeostasis via Zn2+ concentration-dependent synaptic facilitation and depression. Thus, co-released Zn2+ is physiologically important for enhancing weak stimulation, but potentially mitigates excessive stimulation to keep synaptic transmission within optimal physiological range.


Assuntos
Transmissão Sináptica , Zinco , Animais , Ácido Glutâmico , Hipocampo , Homeostase , Ratos , Sinapses
17.
J Cell Biochem ; 120(7): 11867-11877, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30805986

RESUMO

In the liver tissues of obese diabetic or nondiabetic patients, triggering receptor expressed on myeloid cells-1 (TREM-1) is usually found to be upregulated, thus leading to upregulation of various inflammatory cytokines and lipid accumulation. On the other hand, nonalcoholic fatty liver disease (NAFLD), characterized by excess lipid accumulation, and inflammatory injury in liver, is becoming an epidemic disease, globally. In the present study, we aimed to investigate the biological role and the underlying mechanisms of TREM-1 in NAFLD. upregulation of TREM-1 occurred in high-fat diet (HFD)-induced mice NAFLD model and oleic acid-treated HepG2 and primary mouse hepatocytes cell model at messenger RNA and protein levels. Functional studies established that overexpression of TREM-1 displayed hyperlipidemia, and increased in inflammatory indicators and lipid accumulation-related genes, which was ameliorated by knockdown of TREM-1. Our results also showed that obvious lipid accumulation and inflammatory injury occurred in the liver tissue of HFD-fed mice, while treatment with lentiviral vector short hairpin TREM showed marked improvement in tissue morphology and architecture and less lipid accumulation, thus deciphering the mechanism through which knockdown of TREM-1 ameliorated the inflammatory response and lipid accumulation of NAFLD mice through inactivation of the nuclear factor-κB (NF-κB) and PI3K/AKT signal pathways, respectively. In conclusion, TREM-1/NF-κB and TREM-1/PI3K/AKT axis could be an important mechanism in ameliorating the inflammatory response and lipid accumulation, respectively, thus shedding light on the development of novel therapeutics to the treatment of NAFLD.

18.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878013

RESUMO

As a dominant mangrove species, Kandelia obovata is distributed in an intertidal marsh with an active H2S release. Whether H2S participates in the salt tolerance of mangrove plants is still ambiguous, although increasing evidence has demonstrated that H2S functions in plant responses to multiple abiotic stresses. In this study, NaHS was used as an H2S donor to investigate the regulatory mechanism of H2S on the salt tolerance of K. obovata seedlings by using a combined physiological and proteomic analysis. The results showed that the reduction in photosynthesis (Pn) caused by 400 mM of NaCl was recovered by the addition of NaHS (200 µM). Furthermore, the application of H2S enhanced the quantum efficiency of photosystem II (PSII) and the membrane lipid stability, implying that H2S is beneficial to the survival of K. obovata seedlings under high salinity. We further identified 37 differentially expressed proteins by proteomic approaches under salinity and NaHS treatments. Among them, the proteins that are related to photosynthesis, primary metabolism, stress response and hormone biosynthesis were primarily enriched. The physiological and proteomic results highlighted that exogenous H2S up-regulated photosynthesis and energy metabolism to help K. obovata to cope with high salinity. Specifically, H2S increased photosynthetic electron transfer, chlorophyll biosynthesis and carbon fixation in K. obovata leaves under salt stress. Furthermore, the abundances of other proteins related to the metabolic pathway, such as antioxidation (ascorbic acid peroxidase (APX), copper/zinc superoxide dismutase (CSD2), and pancreatic and duodenal homeobox 1 (PDX1)), protein synthesis (heat-shock protein (HSP), chaperonin family protein (Cpn) 20), nitrogen metabolism (glutamine synthetase 1 and 2 (GS2), GS1:1), glycolysis (phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI)), and the ascorbate-glutathione (AsA-GSH) cycle were increased by H2S under high salinity. These findings provide new insights into the roles of H2S in the adaptations of the K. obovata mangrove plant to high salinity environments.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Rhizophoraceae/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Plântula/metabolismo , Fotossíntese/efeitos dos fármacos , Salinidade
19.
Biochem Biophys Res Commun ; 503(2): 1148-1153, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29959918

RESUMO

Magnesium transporter subtype 1 (MagT1) is a magnesium membrane transporter with channel like properties. We have previously identified MagT1 (CG7830) in Drosophila genome and characterized its protein product by electrophysiological means. Here, we report the generation of fly MagT1 mutants and show that MagT1 is essential for early embryonic development. In wings and primordial wings, by clonal analysis and RNAi knock down of MagT1, we have found that loss of MagT1 results in enhanced/ectopic Wingless (Wg, a fly Wnt) signaling and disrupted Decapentaplegic (Dpp) signaling, indicating the crucial role of MagT1 for fly development at later stages. Finally, we demonstrate directly that magnesium transportations are proportional with the MagT1 expressional levels in Drosophila S2  cells. Taken together, these findings may suggest that MagT1 is a major magnesium transporter/channel profoundly involved in fly development by affecting developmental signaling pathways, such as Wg and Dpp signaling.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Transdução de Sinais , Asas de Animais/embriologia , Proteína Wnt1/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Magnésio/metabolismo , Masculino , Mutação , Asas de Animais/metabolismo , Via de Sinalização Wnt
20.
J Proteome Res ; 15(1): 216-28, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26616104

RESUMO

Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species.


Assuntos
Cálcio/toxicidade , Liquidambar/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Chuva Ácida , Expressão Gênica , Liquidambar/efeitos dos fármacos , Redes e Vias Metabólicas , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteoma/genética , Proteômica , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA