Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med ; 118: 103301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290179

RESUMO

PURPOSE: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS: The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.


Assuntos
Terapia com Prótons , Prótons , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons , Terapia com Prótons/métodos , Imagens de Fantasmas , Método de Monte Carlo
2.
Phys Med Biol ; 68(10)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37011632

RESUMO

Objective.Protons have advantageous dose distributions and are increasingly used in cancer therapy. At the depth of the Bragg peak range, protons produce a mixed radiation field consisting of low- and high-linear energy transfer (LET) components, the latter of which is characterized by an increased ionization density on the microscopic scale associated with increased biological effectiveness. Prediction of the yield and LET of primary and secondary charged particles at a certain depth in the patient is performed by Monte Carlo simulations but is difficult to verify experimentally.Approach.Here, the results of measurements performed with Timepix detector in the mixed radiation field produced by a therapeutic proton beam in water are presented and compared to Monte Carlo simulations. The unique capability of the detector to perform high-resolution single particle tracking and identification enhanced by artificial intelligence allowed to resolve the particle type and measure the deposited energy of each particle comprising the mixed radiation field. Based on the collected data, biologically important physics parameters, the LET of single protons and dose-averaged LET, were computed.Main results.An accuracy over 95% was achieved for proton recognition with a developed neural network model. For recognized protons, the measured LET spectra generally agree with the results of Monte Carlo simulations. The mean difference between dose-averaged LET values obtained from measurements and simulations is 17%. We observed a broad spectrum of LET values ranging from a fraction of keVµm-1to about 10 keVµm-1for most of the measurements performed in the mixed radiation fields.Significance.It has been demonstrated that the introduced measurement method provides experimental data for validation of LETDor LET spectra in any treatment planning system. The simplicity and accessibility of the presented methodology make it easy to be translated into a clinical routine in any proton therapy facility.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Inteligência Artificial , Transferência Linear de Energia , Dosagem Radioterapêutica , Método de Monte Carlo , Radiometria
3.
Phys Med Biol ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295440

RESUMO

OBJECTIVE: The Jagiellonian PET (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach: Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualised in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results: Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r^2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance: The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment. .

4.
Phys Med Biol ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137551

RESUMO

OBJECTIVE: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA