Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biol Chem ; 404(8-9): 813-819, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37139661

RESUMO

Atg18, Atg21 and Hsv2 are homologous ß-propeller proteins binding to PI3P and PI(3,5)P2. Atg18 is thought to organize lipid transferring protein complexes at contact sites of the growing autophagosome (phagophore) with both the ER and the vacuole. Atg21 is restricted to the vacuole phagophore contact, where it organizes part of the Atg8-lipidation machinery. The role of Hsv2 is less understood, it partly affects micronucleophagy. Atg18 is further involved in regulation of PI(3,5)P2 synthesis. Recently, a novel Atg18-retromer complex and its role in vacuole homeostasis and membrane fission was uncovered.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599961

RESUMO

Nucleophagy, the selective subtype of autophagy that targets nuclear material for autophagic degradation, was not only shown to be a model system for the study of selective macroautophagy, but also for elucidating the role of the core autophagic machinery within microautophagy. Nucleophagy also emerged as a system associated with a variety of disease conditions including cancer, neurodegeneration and ageing. Nucleophagic processes are part of natural cell development, but also act as a response to various stress conditions. Upon releasing small portions of nuclear material, micronuclei, the autophagic machinery transfers these micronuclei to the vacuole for subsequent degradation. Despite sharing many cargos and requiring the core autophagic machinery, recent investigations revealed the aspects that set macro- and micronucleophagy apart. Central to the discrepancies found between macro- and micronucleophagy is the nucleus vacuole junction, a large membrane contact site formed between nucleus and vacuole. Exclusion of nuclear pore complexes from the junction and its exclusive degradation by micronucleophagy reveal compositional differences in cargo. Regarding their shared reliance on the core autophagic machinery, micronucleophagy does not involve normal autophagosome biogenesis observed for macronucleophagy, but instead maintains a unique role in overall microautophagy, with the autophagic machinery accumulating at the neck of budding vesicles.


Assuntos
Autofagia , Núcleo Celular/metabolismo , Microautofagia , Proteínas Nucleares/metabolismo , Vacúolos/metabolismo , Animais , Humanos , Proteínas Nucleares/genética
3.
EMBO J ; 34(7): 955-73, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25691244

RESUMO

Autophagosome biogenesis requires two ubiquitin-like conjugation systems. One couples ubiquitin-like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin-like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P-containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 ß-propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled-coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6-motif in the N-terminal helical domain of Atg8, but not its AIM-binding site. Accordingly, the Atg8 AIM-binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P-dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.


Assuntos
Endopeptidases/metabolismo , Fosfatos de Inositol/metabolismo , Lipoilação/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Endopeptidases/genética , Fosfatos de Inositol/genética , Proteínas Associadas aos Microtúbulos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética
4.
Biophys J ; 108(9): 2223-34, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954880

RESUMO

PROPPINs (ß-propellers that bind polyphosphoinositides) are a family of PtdIns3P- and PtdIns(3,5)P2-binding proteins that play an important role in autophagy. We analyzed PROPPIN-membrane binding through isothermal titration calorimetry (ITC), stopped-flow measurements, mutagenesis studies, and molecular dynamics (MD) simulations. ITC measurements showed that the yeast PROPPIN family members Atg18, Atg21, and Hsv2 bind PtdIns3P and PtdIns(3,5)P2 with high affinities in the nanomolar to low-micromolar range and have two phosphoinositide (PIP)-binding sites. Single PIP-binding site mutants have a 15- to 30-fold reduced affinity, which explains the requirement of two PIP-binding sites in PROPPINs. Hsv2 bound small unilamellar vesicles with a higher affinity than it bound large unilamellar vesicles in stopped-flow measurements. Thus, we conclude that PROPPIN membrane binding is curvature dependent. MD simulations revealed that loop 6CD is an anchor for membrane binding, as it is the region of the protein that inserts most deeply into the lipid bilayer. Mutagenesis studies showed that both hydrophobic and electrostatic interactions are required for membrane insertion of loop 6CD. We propose a model for PROPPIN-membrane binding in which PROPPINs are initially targeted to membranes through nonspecific electrostatic interactions and are then retained at the membrane through PIP binding.


Assuntos
Proteínas de Transporte/química , Fosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Fosfatidilinositóis/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Leveduras/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(30): E2042-9, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22753491

RESUMO

ß-propellers that bind polyphosphoinositides (PROPPINs), a eukaryotic WD-40 motif-containing protein family, bind via their predicted ß-propeller fold the polyphosphoinositides PtdIns3P and PtdIns(3,5)P(2) using a conserved FRRG motif. PROPPINs play a key role in macroautophagy in addition to other functions. We present the 3.0-Å crystal structure of Kluyveromyces lactis Hsv2, which shares significant sequence homologies with its three Saccharomyces cerevisiae homologs Atg18, Atg21, and Hsv2. It adopts a seven-bladed ß-propeller fold with a rare nonvelcro propeller closure. Remarkably, in the crystal structure, the two arginines of the FRRG motif are part of two distinct basic pockets formed by a set of highly conserved residues. In comprehensive in vivo and in vitro studies of ScAtg18 and ScHsv2, we define within the two pockets a set of conserved residues essential for normal membrane association, phosphoinositide binding, and biological activities. Our experiments show that PROPPINs contain two individual phosphoinositide binding sites. Based on docking studies, we propose a model for phosphoinositide binding of PROPPINs.


Assuntos
Kluyveromyces/química , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Motivos de Aminoácidos/genética , Proteínas Relacionadas à Autofagia , Sítios de Ligação/genética , Clonagem Molecular , Sequência Conservada/genética , Cristalografia por Raios X , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Mutagênese , Fosfatidilinositóis/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
6.
Cells ; 12(16)2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37626866

RESUMO

The putative phospholipase Atg15 is required for the intravacuolar lysis of autophagic bodies and MVB vesicles. Intracellular membrane lysis is a highly sophisticated mechanism that is not fully understood. The amino-terminal transmembrane domain of Atg15 contains the sorting signal for entry into the MVB pathway. By replacing this domain, we generated chimeras located in the cytosol, the vacuole membrane, and the lumen. The variants at the vacuole membrane and in the lumen were highly active. Together with the absence of Atg15 from the phagophore and autophagic bodies, this suggests that, within the vacuole, Atg15 can lyse vesicles where it is not embedded. In-depth topological analyses showed that Atg15 is a single membrane-spanning protein with the amino-terminus in the cytosol and the rest, including the active site motif, in the ER lumen. Remarkably, only membrane-embedded Atg15 variants affected growth when overexpressed. The growth defects depended on its active site serine 332, showing that it was linked to the enzymatic activity of Atg15. Interestingly, the growth defects were independent of vacuolar proteinase A and vacuolar acidification.


Assuntos
Autofagia , Saccharomyces cerevisiae , Autofagossomos , Morte Celular , Movimento Celular , Proteínas Fúngicas , Proteínas de Membrana
7.
Autophagy ; 19(1): 278-295, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35574911

RESUMO

The yeast PROPPIN Atg18 folds as a ß-propeller with two binding sites for phosphatidylinositol-3-phosphate (PtdIns3P) and PtdIns(3,5)P2 at its circumference. Membrane insertion of an amphipathic loop of Atg18 leads to membrane tubulation and fission. Atg18 has known functions at the PAS during macroautophagy, but the functional relevance of its endosomal and vacuolar pool is not well understood. Here we show in a proximity-dependent labeling approach and by co-immunoprecipitations that Atg18 interacts with Vps35, a central component of the retromer complex. The binding of Atg18 to Vps35 is competitive with the sorting nexin dimer Vps5 and Vps17. This suggests that Atg18 within the retromer can substitute for both the phosphoinositide binding and the membrane bending capabilities of these sorting nexins. Indeed, we found that Atg18-retromer is required for PtdIns(3,5)P2-dependent vacuolar fragmentation during hyperosmotic stress. The Atg18-retromer is further involved in the normal sorting of the integral membrane protein Atg9. However, PtdIns3P-dependent macroautophagy and the selective cytoplasm-to-vacuole targeting (Cvt) pathway are only partially affected by the Atg18-retromer. We expect that this is due to the plasticity of the different sorting pathways within the endovacuolar system.Abbreviations: BAR: bin/amphiphysin/Rvs; FOA: 5-fluoroorotic acid; PAS: phagophore assembly site; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Vacúolos/metabolismo , Autofagia , Saccharomyces cerevisiae/metabolismo , Endossomos/metabolismo , Transporte Proteico , Fosfatos/metabolismo , Nexinas de Classificação/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Autophagy ; 17(3): 626-639, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32046569

RESUMO

Nucleophagy, the mechanism for autophagic degradation of nuclear material, occurs in both a macro- and micronucleophagic manner. Upon nitrogen deprivation, we observed, in an in-depth fluorescence microscopy study, the formation of micronuclei: small parts of superfluous nuclear components surrounded by perinuclear ER. We identified two types of micronuclei associated with a corresponding autophagic mode. Our results showed that macronucleophagy degraded these smaller micronuclei. Engulfed in Atg8-positive phagophores and containing cargo receptor Atg39, macronucleophagic structures revealed finger-like extensions when observed in 3-dimensional reconstitutions of fluorescence microscopy images, suggesting directional growth. Interestingly, in the late stages of phagophore elongation, the adjacent vacuolar membrane showed a reduction of integral membrane protein Pho8. This change in membrane composition could indicate the formation of a specialized vacuolar domain, required for autophagosomal fusion. Significantly larger micronuclei formed at nucleus vacuole junctions and were identified as a substrate of piecemeal microautophagy of the nucleus (PMN), by the presence of the integral membrane protein Nvj1. Micronuclei sequestered by vacuolar invaginations also contained Atg39. A detailed investigation revealed that both Atg39 and Atg8 accumulated between the vacuolar tips. These findings suggest a role for Atg39 in micronucleophagy. Indeed, following the degradation of Nvj1, an exclusive substrate of PMN, in immunoblots, we could confirm the essential role of Atg39 for PMN. Our study thus details the involvement of Atg8 in both macronucleophagy and PMN and identifies Atg39 as the general cargo receptor for nucleophagic processes.Abbreviations: DIC: Differential interference contrast, FWHM: Full width at half maximum, IQR: Interquartile range, MIPA: Micropexophagy-specific membrane apparatus, NLS: Nuclear localization signal, NVJ: Nucleus vacuole junction, PMN: Piecemeal microautophagy of the nucleus, pnER: Perinuclear ER.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Autophagy ; 17(6): 1458-1478, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515645

RESUMO

Coupling of Atg8 to phosphatidylethanolamine is crucial for the expansion of the crescent-shaped phagophore during cargo engulfment. Atg21, a PtdIns3P-binding beta-propeller protein, scaffolds Atg8 and its E3-like complex Atg12-Atg5-Atg16 during lipidation. The crystal structure of Atg21, in complex with the Atg16 coiled-coil domain, showed its binding at the bottom side of the Atg21 beta-propeller. Our structure allowed detailed analyses of the complex formation of Atg21 with Atg16 and uncovered the orientation of the Atg16 coiled-coil domain with respect to the membrane. We further found that Atg21 was restricted to the phagophore edge, near the vacuole, known as the vacuole isolation membrane contact site (VICS). We identified a specialized vacuolar subdomain at the VICS, typical of organellar contact sites, where the membrane protein Vph1 was excluded, while Vac8 was concentrated. Furthermore, Vac8 was required for VICS formation. Our results support a specialized organellar contact involved in controlling phagophore elongation. Abbreviations: FCCS: fluorescence cross correlation spectroscopy; NVJ: nucleus-vacuole junction; PAS: phagophore assembly site; PE: phosphatidylethanolamine; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol- 3-phosphate; VICS: vacuole isolation membrane contact site.


Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Endopeptidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
11.
Biochem J ; 394(Pt 1): 153-61, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16321140

RESUMO

In mammalian liver, proteolysis is regulated by the cellular hydration state in a microtubule- and p38(MAPK) (p38 mitogen-activated protein kinase)-dependent fashion. Osmosensing in liver cells towards proteolysis is achieved by activation of integrin receptors. The yeast orthologue of p38(MAPK) is Hog1 (high-osmolarity glycerol 1), which is involved in the hyperosmotic-response pathway. Since it is not known whether starvation-induced autophagy in yeast is osmosensitive and whether Hog1 is involved in this process, we performed fluorescence microscopy experiments. The hog1Delta cells exhibited a visible decrease of autophagy in hypo-osmotic and hyperosmotic nitrogen-starvation medium as compared with normo-osmolarity, as determined by GFP (green fluorescent protein)-Atg8 (autophagy-related 8) fluorescence. Western blot analysis of GFP-Atg8 degradation showed that WT (wild-type) cells maintained a stable autophagic activity over a broad osmolarity range, whereas hog1Delta cells showed an impaired autophagic actitivity during hypo- and hyper-osmotic stress. In [3H]leucine-pre-labelled yeast cells, the proteolysis rate was osmodependent only in hog1Delta cells. Neither maturation of pro-aminopeptidase I nor vitality was affected by osmotic stress in either yeast strain. In contrast, rapamycin-dependent autophagy, as measured by degradation of GFP-Atg8, did not significantly respond to hypo-osmotic or hyperosmotic stress in hog1Delta or WT cells. We conclude that Hog1 plays a role in the stabilization machinery of nitrogen-deprivation-induced autophagy in yeast cells during ambient osmolarity changes. This could be an analogy to the p38(MAPK) pathway in mammalian liver, where osmosensing towards p38(MAPK) is required for autophagy regulation by hypo-osmotic or amino-acid-induced cell swelling. A phenotypic difference is observed in rapamycin-induced autophagy, which does not seem to respond to extracellular osmolarity changes in hog1Delta cells.


Assuntos
Autofagia/fisiologia , Proteínas Quinases Ativadas por Mitógeno/deficiência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Nitrogênio/metabolismo , Pressão Osmótica , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo , Fatores de Tempo
12.
Mol Biol Cell ; 14(4): 1652-63, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12686616

RESUMO

Metabolic adaptation of Saccharomyces cerevisiae cells from a nonfermentable carbon source to glucose induces selective, rapid breakdown of the gluconeogenetic key enzyme fructose-1,6-bisphosphatase (FBPase), a process called catabolite degradation. Herein, we identify eight novel GID genes required for proteasome-dependent catabolite degradation of FBPase. Four yeast proteins contain the CTLH domain of unknown function. All of them are Gid proteins. The site of catabolite degradation has been controversial until now. Two FBPase degradation pathways have been described, one dependent on the cytosolic ubiquitin-proteasome machinery, and the other dependent on vacuolar proteolysis. Interestingly, three of the novel Gid proteins involved in ubiquitin-proteasome-dependent degradation have also been reported by others to affect the vacuolar degradation pathway. As shown herein, additional genes suggested to be essential for vacuolar degradation are unnecessary for proteasome-dependent degradation. These data raise the question as to whether two FBPase degradation pathways exist that share components. Detailed characterization of Gid2p demonstrates that it is part of a soluble, cytosolic protein complex of at least 600 kDa. Gid2p is necessary for FBPase ubiquitination. Our studies have not revealed any involvement of vesicular intermediates in proteasome-dependent FBPase degradation. The influence of Ubp14p, a deubiquitinating enzyme, on proteasome-dependent catabolite degradation was further uncovered.


Assuntos
Frutose-Bifosfatase/metabolismo , Genes Fúngicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Bases , Cisteína Endopeptidases/metabolismo , DNA Fúngico/genética , Endopeptidases/metabolismo , Genoma Fúngico , Glucose/metabolismo , Glucose/farmacologia , Substâncias Macromoleculares , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Vacúolos/enzimologia
13.
Autophagy ; 13(1): 201-211, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27846363

RESUMO

The E3 ubiquitin ligase PARK2 and the mitochondrial protein kinase PINK1 are required for the initiation of mitochondrial damage-induced mitophagy. Together, PARK2 and PINK1 generate a phospho-ubiquitin signal on outer mitochondrial membrane proteins that triggers recruitment of the autophagy machinery. This paper describes the detection of a defined 500-kDa phospho-ubiquitin-rich PARK2 complex that accumulates on mitochondria upon treatment with the membrane uncoupler CCCP. Formation of this complex is dependent on the presence of PINK1 and is absent in mutant forms of PARK2, whereby mitophagy is also arrested. These results signify a functional signaling complex that is essential for the progression of mitophagy. The visualization of the PARK2 signaling complex represents a novel marker for this critical step in mitophagy and can be used to monitor mitophagy progression in PARK2 mutants and to uncover additional upstream factors required for PARK2-mediated mitophagy signaling.


Assuntos
Mitofagia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Autofagia , Células HEK293 , Humanos , Imunoglobulina G/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Fosforilação , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
14.
FEBS Lett ; 580(19): 4632-8, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16876790

RESUMO

Atg18 and Atg21 are homologous S. cerevisiae autophagy proteins. Atg18 is essential for biogenesis of Cvt vesicles and autophagosomes, while Atg21 is only essential for Cvt vesicle formation. We found that mutated Atg18-(FTTGT), which lost almost completely its binding to PtdIns3P and PtdIns(3,5)P(2), is non-functional during the Cvt pathway but active during autophagy and pexophagy. Since the Cvt pathway does not depend on PtdIns(3,5)P(2), we conclude that the Cvt pathway requires binding of Atg18 to PtdIns3P. Mutated Atg21-(FTTGT) is inactive during the Cvt pathway but showed only partly reduced binding to PtdIns-phosphates, suggesting further lipid binding domains in Atg21. GFP-Atg18-(FTTGT) and Atg21-(FTTGT)-GFP are released from vacuolar punctae to the cytosol.


Assuntos
Motivos de Aminoácidos , Autofagia , Endopeptidases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia , Sequência de Bases , Sítios de Ligação , Primers do DNA , Endopeptidases/química , Endopeptidases/genética , Metabolismo dos Lipídeos , Proteínas de Membrana , Mutagênese Sítio-Dirigida , Ligação Proteica , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
Autophagy ; 12(11): 2260-2261, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27560294

RESUMO

In Saccharomyces cerevisiae Atg8 coupled to phosphatidylethanolamine is a key component of autophagosome biogenesis. Atg21 binds via 2 sites at the circumference of its ß-propeller to PtdIns3P at the phagophore assembly site (PAS). It recruits and arranges both Atg8 and Atg16, which is part of the E3-like ligase complex Atg12-Atg5-Atg16. Binding of Atg8 to Atg21 requires the FK-motif within the N-terminal-helical domain of Atg8 and D146 at the top of the Atg21 ß-propeller. Atg16 binds via D101 and E102 within its coiled-coil domain to Atg21.


Assuntos
Lipídeos/química , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Biológicos , Fagossomos/metabolismo
16.
Methods Mol Biol ; 1376: 155-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552682

RESUMO

Liposome flotation assays are a convenient tool to study protein-phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein-lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method.


Assuntos
Lipossomos , Fosfatidilinositóis , Proteínas , Lipossomos/química , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Eletricidade Estática
17.
J Cell Biol ; 210(1): 9-10, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26150387

RESUMO

When nerve injury occurs, the axon and myelin fragments distal to the injury site have to be cleared away before repair. In this issue, Gomez-Sanchez et al. (2015; J. Cell Biol. http://dx.doi.org/10.1083/jcb.201503019) find that clearance of the damaged myelin within Schwann cells occurs not by phagocytosis but rather via selective autophagy, in a process they term "myelinophagy."


Assuntos
Autofagia , Bainha de Mielina/patologia , Traumatismos dos Nervos Periféricos/patologia , Animais
19.
FEBS Lett ; 526(1-3): 71-6, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12208507

RESUMO

In a reverse genetics screen, we here identify Ccz1p as an essential component of the cvt pathway and autophagy. Ccz1p is identical with the so far unknown Cvt16p. GFP-Aut7p, a specific cargo of autophagosomes, accumulates in ccz1 Delta cells at punctate, vesicular structures in the cytosol, suggesting a block in the autophagic pathway prior to vacuolar fusion of autophagosomes. Proteinase protection experiments using hypotonically lysed ccz1 Delta spheroplasts demonstrate that proaminopeptidase I, another specific cargo of autophagy and the cvt pathway, is trapped inside membrane-enclosed vesicles. Taken together our findings are compatible with a function of Ccz1p in vacuolar fusion of cvt vesicles and autophagosomes.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Proteínas Relacionadas à Autofagia , Proteínas de Transporte , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Enzimas de Conjugação de Ubiquitina
20.
FEBS Lett ; 512(1-3): 173-9, 2002 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-11852075

RESUMO

We here identify Mai1p, a homologue of the autophagy protein Aut10p, as a novel component essential for proaminopeptidase I (proAPI) maturation under non-starvation conditions. In mai1Delta cells mature vacuolar proteinases are detectable and vacuolar acidification is normal. In mai1Delta cells autophagy occurs, though at a somewhat reduced level. This is indicated by proAPI maturation during starvation and accumulation of autophagic bodies during starvation with phenylmethylsulfonyl fluoride. Homozygous diploid mai1Delta cells sporulate, but with a slightly reduced frequency. Biologically active Ha-tagged Mai1p, chromosomally expressed under its native promoter, is at least in part peripherally membrane-associated. In indirect immunofluorescence it localizes to the vacuolar membrane or structures nearby. In some cells Ha-tagged Mai1p appears concentrated at regions adjacent to the nucleus.


Assuntos
Aminopeptidases/metabolismo , Autofagia/fisiologia , Endopeptidases/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia , Compartimento Celular , Endopeptidases/genética , Proteínas de Membrana , Dados de Sequência Molecular , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Vacúolos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA