RESUMO
This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.
Assuntos
Aminoácidos , Ácido Glutâmico , Suínos , Animais , Homeostase , Arginina , Sistemas de Transporte de Aminoácidos , Suplementos Nutricionais , Expressão GênicaRESUMO
Chrysanthemum waste (CW) is an agricultural and industrial by-product produced during chrysanthemum harvesting, drying, preservation, and deep processing. Although it is nutritious, most CW is discarded, wasting resources and contributing to serious environmental problems. This work explored a solid-state fermentation (SSF) strategy to improve CW quality for use as an alternative feed ingredient. Orthogonal experiment showed that the optimal conditions for fermented chrysanthemum waste (FCW) were: CW to cornmeal mass ratio of 9:1, Pediococcus cellaris + Candida tropicalis + Bacillus amyloliquefaciens proportions of 2:2:1, inoculation amount of 6%, and fermentation time of 10 d. Compared with the control group, FCW significantly increased the contents of crude protein, ether extract, crude fiber, acid detergent fiber, neutral detergent fiber, ash, calcium, phosphorus, and total flavonoids (p < 0.01), and significantly decreased pH and saponin content (p < 0.01). SSF improved the free and hydrolyzed amino acid profiles of FCW, increased the content of flavor amino acids, and improved the amino acid composition of FCW protein. Overall, SSF improved CW nutritional quality. FCW shows potential use as a feed ingredient, and SSF helps reduce the waste of chrysanthemum processing.
Assuntos
Aminoácidos , Detergentes , Fermentação , Amido , Ração Animal/análiseRESUMO
In this study, the density functional theory is used to study the ability of (ZnS)n clusters to remove Hg0, HgCl, and HgCl2 and reveals that they can be absorbed on (ZnS)n clusters. According to electron localization function (ELF) and non-covalent interactions (NCI) analyses, the adsorption of Hg0 on (ZnS)n is physical adsorption and the adsorption ability of (ZnS)n for removing Hg0 is weak. When (ZnS)n adsorbs HgCl and HgCl2, two new Hg-S and Zn-Cl bonds form in the resultant clusters. An ELF analysis identifies the formation of Hg-S and Zn-Cl bonds in (ZnS)nHgCl and (ZnS)nHgCl2. A partial density of states and charge analysis confirm that as Hg0, HgCl, and HgCl2 approach (ZnS)n clusters, atomic orbitals in Hg and Zn, Hg and S, as well as Zn and Cl overlap and hybridize. Adsorption energies of HgCl and HgCl2 on (ZnS)n clusters are obviously bigger than those of Hg0, indicating that HgCl and HgCl2 adsorption on (ZnS)n clusters is much stronger than that of Hg0. By combining ELF analysis, NCI analysis, and adsorption energies, the adsorption of HgCl, and HgCl2 on (ZnS)n clusters can be classified as chemical adsorption. The adsorption ability of (ZnS)n clusters for removing HgCl and HgCl2 is higher than that of Hg0.
RESUMO
BACKGROUND: Mulberry leaf extract (MLE) extracted from mulberry leaves is rich in a variety of bioactive ingredients and can be used as feed additives of weaned piglets. The present study was conducted to evaluate the effects of dietary MLE supplementation on intestinal barrier function, colon microbial numbers and microbial metabolites of weaned piglets. RESULTS: MLE supplementation increased the villus height and the villus height/crypt depth ratio in jejunum and ileum (P < 0.05), increased the mRNA expression of ZO-1, Claudin-1 and MUC-2 in the ileal mucosa (P < 0.05), and decreased the serum level of lipopolysaccharide (P < 0.01). Meanwhile, MLE reduced the mRNA expression of tumor necrosis factor-α and interleukin-1ß (P < 0.05) and increased secretory immunoglobulin A level in the ileal mucosa (P < 0.05). In addition, MLE increased the numbers of beneficial bacteria Bifidobacterium and Lactobacillus (P < 0.05) and decreased the number of potential pathogenic bacteria Escherichia coli (P < 0.05) in the colon. Correspondingly, MLE supplementation reduced the pH value of colonic digesta (P < 0.05) and altered the microbial fermentation pattern of the colon by increasing the concentrations of microbial metabolites derived from carbohydrates fermentation such as lactate, acetate, butyrate and total short-chain fatty acids (P < 0.05), and decreasing the concentrations of microbial metabolites derived from amino acid fermentation such as p-cresol, skatole, spermine, histamine and tryptamine (P < 0.05). CONCLUSION: MLE supplementation improved intestinal barrier function and displayed beneficial effects on colon microbes and microbial metabolism in weaned piglets. © 2022 Society of Chemical Industry.
Assuntos
Microbiota , Morus , Animais , Suínos , Suplementos Nutricionais/análise , Morus/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , RNA Mensageiro/metabolismo , DesmameRESUMO
The accumulation of reactive oxygen species (ROS) triggers oxidative stress in cells by oxidizing and modifying various cellular components, preventing them from performing their inherent functions, ultimately leading to apoptosis and autophagy. Glutathione (GSH) is a ubiquitous intracellular peptide with multiple functions. In this study, a hydrogen peroxide (H2O2)-induced oxidative damage model in IPEC-J2 cells was used to investigate the cellular protection mechanism of exogenous GSH against oxidative stress. The results showed that GSH supplement improved the cell viability reduced by H2O2-induced oxidative damage model in IPEC-J2 cells in a dose-dependent manner. Moreover, supplement with GSH also attenuated the H2O2-induced MMP loss, and effectively decreased the H2O2-induced mitochondrial dysfunction by increasing the content of mtDNA and upregulating the expression TFAM. Exogenous GSH treatment significantly decreased the ROS and MDA levels, improved SOD activity in H2O2-treated cells and reduced H2O2-induced early apoptosis in IPEC-J2 cells. This study showed that exogenous GSH can protect IPEC-J2 cells against apoptosis induced by oxidative stress through mitochondrial mechanisms.
Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Apoptose , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
This study investigated the effects of citrus extract on growth, carcass and meat quality of Duroc × Landrace × Large White pigs. One hundred and eight pigs (54 barrows, 54 females) were assigned to one of three dietary treatments for 138 days. The dietary treatments were (1) basic diet; (2) basic diet supplemented with 75 mg/kg chlortetracycline; and (3) basic diet supplemented with citrus extract (0.25 ml/kg during 56-112 days of age and 0.20 ml/kg during 113-194 days of age). No significant differences among treatments were found for growth performance, carcass characteristics, meat quality and free amino acids (p > 0.05). Feeding citrus extract tended to increase intramuscular fat (p = 0.052). Citrus extract and chlortetracycline increased C15:0 concentration (p = 0.016) and superoxide dismutase activity (p = 0.004). The pigs that received chlortetracycline exhibited the lowest (p = 0.033) muscle malondialdehyde concentration. Overall, citrus extract ameliorated some meat quality indicators without adverse effects on pig growth or carcass performance.
Assuntos
Clortetraciclina , Citrus , Ração Animal/análise , Animais , Composição Corporal , Clortetraciclina/farmacologia , Dieta/veterinária , Feminino , Carne/análise , SuínosRESUMO
Establishing the hierarchical porous architectures has been considered to be the most efficient approach to realize the efficient mass diffusion and large exposed active sites of designed micro/nanomaterial catalysts for hydrogen evolution reactions (HER). In this work, the nonequivalent cation exchange strategy is developed to fabricate the hierarchically porous Ag/Ag2 S heterostructure based on the rapid cation exchange by the metal-organic framework (MOF)-derived CoS. The as-prepared Ag/Ag2 S inherits the original 3D hollow morphology of CoS with porous nature, possessing abundant S-vacancies and lattice strain simultaneously due to the coordination loss and in-situ epitaxial growth of metallic Ag on the surface. Owing to the optimizations of lattice and electronic structures, the unique hierarchically porous Ag/Ag2 S heterostructure exhibits superior catalytic performance than previously reported catalysts derived from MOF. Theoretical calculations have confirmed that the co-existence of Ag cluster and sulfur vacancies activates the electroactivity of the interfacial defective region to boost the HER process. The binding strength of the proton and energetic trend of HER has been optimized with the formation of Ag/Ag2 S heterostructure, which guarantees the efficient generation of H2 . This study opens a new strategy for the utilization of the nonequivalent cation exchange strategy to efficiently synthesize advanced electrocatalysts with high performances.
Assuntos
Hidrogênio , Estruturas Metalorgânicas , Cátions , Porosidade , PrótonsRESUMO
BACKGROUND: This study evaluated the effects of citrus extract (CE) on growth performance, plasma amino acid (AA) profiles, intestinal development and small intestine AA and peptide transporter expression levels in broilers. A total of 540 one-day-old yellow-feathered broilers were fed a basal diet without any antibiotic (control group), or a basal diet containing 10 mg kg-1 zinc bacitracin (antibiotic group), or a basal diet supplemented with 10 mg kg-1 CE (CE group). After 63 days of feeding, two broilers per pen were slaughtered to collect tissues for further analysis. RESULTS: Results showed that CE increased (P < 0.05) the final body weight and average daily gain from day 1 to 63, and decreased (P < 0.05) the feed/gain ratio from day 1 to 63. Dietary CE supplementation increased (P < 0.05) plasma total protein, albumin and glucose concentration, and decreased (P < 0.05) urea concentration. CE supplementation increased (P < 0.05) the villus height in the ileum and the villus height/crypt depth in the jejunum and ileum, but decreased (P < 0.05) the crypt depth in the jejunum and ileum. CE supplementation increased (P < 0.05) most plasma essential AA concentrations. Additionally, CE supplementation upregulated (P < 0.05) ASCT1, b0,+ AT, B0 AT1, EAAT3, rBAT, y+ LAT2 and PepT1 expression in the jejunum, and b0,+ AT, EAAT3, rBAT, y+ LAT2, CAT1 and PepT1 in the ileum. CONCLUSIONS: Collectively, our results indicated that CE supplementation promotes intestinal physiological absorption of AAs by upregulating gene expression of small intestinal key AA and peptide transporters, thereby enhancing the growth performance of broilers. © 2020 Society of Chemical Industry.
Assuntos
Aminoácidos/sangue , Galinhas/metabolismo , Citrus/metabolismo , Intestino Delgado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes/metabolismo , Ração Animal/análise , Animais , Galinhas/sangue , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Citrus/química , Suplementos Nutricionais/análise , Absorção Intestinal , Proteínas de Membrana Transportadoras/genéticaRESUMO
Chlorogenic acids (CGAs), a group of hydroxycinnamates, are generally abundant in everyday foods and beverages, most prominently in certain coffee drinks. Among them, the chlorogenic acid (CGA), also termed as 5-O-caffeoylquinic acid (5-CQA), is one of the most abundant, highly functional polyphenolic compounds in the human diet. The evidence of its health benefits obtained from clinical studies, as well as basic research, indicates an inverse correlation between 5-CQA consumption and a lower risk of metabolic syndromes and chronic diseases. This review focuses on the beneficial properties for health and mechanisms of action of 5-CQA, starting with its history, isomers, dietary sources, processing effects, preparation methods, pharmacological safety evaluation, and bioavailability. It also provides the possible molecular mechanistic bases to explain the health beneficial effects of 5-CQA including neuroprotective, cardiovascular protective, gastrointestinal protective, renoprotective, hepatoprotective, glucose and lipid metabolism regulatory, and anticarcinogenic effects. The information summarized here could aid in the basic and clinical research on 5-CQA as a natural dietary additive, potential drug candidate, as well as a natural health promoter.
Assuntos
Disponibilidade Biológica , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Café/química , HumanosRESUMO
Amino acids provide key nutritional value, and significantly contribute to taste and flavor of meat. Here, we review the role of free amino acids in the muscle fibers in meat quality and sensory signals. We furthermore discuss how dietary supplementation of free amino acids and their derivatives (e.g. tryptophan, threonine, arginine, lysine, leucine, glutamate, threonine, sarcosine, betaines, and cysteamine) can influence these attributes. The available data shows that the quality of the meat is subject to the amino acids that are provided in the animal feed.
RESUMO
BACKGROUND/AIMS: There has been increasing recent attention on the antioxidative capacity of equol. This study tested the effect of equol on oxidative stress induced by lipopolysaccharide (LPS) and regulation of immunity in chicken macrophages. METHODS: Chicken HD11 macrophages were challenged with LPS (100 ng/mL) alone or with LPS (100 ng/mL) and (±)equol (10, 20, 40, 80, 160 µmol/L) together for 24h. Evaluated responses included the contents of malondialdehyde (MDA) and reduced glutathione (GSH), activities of total superoxide dismutase (T-SOD) and inducible nitric oxide synthase (iNOS), transcript abundance of superoxide dismutase 2 (SOD2), catalase (CAT), glutathione transferase (GST), Toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1ß), and contents of the cytokines TNFα, IL-1ß, interleukin-2 (IL-2) and interferon beta (IFNß). RESULTS: Exposure to LPS induced oxidative stress as contents of MDA increased and GSH decreased in LPS-treated cells (P < 0.05) compared to those in control cells. Compared to LPS alone, co-treatment with equol (20 µmol/L, 40 µmol/L or 80 µmol/L) reduced contents of MDA and increased those of GSH (both P < 0.05). Activity of T-SOD increased (P < 0.05) in cells treated with the higher contentration of equol (80 µmol/L or 160 µmol/L), however, all concentrations (20 µmol/L to 160 µmol/L) increased activity of iNOS (P < 0.05). The highest concentration of equol (160 µmol/L) increased SOD2 and GST transcripts (P < 0.05). Equol treatment increased transcripts of TLR4, TNFα and IL-1ß (P < 0.05). And there were similar changes in contents of IL-1ß, IL-2, IFNß and TNFα in the cells (P < 0.05). CONCLUSIONS: It concluded that equol can protect chicken HD11 macrophages from oxidative stress induced by LPS through reducing lipid peroxidation products and enhancing contents of antioxidants, and activities of relevant antioxidase enzymes; effects were also seen in gene expression related to the immune response and increased contents of cytokines. The optimal concentration of equol on antioxidation and immune enhancement in chicken macrophages was 40 µmol/L.
Assuntos
Antioxidantes/farmacologia , Galinhas/imunologia , Equol/farmacologia , Imunidade Celular/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutationa/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Malondialdeído/imunologia , Fitoestrógenos/farmacologiaRESUMO
Ligand-protected gold (Au-L) nanoclusters have attracted much attention, where the reported electronic and geometric structures show great diversity. To give a direct and overall view of the energy landscape of Au-L binary systems, the AuxCly (x + y = 20) system is taken as a test case. By intensive global search of the potential energy surface at the level of density functional theory, a diverse set of global minima and low-lying isomers are found at each composition, and the structural phase diagram is obtained. The unbiased global search is carried out using the method combining the genetic algorithm with the TPSS functional. At x = 10 with the stoichiometric ratio of Au and Cl (1 : 1), the cluster presents a catenane structure. When x is in the range of 11-20, the clusters are Au-rich, and the Au-Cl system can be viewed as Cl-protected gold nanoclusters, where the gold cores consist of superatoms, superatom networks, or superatomic molecules in electronic structures. At x = 11-15, the gold cores consist of Au3, Au4 and Au5 2e-superatoms protected by staple motifs. At x = 16-20, the clusters are pyramidal superatomic molecules with one Au16 superatom core bonding with the four vertical atoms (Au or Cl). When x is in the scope of 9-5, the clusters are Cl-rich, and the 5d electrons of Au participate in bonding, resulting in high multiplicities. The Au-Cl binary system shows great diversity and flexibility in electronic and geometric structures, and there are corresponding structures to most of the experimentally produced Au-L nanoclusters in our structural phase diagram. We believe that the structural phase diagram gives an overall perspective on the universe of Au-L nanoclusters.
RESUMO
Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.
Assuntos
Lignanas , Microbiota , Escatol , Suínos , Animais , Humanos , Escatol/metabolismo , Triptofano/metabolismo , Compostos de BifeniloRESUMO
This study was conducted to investigate the effects of supplementing fermented mulberry leaves (FML) on intestinal morphology, antioxidant capacity, and immune function in the gut of finishing pigs. Eighteen 132-day-old healthy crossbred (Duroc × Landrace × Yorkshire) male castrated pigs were randomly divided into two treatment groups with nine replicates per group. The control (CON) group was fed the basal diet, and the FML group was fed the basal diet supplemented with 10% FML. The experiment lasted 69 days. The results showed that 10% FML improved gut health. The apparent total tract digestibility in dry matter, crude protein, crude fiber, neutral detergent fiber, acidic detergent fiber, ether extract, and crude ash increased in the 10% FML group of finishing pigs compared to the CON group (p < 0.05). Duodenal, jejunal, and ileal intestinal morphology, such as villus height and villus-height-to-crypt-depth ratio, increased in the 10% FML group compared to the CON group, whereas crypt depth decreased in the duodenum, jejunum, and ileum (p < 0.05). Total antioxidant capacity increased in the ileum of the 10% FML group compared with the CON group (p < 0.05). The FML supplementation improved the contents of duodenal immunoglobulin A, jejunal interleukin-1ß, interleukin-8, ileal interleukin-1ß, interleukin-6, interferon-γ, and immunoglobulins A and M compared to the control group (p < 0.05). Moreover, FML downregulated the mRNA expression levels of tumor necrosis factor-α in the duodenum, Toll-like receptor 4, nuclear factor-κ B-P65, and myeloid differentiation factor 88 in the jejunum, and Toll-like receptor 4 and nuclear factor-κ B-P65 in the ileum (p < 0.05). The FML also upregulated Montrose uniting church 1 in the duodenum and claudin 2 in the ileum (p < 0.05). In conclusion, dietary supplementation with 10% FML improved the gut health of finishing pigs and FML is a potential feed ingredient for pig breeding.
RESUMO
CONTEXT: The structures of Ag2n-1Sn- (n = 2-11) clusters are obtained by the combination of genetic algorithm (GA) and density functional theory (DFT). All the global minimum structures prefer hollow polyhedral structures, in which S-Ag-S element, triangular Ag3S3 and tetragonal Ag4S4 units present to stabilize the structures. The S atoms in the structures appear in µ3-S or µ4-S form. Adiabatic and vertical electron affinities of the clusters have been obtained, which reveals that they increases as cluster size. Stability analysis shows that Ag9S5- and Ag19S10- have special stability. The HOMO, LUMO orbitals of the clusters are obtained and the orbital components of them are calculated. The HOMO orbitals are mainly from the p orbitals of S atoms, whereas the s, p and d orbitals of Ag atoms contribute much bigger than the p orbitals of S atoms for LUMO orbitals. The orbital delocalization indexes (ODI) of the HOMOs and LUMOs are calculated, and the small ODIs of the HOMOs and LUMOs for n = 4-10 reveal that these orbitals are highly delocalized. By studying the projected density of states and molecular orbitals of Ag9S5- and Ag19S10- clusters, it is found that their molecular orbitals have superatomic properties. Superatomic properties play an important role in stabilizing clusters. METHODS: This work used combined genetic algorithm and density functional theory (GA-DFT), and PBE0/Lanl2tz(Ag)/6-311G(d,p)(S) method to optimize the structures. Gaussian 16 program, Gauss view 6.0.16 program and Multiwfn 3.8 code are the softwares used.
RESUMO
This study aims to investigate the effects of guanidine acetic acid (GAA) on carcass traits, plasma biochemical parameters, tissue antioxidant capacity, and tissue-bound amino acid contents in finishing pigs. Seventy-two 140-day-old (body weight 86.59 ± 1.16 kg) crossbred pigs (Duroc × Landrace × Large White) were randomly assigned into four treatments with six replicate pens and three pigs per pen, which were fed the basal diets supplemented with 0, 0.05%, 0.10%, or 0.15% GAA, respectively. The plasma glucose concentration decreased, and creatine kinase activity and levels of GAA and creatine increased with the dietary GAA concentration. GAA linearly improved creatine content in the longissimus thoracis muscle (LM) and heart. The activities of superoxide dismutase, total antioxidant capacity, and glutathione peroxidase increased linearly in tissue or/and plasma, while the contents of malondialdehyde and protein carbonyl decreased linearly. GAA improved the contents of multiple-bound amino acids (such as proline or isoleucine) in the myocardium and LM. In conclusion, GAA enhanced the plasma biochemical parameters, oxidative status, and bound amino acid profiles of the heart and LM in finishing pigs.
RESUMO
The present study was conducted to investigate the effects of synthetic soybean isoflavones (ISO) on the proliferation and related gene expression of sow mammary gland cells. Cells were cultured with 0 (control), 10, 20, or 30 µM of ISO under incubation conditions. After a 48 h incubation, these ISO-incubated cells proliferated more (p < 0.05) than the control cells. Cyclin E expression was higher (p < 0.05) in the 10 µM ISO and 20 µM ISO treatment groups than in the control group. Cyclin D1 and p21 expressions decreased (p < 0.05) with the 10 µM ISO treatment for 48 h. The relative mRNA abundances of the cells' IG-1R (Insulin-like growth factor-1R), EGFR (Epidermal growth factor receptor), STAT3 (Signal transducer and activator of transcription 3) and AKT (protein kinase B) were enhanced (p < 0.05) by the 20 µM ISO treatment for 24 h and 48 h in the medium. The relative mRNA abundances of κ-casein at 48 h of incubation and ß-casein at 24 h and 48 h of incubation were increased (p < 0.05) by 10 µM of ISO supplementation. It was concluded that ISO improved the proliferation of sow mammary gland cells, possibly by regulating cyclins and function genes expression in the cell proliferation signaling pathway.
RESUMO
BACKGROUND: As a nutritive feed additive, guanidine acetic acid (GAA) participates in the metabolism of energy and proteins. This study aimed to investigate the effects of GAA on growth performance, organ index, plasma and tissue free amino acid profiles, and related metabolites in finishing pigs. A total of 72 crossbred pigs (body weight 86.59 ± 1.16 kg) were randomly assigned to 1 of 4 dietary treatments (GAA0, GAA500, GAA1000, and GAA1500). They were fed the basal diets supplemented with 0, 500, 1000, or 1500 mg/kg GAA for 42 days, respectively. The growth performance and organ weight were evaluated, and the contents of crude protein, free amino acids, and metabolites in plasma and tissues were determined. Spearman correlation between plasma and tissue free amino acids and related metabolites was also analyzed. RESULTS: Growth performance in pigs was not altered by GAA (P > 0.05). The absolute and relative weight of kidneys increased (quadratic, P < 0.05). As dietary GAA concentration was increased, the contents of plasma glycine, serine, leucine, ornithine, and ratio of ornithine/arginine decreased (linear or quadratic, P < 0.05), but the contents of plasma isoleucine and taurine and the ratios of alanine/branched-chain amino acids and proline/ornithine increased quadratically (P < 0.05). The hepatic γ-amino-n-butyric acid content increased linearly and quadratically (P < 0.001), while the carnosine content decreased (quadratic, P = 0.004). The contents of renal arginine, proline, cystine, glutamate, and total amino acids (TAA) decreased quadratically (P < 0.05), but the contents of glycine (quadratic, P = 0.015) and γ-amino-n-butyric acid (linear, P = 0.008) increased. The pancreatic tryptophan content (quadratic, P = 0.024) increased, while the contents of pancreatic proline (linear, P = 0.005) and hydroxyproline (quadratic, P = 0.032) decreased in response to GAA supplementation. The contents of cardiac essential amino acids (EAA), nonessential amino acids (NEAA), and TAA in GAA1000 were higher than those in GAA1500 (P < 0.05). Supplementing with GAA linearly increased the contents of methionine, threonine, valine, isoleucine, leucine, phenylalanine, tryptophan, lysine, histidine, arginine, serine, alanine, glutamine, asparagine, tyrosine, proline, taurine, cystathionine, α-aminoadipic acid, ß-aminoisobutyric acid, EAA, NEAA, and TAA in the spleen (P < 0.05). A strong Spearman correlation existed between plasma and tissue free amino acids and related metabolites. CONCLUSION: GAA supplementation did not altered pig growth performance, but it altered plasma and tissue free amino acid profiles and the contents of related metabolites in pigs in a tissue-dependent manner.
RESUMO
This study integrated metagenomics and metabolomics to evaluate the effects of diets with different starch sources on the microbial community, metabolic functions, and resultant metabolites in the cecum of finishing pigs. In this study, 48 crossbred growing barrows were randomly allocated to 2 treatment groups with eight replicate pens of 3 pigs each. Pigs were fed a tapioca starch (TS) diet or a pea starch (PS) diet (the ratio between amylose and amylopectin of the two diets were 0.11 and 0.44, respectively) for 44 days. The results showed that, compared with the TS diet, the PS diet increased (P < 0.05) the relative abundance of amylolytic bacteria, such as Lactobacillus spp., and Streptococcus spp., and decreased (P < 0.05) the relative abundance of some inflammatory bacteria, such as Tyzzerella, Porphyromonas, and Tannerella in the cecum of pigs. In addition, analysis of microbial functions showed that 11 carbohydrate-active enzymes, such as GH73, AA3, and AA6, were enriched in the PS group (P < 0.05), while 26 other enzymes, such as GH2, GH35, and GH53, were enriched in the TS group (P < 0.05). Meanwhile, KEGG pathway analysis showed a decreasing trend (P < 0.1) for energy metabolism and amino acid metabolism pathways, and a significant increase (P < 0.05) in the lipid metabolism pathways in the PS group. Correspondingly, the resultant metabolites related to amino acids and their derivatives (such as decreased histamine and indole, while increased γ-aminobutyric acid and pyroglutamic acid), and fatty acids and lipids (such as increased tetradecanoylcarnitine and monoacylglycerol) were also changed (P < 0.05) in the cecum of pigs fed the PS diet. In summary, these findings indicated that the cecal microbiota and metabolism underwent responsive changes to diets with different starch sources, and a high ratio of amylose to amylopectin in diets may be beneficial to intestinal health of pigs.
Assuntos
Ração Animal , Amido , Ração Animal/análise , Animais , Ceco/microbiologia , Dieta/veterinária , Metabolômica , Metagenômica , Amido/química , SuínosRESUMO
This study investigated the effects of guanidine acetic acid (GAA) supplementation on growth performance, carcass traits, and meat quality in Tibetan pigs. A total of 18 male Tibetan pigs (21.35 ± 0.99 kg) were randomly assigned to the control (basal diet) and GAA (basal diet + 800 mg/kg GAA) groups for 125 days. Growth performance, carcass traits, and meat quality in pigs, and the chemical composition of Longissimus thoracis (LT) were not altered by GAA. In LT, compared to the control group, dietary GAA increased the superoxide dismutase activity, transcripts of stearoyl CoA desaturase (SCD) and fatty acid synthase (FAS), and contents of glutamate, glutamine, C24:0, C20:3n-6, C20:4n-6, and polyunsaturated fatty acids (P < 0.05), but it decreased the malondialdehyde content (P < 0.001). In back fat, dietary GAA reduced the transcript of peroxisome proliferator-activated receptor γ (PPARγ) and the contents of C10:0, C12:0, C14:0, and C16:0 (P < 0.05), whereas it increased the contents of C22:0, C20:1, C22:1, C24:1, C20:2, C20:3n-3, and C22:2 (P < 0.05). These findings will provide a basis for high-quality Tibetan pork production.