Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Br J Haematol ; 193(1): 155-159, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996123

RESUMO

Treatment of relapsed/resistant acute myeloid leukaemia (AML) remains a significant area of unmet patient need, the outlook for most patients remaining extremely poor. A promising approach is to augment the anti-tumour immune response in these patients; most cancers do not activate immune effector cells because they express immunosuppressive ligands. We have previously shown that CD200 (an immunosuppressive ligand) is overexpressed in AML and confers an inferior overall survival compared to CD200low/neg patients. Here we show that a fully human anti-CD200 antibody (TTI-CD200) can block the interaction of CD200 with its receptor and restore AML immune responses in vitro and in vivo.


Assuntos
Anticorpos Bloqueadores/imunologia , Antígenos CD/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Imunidade/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Animais , Anticorpos Bloqueadores/farmacologia , Antígenos CD/efeitos dos fármacos , Estudos de Casos e Controles , Células Matadoras Induzidas por Citocinas/imunologia , Humanos , Imunidade/efeitos dos fármacos , Terapia de Imunossupressão/métodos , Leucemia Mieloide Aguda/mortalidade , Ligantes , Camundongos , Modelos Animais , Prevenção Secundária/métodos , Transplante Heterólogo/métodos
2.
Haematologica ; 104(7): 1365-1377, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30630973

RESUMO

Canonical Wnt/ß-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized ß-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia (AML) patients; however, some patients exhibit little or no nuclear ß-catenin even where cytosolic ß-catenin is abundant. Control of the subcellular localization of ß-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of ß-catenin, we carried out the first nuclear/cytoplasmic proteomic analysis of the ß-catenin interactome in myeloid leukemia cells and identified putative novel ß-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear ß-catenin) versus Wnt-unresponsive cells (low nuclear ß-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of ß-catenin. The relative levels of nuclear LEF-1 and ß-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed ß-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and ß-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first ß-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear ß- catenin level in human myeloid leukemia.


Assuntos
Núcleo Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Síndromes Mielodisplásicas/metabolismo , Proteoma/análise , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fator 1 de Ligação ao Facilitador Linfoide/antagonistas & inibidores , Fator 1 de Ligação ao Facilitador Linfoide/genética , Síndromes Mielodisplásicas/patologia , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , Ativação Transcricional , Células Tumorais Cultivadas , Proteína Wnt1/genética , beta Catenina/genética
3.
Cytokine ; 108: 37-42, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29567563

RESUMO

Vicenin-2, a C-glycoside flavone that is present in many plant sources, exerts potent anti-inflammatory effects in a number of cell and animal models of inflammation. Ten-eleven translocation (TET)-2 has recently gained considerable attention due to the role it plays in regulating the inflammasome. We studied the ability of Vicenin-2 (V-2) to regulate a range of lipopolysaccharide (LPS) stimulated inflammatory activities in PMA-differentiated THP-1 cells and human primary mononuclear cells. We also investigated the action of V-2 on the secretion of NLRP3 inflammasome regulated cytokines (IL-1ß and IL-18) by ELISA, and determined if V-2 can regulate the expression of NLRP3, IL-10, IL-1Ra and TET-2. The effect of V-2 on NF-κB signalling was investigated by fluorescence microscopy and gene reporter assay. Additionally, the effect of V-2 on LPS-induced phosphorylation of IKB-α was also investigated by Western blot analysis. V-2 down-regulated LPS-induced secretion of proinflammatory cytokines (TNF-α and IL-1ß), in both THP-1 and primary mononuclear cells. V-2 also decreased the LPS-stimulated secretion of IL-18 in THP-1 cells. V-2 significantly down-regulated TNF-α induced NF-κB reporter activity in HEK293T transfected cells and attenuated IKB-α phosphorylation in THP-1 cells. V-2 treatment also induced enhanced nuclear staining of the p50 subunit and reduced p65 subunit of NF-κB. V-2 treatment alone increased the expression of anti-inflammatory cytokine, IL-10, and the regulator of the inflammasome; IL-1Ra, in the presence of LPS. V-2 also significantly decreased LPS-induced NLRP3 expression while concomitantly increasing TET-2 expression. This study demonstrates that the anti-inflammatory actions of V-2 are associated not only with increased IL-10 and IL-1Ra expression, but also with TET-2 up-regulation. Further work is required to establish if the effects of V-2 can be definitively linked to TET-2 activity and that these actions are mirrored in a range of relevant cell types.


Assuntos
Apigenina/farmacologia , Citocinas/imunologia , Proteínas de Ligação a DNA/imunologia , Glucosídeos/farmacologia , Monócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/imunologia , Anti-Inflamatórios/farmacologia , Proteínas de Ligação a DNA/genética , Dioxigenases , Regulação para Baixo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamação , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosforilação , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Células THP-1 , Regulação para Cima
5.
Blood ; 122(19): 3322-30, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24089327

RESUMO

Excessive production of reactive oxygen species (ROS) is frequently observed in cancer and is known to strongly influence hematopoietic cell function. Here we report that extracellular ROS production is strongly elevated (mean >10-fold) in >60% of acute myeloid leukemia (AML) patients and that this increase is attributable to constitutive activation of nicotinamide adenine dinucleotide phosphate oxidases (NOX). In contrast, overproduction of mitochondrial ROS was rarely observed. Elevated ROS was found to be associated with lowered glutathione levels and depletion of antioxidant defense proteins. We also show for the first time that the levels of ROS generated were able to strongly promote the proliferation of AML cell lines, primary AML blasts, and, to a lesser extent, normal CD34(+) cells, and that the response to ROS is limited by the activation of the oxidative stress pathway mediated though p38(MAPK). Consistent with this, we observed that p38(MAPK) responses were attenuated in patients expressing high levels of ROS. These data show that overproduction of NOX-derived ROS can promote the proliferation of AML blasts and that they also develop mechanisms to suppress the stress signaling that would normally limit this response. Together these adaptations would be predicted to confer a competitive advantage to the leukemic clone.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucócitos Mononucleares/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Regulação Leucêmica da Expressão Gênica , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/patologia , NADPH Oxidases/genética , Estresse Oxidativo , Cultura Primária de Células , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
Gene Expr ; 16(4): 169-175, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26637397

RESUMO

Acute myeloid leukemia (AML) is characterized by developmental arrest, which is thought to arise from transcriptional dysregulation of myeloid development programs. Hematopoietic stem and progenitor cells (HSPCs) isolated from human blood are frequently used as a normal comparator in AML studies. Previous studies have reported changes in the transcriptional program of genes involved in proliferation, differentiation, apoptosis, and homing when HSPCs were expanded ex vivo. The intrinsic functional differences between quiescent and dividing CD34+ HSPCs prompted us to determine whether fresh or cytokine-induced cord blood-derived CD34+ HSPCs are a more appropriate normal control compared to AML blasts. Based on principal component analysis and gene expression profiling we demonstrate that CD34+ HSPCs that do not undergo ex vivo expansion are transcriptionally similar to minimally differentiated AML blasts. This was confirmed by comparing the cell cycle status of the AML blasts and the HSPCs. We suggest that freshly isolated CD34+ HSPCs that do not undergo ex vivo expansion would serve as a better control to identify novel transcriptional targets in the AML blast population.


Assuntos
Antígenos CD34/imunologia , Citocinas/imunologia , Sangue Fetal/imunologia , Células-Tronco Hematopoéticas/imunologia , Leucemia Mieloide Aguda/imunologia , Transcrição Gênica , Humanos , Leucemia Mieloide Aguda/genética
7.
J Cell Biochem ; 115(8): 1351-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24610469

RESUMO

The canonical Wnt signaling pathway has been the focus of intensive research because of its frequent dysregulation in human cancers. Much of this has been directed towards the aberrant expression and/or activity of the central mediator of this pathway, ß-catenin. In particular, the nuclear localization of ß-catenin and subsequent inappropriate activation of TCF/LEF-mediated transcription appears to be an important process in both the establishment and maintenance of cancer stem cells. Despite this, the exact mechanisms controlling ß-catenin nuclear localization in both normal and malignant cells are poorly understood. This prospect article brings together the many mechanisms previously reported to regulate the nuclear localization of ß-catenin and how they are relevant to cancer.


Assuntos
Neoplasias/genética , Transcrição Gênica , Via de Sinalização Wnt/genética , beta Catenina/biossíntese , Núcleo Celular/metabolismo , Humanos , Neoplasias/patologia , Transdução de Sinais/genética , Fatores de Transcrição TCF/metabolismo , beta Catenina/genética
8.
Haematologica ; 99(5): 858-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24334295

RESUMO

PDK1 is a master kinase that activates at least six protein kinase groups including AKT, PKC and S6K and is a potential target in the treatment of a range of malignancies. Here we show overexpression of PDK1 in over 40% of myelomonocytic acute leukemia patients. Overexpression of PDK1 occurred uniformly throughout the leukemic population, including putative leukemia-initiating cells. Clinical outcome analysis revealed PDK1 overexpression was associated with poorer treatment outcome. Primary acute myeloid leukemia blasts over-expressing PDK1 showed improved in vitro survival and ectopic expression of PDK1 promoted the survival of myeloid cell lines. Analysis of PDK1 target kinases revealed that PDK1 overexpression was most closely associated with increased phosphorylation of PKC isoenzymes and inhibition of PKC strongly inhibited the survival advantage of PDK1 over-expressing cells. Membrane localization studies implicated PKCα as a major target for PDK1 in this disease. PDK1 over-expressing blasts showed differential sensitivity to PDK1 inhibition (in the low micromolar range) suggesting oncogene addiction, whilst normal bone marrow progenitors were refractory to PDK1 inhibition at effective inhibitor concentrations. PDK1 inhibition also targeted subpopulations of leukemic blasts with a putative leukemia-initiating cell phenotype. Together these data show that overexpression of PDK1 is common in acute myelomonocytic leukemia and is associated with poorer treatment outcome, probably arising from the cytoprotective function of PDK1. We also show that therapeutic targeting of PDK1 has the potential to be both an effective and selective treatment for these patients, and is also compatible with current treatment regimes.


Assuntos
Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sobrevivência Celular/genética , Células Cultivadas , Ativação Enzimática , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidade , Estadiamento de Neoplasias , Avaliação de Resultados da Assistência ao Paciente , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil
9.
Cancer Drug Resist ; 7: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434766

RESUMO

Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.

10.
Int J Nanomedicine ; 19: 5419-5437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868592

RESUMO

Introduction: Acute myeloid leukemia (AML) remains difficult to treat due to its heterogeneity in molecular landscape, epigenetics and cell signaling alterations. Precision medicine is a major goal in AML therapy towards developing agents that can be used to treat patients with different 'subtypes' in combination with current chemotherapies. We have previously developed dextrin-colistin conjugates to combat the rise in multi-drug resistant bacterial infections and overcome dose-limiting nephrotoxicity. Recent evidence of colistin's anticancer activity, mediated through inhibition of intracellular lysine-specific histone demethylase 1 (LSD1/KDM1A), suggests that dextrin-colistin conjugates could be used to treat cancer cells, including AML. This study aimed to evaluate whether dextrin conjugation (which reduces in vivo toxicity and prolongs plasma half-life) could enhance colistin's cytotoxic effects in myeloid leukemia cell lines and compare the intracellular uptake and localization of the free and conjugated antibiotic. Results: Our results identified a conjugate (containing 8000 g/mol dextrin with 1 mol% succinoylation) that caused significantly increased toxicity in myeloid leukemia cells, compared to free colistin. Dextrin conjugation altered the mechanism of cell death by colistin, from necrosis to caspase 3/7-dependent apoptosis. In contrast, conjugation via a reversible ester linker, instead of an amide, had no effect on the mechanism of the colistin-induced cell death. Live cell confocal microscopy of fluorescently labelled compounds showed both free and dextrin-conjugated colistins were endocytosed and co-localized in lysosomes, and increasing the degree of modification by succinoylation of dextrin significantly reduced colistin internalization. Discussion: Whilst clinical translation of dextrin-colistin conjugates for the treatment of AML is unlikely due to the potential to promote antimicrobial resistance (AMR) and the relatively high colistin concentrations required for anticancer activity, the ability to potentiate the effectiveness of an anticancer drug by polymer conjugation, while reducing side effects and improving biodistribution of the drug, is very attractive, and this approach warrants further investigation.


Assuntos
Apoptose , Colistina , Dextrinas , Colistina/farmacologia , Colistina/química , Colistina/farmacocinética , Dextrinas/química , Dextrinas/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Sobrevivência Celular/efeitos dos fármacos
11.
Blood ; 117(22): 5816-26, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21398578

RESUMO

Reactive oxygen species (ROS) are a heterogeneous group of molecules that are generated by mature myeloid cells during innate immune responses, and are also implicated in normal intracellular signaling. Excessive production of ROS (and/or a deficiency in antioxidant pathways) can lead to oxidative stress, a state that has been observed in several hematopoietic malignancies including acute and chronic myeloid leukemias (AML and CML). Currently it is unclear what the cause of oxidative stress might be and whether oxidative stress contributes to the development, progression, or maintenance of these diseases. This article reviews the current evidence suggesting a role for ROS both in normal hematopoiesis and in myeloid leukemogenesis, and discusses the usefulness of therapeutically targeting oxidative stress in myeloid malignancy.


Assuntos
Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/uso terapêutico , Humanos , Leucemia Mieloide/tratamento farmacológico , Transdução de Sinais
12.
Leukemia ; 37(2): 276-287, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572750

RESUMO

Nuclear factor I-C (NFIC) belongs to a family of NFI transcription factors that binds to DNA through CAATT-boxes and are involved in cellular differentiation and stem cell maintenance. Here we show NFIC protein is significantly overexpressed in 69% of acute myeloid leukemia patients. Examination of the functional consequences of NFIC overexpression in HSPCs showed that this protein promoted monocytic differentiation. Single-cell RNA sequencing analysis further demonstrated that NFIC overexpressing monocytes had increased expression of growth and survival genes. In contrast, depletion of NFIC through shRNA decreased cell growth, increased cell cycle arrest and apoptosis in AML cell lines and AML patient blasts. Further, in AML cell lines (THP-1), bulk RNA sequencing of NFIC knockdown led to downregulation of genes involved in cell survival and oncogenic signaling pathways including mixed lineage leukemia-1 (MLL-1). Lastly, we show that NFIC knockdown in an ex vivo mouse MLL::AF9 pre-leukemic stem cell model, decreased their growth and colony formation and increased expression of myeloid differentiation markers Gr1 and Mac1. Collectively, our results suggest that NFIC is an important transcription factor in myeloid differentiation as well as AML cell survival and is a potential therapeutic target in AML.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição NFI , Animais , Camundongos , Diferenciação Celular/fisiologia , Sobrevivência Celular/genética , Hematopoese , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Fatores de Transcrição NFI/metabolismo
13.
Blood ; 115(6): 1238-46, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007804

RESUMO

Excessive production of reactive oxygen species (ROS) is a feature of human malignancy and is often triggered by activation of oncogenes such as activated Ras. ROS act as second messengers and can influence a variety of cellular process including growth factor responses and cell survival. We have examined the contribution of ROS production to the effects of N-Ras(G12D) and H-Ras(G12V) on normal human CD34(+) progenitor cells. Activated Ras strongly up-regulated the production of both superoxide and hydrogen peroxide through the stimulation of NADPH oxidase (NOX) activity, without affecting the expression of endogenous antioxidants or the production of mitochondrially derived ROS. Activated Ras also promoted both the survival and the growth factor-independent proliferation of CD34(+) cells. Using oxidase inhibitors and antioxidants, we found that excessive ROS production by these cells did not contribute to their enhanced survival; rather, ROS promoted their growth factor-independent proliferation. Although Ras-induced ROS production specifically activated the p38(MAPK) oxidative stress response, this failed to induce expression of the cell-cycle inhibitor, p16(INK4A); instead, ROS promoted the expression of D cyclins. These data are the first to show that excessive ROS production in the context of oncogene activation can promote proliferative responses in normal human hematopoietic progenitor cells.


Assuntos
Antígenos CD34/metabolismo , Proliferação de Células , Genes ras/fisiologia , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Western Blotting , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Transdução de Sinais , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453368

RESUMO

The cytosolic branched-chain aminotransferase (BCAT1) has received attention for its role in myeloid leukaemia development, where studies indicate metabolic adaptations due to BCAT1 up-regulation. BCAT1, like the mitochondria isoform (BCAT2), shares a conserved CXXC motif ~10 Å from the active site. This CXXC motif has been shown to act as a 'redox-switch' in the enzymatic regulation of the BCAT proteins, however the response to reactive oxygen species (ROS) differs between BCAT isoforms. Studies indicate that the BCAT1 CXXC motif is several orders of magnitude less sensitive to the effects of ROS compared with BCAT2. Moreover, estimation of the reduction mid-point potential of BCAT1, indicates that BCAT1 is more reductive in nature and may possess antioxidant properties. Therefore, the aim of this study was to further characterise the BCAT1 CXXC motif and evaluate its role in acute myeloid leukaemia. Our biochemical analyses show that purified wild-type (WT) BCAT1 protein could metabolise H2O2 in vitro, whereas CXXC motif mutant or WT BCAT2 could not, demonstrating for the first time a novel antioxidant role for the BCAT1 CXXC motif. Transformed U937 AML cells over-expressing WT BCAT1, showed lower levels of intracellular ROS compared with cells over-expressing the CXXC motif mutant (CXXS) or Vector Controls, indicating that the BCAT1 CXXC motif may buffer intracellular ROS, impacting on cell proliferation. U937 AML cells over-expressing WT BCAT1 displayed less cellular differentiation, as observed by a reduction of the myeloid markers; CD11b, CD14, CD68, and CD36. This finding suggests a role for the BCAT1 CXXC motif in cell development, which is an important pathological feature of myeloid leukaemia, a disease characterised by a block in myeloid differentiation. Furthermore, WT BCAT1 cells were more resistant to apoptosis compared with CXXS BCAT1 cells, an important observation given the role of ROS in apoptotic signalling and myeloid leukaemia development. Since CD36 has been shown to be Nrf2 regulated, we investigated the expression of the Nrf2 regulated gene, TrxRD1. Our data show that the expression of TrxRD1 was downregulated in transformed U937 AML cells overexpressing WT BCAT1, which taken with the reduction in CD36 implicates less Nrf2 activation. Therefore, this finding may implicate the BCAT1 CXXC motif in wider cellular redox-mediated processes. Altogether, this study provides the first evidence to suggest that the BCAT1 CXXC motif may contribute to the buffering of ROS levels inside AML cells, which may impact ROS-mediated processes in the development of myeloid leukaemia.

15.
Front Oncol ; 12: 840046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707351

RESUMO

The protein kinase C (PKC) family of serine/threonine kinases are pleiotropic signaling regulators and are implicated in hematopoietic signaling and development. Only one isoform however, PKCϵ, has oncogenic properties in solid cancers where it is associated with poor outcomes. Here we show that PKCϵ protein is significantly overexpressed in acute myeloid leukemia (AML; 37% of patients). In addition, PKCϵ expression in AML was associated with a significant reduction in complete remission induction and disease-free survival. Examination of the functional consequences of PKCϵ overexpression in normal human hematopoiesis, showed that PKCϵ promotes myeloid differentiation, particularly of the monocytic lineage, and decreased colony formation, suggesting that PKCϵ does not act as an oncogene in hematopoietic cells. Rather, in AML cell lines, PKCϵ overexpression selectively conferred resistance to the chemotherapeutic agent, daunorubicin, by reducing intracellular concentrations of this agent. Mechanistic analysis showed that PKCϵ promoted the expression of the efflux pump, P-GP (ABCB1), and that drug efflux mediated by this transporter fully accounted for the daunorubicin resistance associated with PKCϵ overexpression. Analysis of AML patient samples also showed a link between PKCϵ and P-GP protein expression suggesting that PKCϵ expression drives treatment resistance in AML by upregulating P-GP expression.

16.
Leukemia ; 36(7): 1769-1780, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490198

RESUMO

RUNX3 is a transcription factor dysregulated in acute myeloid leukemia (AML). However, its role in normal myeloid development and leukemia is poorly understood. Here we investigate RUNX3 expression in both settings and the impact of its dysregulation on myelopoiesis. We found that RUNX3 mRNA expression was stable during hematopoiesis but decreased with granulocytic differentiation. In AML, RUNX3 mRNA was overexpressed in many disease subtypes, but downregulated in AML with core binding factor abnormalities, such as RUNX1::ETO. Overexpression of RUNX3 in human hematopoietic stem and progenitor cells (HSPC) inhibited myeloid differentiation, particularly of the granulocytic lineage. Proliferation and myeloid colony formation were also inhibited. Conversely, RUNX3 knockdown did not impact the myeloid growth and development of human HSPC. Overexpression of RUNX3 in the context of RUNX1::ETO did not rescue the RUNX1::ETO-mediated block in differentiation. RNA-sequencing showed that RUNX3 overexpression downregulates key developmental genes, such as KIT and RUNX1, while upregulating lymphoid genes, such as KLRB1 and TBX21. Overall, these data show that increased RUNX3 expression observed in AML could contribute to the developmental arrest characteristic of this disease, possibly by driving a competing transcriptional program favoring a lymphoid fate.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusão Oncogênica/genética , RNA Mensageiro , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética
17.
Sci Rep ; 12(1): 1243, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075235

RESUMO

RUNX proteins belong to a family of transcription factors essential for cellular proliferation, differentiation, and apoptosis with emerging data implicating RUNX3 in haematopoiesis and haematological malignancies. Here we show that RUNX3 plays an important regulatory role in normal human erythropoiesis. The impact of altering RUNX3 expression on erythropoiesis was determined by transducing human CD34+ cells with RUNX3 overexpression or shRNA knockdown vectors. Analysis of RUNX3 mRNA expression showed that RUNX3 levels decreased during erythropoiesis. Functionally, RUNX3 overexpression had a modest impact on early erythroid growth and development. However, in late-stage erythroid development, RUNX3 promoted growth and inhibited terminal differentiation with RUNX3 overexpressing cells exhibiting lower expression of glycophorin A, greater cell size and less differentiated morphology. These results suggest that suppression of RUNX3 is required for normal erythropoiesis. Overexpression of RUNX3 increased colony formation in liquid culture whilst, corresponding RUNX3 knockdown suppressed colony formation but otherwise had little impact. This study demonstrates that the downregulation of RUNX3 observed in normal human erythropoiesis is important in promoting the terminal stages of erythroid development and may further our understanding of the role of this transcription factor in haematological malignancies.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Células Eritroides , Eritropoese , Células Cultivadas , Humanos , Células-Tronco
18.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074574

RESUMO

The basis of immune evasion, a hallmark of cancer, can differ even when cancers arise from one cell type such as in the human skin keratinocyte carcinomas: basal and squamous cell carcinoma. Here we showed that the basal cell carcinoma tumor-initiating cell surface protein CD200, through ectodomain shedding, was responsible for the near absence of NK cells within the basal cell carcinoma tumor microenvironment. In situ, CD200 underwent ectodomain shedding by metalloproteinases MMP3 and MMP11, which released biologically active soluble CD200 into the basal cell carcinoma microenvironment. CD200 bound its cognate receptor on NK cells to suppress MAPK pathway signaling that in turn blocked indirect (IFN-γ release) and direct cell killing. In addition, reduced ERK phosphorylation relinquished negative regulation of PPARγ-regulated gene transcription and led to membrane accumulation of the Fas/FADD death receptor and its ligand, FasL, which resulted in activation-induced apoptosis. Blocking CD200 inhibition of MAPK or PPARγ signaling restored NK cell survival and tumor cell killing, with relevance to many cancer types. Our results thus uncover a paradigm for CD200 as a potentially novel and targetable NK cell-specific immune checkpoint, which is responsible for NK cell-associated poor outcomes in many cancers.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Humanos , Microambiente Tumoral , PPAR gama , Células Matadoras Naturais , Receptor fas , Apoptose , Carcinoma de Células Escamosas/genética
19.
Immunometabolism ; 3(1): e210005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33537156

RESUMO

Although there has been a recent renaissance in the availability of new therapeutic options for patients with acute myeloid leukemia (AML), survival rates remain low coupled with a high incidence of relapse. Enhancing T cell and immune function has become an effective therapeutic approach in hematological malignancies. However, AML cells can modulate the bone marrow microenvironment by changing extracellular nutrient and biochemical availability which can metabolically regulate immune function. Here we review the findings by Uhl et al. showing that T cell metabolism and function can be boosted by treatment with sodium bicarbonate to counteract the metabolic changes induced by lactic acid produced by leukemia cells.

20.
Front Oncol ; 11: 632623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777786

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease with poor clinical outcomes. We have previously shown that constitutive activation of NADPH oxidase 2 (NOX2), resulting in over-production of reactive oxygen species (ROS), occurs in over 60% of AML patients. We have also shown that increased ROS production promotes increased glucose uptake and proliferation in AML cells, mediated by changes in carbohydrate metabolism. Given that carbohydrate, lipid, and protein metabolisms are all intricately interconnected, we aimed to examine the effect of cellular ROS levels on these pathways and establish further evidence that ROS rewires metabolism in AML. We carried out metabolomic profiling of AML cell lines in which NOX2-derived ROS production was inhibited and conversely in cells treated with exogenous H2O2. We report significant ROS-specific metabolic alterations in sphingolipid metabolism, fatty acid oxidation, purine metabolism, amino acid homeostasis and glycolysis. These data provide further evidence of ROS directed metabolic changes in AML and the potential for metabolic targeting as novel therapeutic arm to combat this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA