Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt B): 112068, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34547250

RESUMO

Chilean aquaculture mainly produces salmonids and molluscs. Salmonid production has been questioned by its excessive use of antimicrobials. This study aimed to investigate the bacterial microbiota composition of Mytilus spp. cultivated near salmonid farms and to determine the minimum inhibitory concentration (MIC) to florfenicol and oxytetracycline of its culturable bacteria. Seven Mytilus farming sites classified according to their proximity to salmon farms as close (CSF) or distant (DSF) were sampled in two years. We analyzed Mytilus microbiota composition through culture-independent methods, and isolated culturable bacteria, and identified those isolates with MIC values ≥ 64 µg mL-1 to florfenicol or oxytetracycline. Results revealed that the alpha diversity was affected by sampling year but not by Mytilus farming site location or its interaction. Nevertheless, in 2018, we observed a significant negative correlation between the alpha diversity of Mytilus microbiota in each farm sites and the tonnes of florfenicol reported for each phytosanitary management area. We detected significant differences in beta diversity and relative abundance of specific bacterial taxa in Mytilus microbiota depending on the proximity to salmon farms and years. A higher proportion of isolates with MIC values ≥ 64 µg mL-1 to both antibiotics was detected in 2019 compared to 2018, but not significant differences were detected according to Mytilus farming site location. However, in 2019, isolates from CSF sites showed higher MIC values for both antibiotics than those from DSF. Bacterial genera corresponding to isolates with MIC values ≥ 64 µg mL-1 represented a low proportion of Mytilus microbiota identified with the culture-independent approach, reflecting the need to implement new methodologies in the study of antimicrobial resistance. These results suggest that the proximity to salmonid farms and sampling year influence the Mytilus microbiota and MIC values of their bacterial isolates; however, other environmental variables should be considered in further studies.


Assuntos
Microbiota , Mytilus , Oxitetraciclina , Animais , Antibacterianos/farmacologia , Aquicultura , Testes de Sensibilidade Microbiana , Salmão , Tianfenicol/análogos & derivados
2.
BMC Genomics ; 22(1): 114, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568057

RESUMO

BACKGROUND: Processing and analyzing whole genome sequencing (WGS) is computationally intense: a single Illumina MiSeq WGS run produces ~ 1 million 250-base-pair reads for each of 24 samples. This poses significant obstacles for smaller laboratories, or laboratories not affiliated with larger projects, which may not have dedicated bioinformatics staff or computing power to effectively use genomic data to protect public health. Building on the success of the cloud-based Galaxy bioinformatics platform ( http://galaxyproject.org ), already known for its user-friendliness and powerful WGS analytical tools, the Center for Food Safety and Applied Nutrition (CFSAN) at the U.S. Food and Drug Administration (FDA) created a customized 'instance' of the Galaxy environment, called GalaxyTrakr ( https://www.galaxytrakr.org ), for use by laboratory scientists performing food-safety regulatory research. The goal was to enable laboratories outside of the FDA internal network to (1) perform quality assessments of sequence data, (2) identify links between clinical isolates and positive food/environmental samples, including those at the National Center for Biotechnology Information sequence read archive ( https://www.ncbi.nlm.nih.gov/sra/ ), and (3) explore new methodologies such as metagenomics. GalaxyTrakr hosts a variety of free and adaptable tools and provides the data storage and computing power to run the tools. These tools support coordinated analytic methods and consistent interpretation of results across laboratories. Users can create and share tools for their specific needs and use sequence data generated locally and elsewhere. RESULTS: In its first full year (2018), GalaxyTrakr processed over 85,000 jobs and went from 25 to 250 users, representing 53 different public and state health laboratories, academic institutions, international health laboratories, and federal organizations. By mid-2020, it has grown to 600 registered users and processed over 450,000 analytical jobs. To illustrate how laboratories are making use of this resource, we describe how six institutions use GalaxyTrakr to quickly analyze and review their data. Instructions for participating in GalaxyTrakr are provided. CONCLUSIONS: GalaxyTrakr advances food safety by providing reliable and harmonized WGS analyses for public health laboratories and promoting collaboration across laboratories with differing resources. Anticipated enhancements to this resource will include workflows for additional foodborne pathogens, viruses, and parasites, as well as new tools and services.


Assuntos
Metagenômica , Saúde Pública , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento Completo do Genoma
3.
Curr Microbiol ; 77(9): 2111-2117, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504321

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are zoonotic food pathogens associated with foodborne diarrheal illness, hemorrhagic colitis, and complications such as hemolytic uremic syndrome (HUS). The ability to adhere to epithelial cells is an important virulence trait, and pathogenicity islands (PAIs) play an important role on it. Some STEC carrying a PAI named locus of enterocyte effacement (LEE-positive) have been frequently associated to HUS; however, STEC that do not carry LEE (LEE-negative) have also been associated with this outcome. The burden of disease caused by LEE-negative STEC has increased recently in several countries like Argentina, Chile, and Paraguay. A new PAI -the Locus of Adhesion and Autoagregation (LAA)-has been associated to severe disease in humans. In this study, we aimed to analyze the distribution of LAA and its possible predictor, the gene hes, in LEE-negative STEC strains isolated from Chile and Paraguay from different sources. The presence of the different LAA modules and hes were detected by PCR. LAA was found in 41.6% and 41.0% of strains isolated from Chile and Paraguay, respectively. Strains were isolated from diverse origins and belonged to several serogroups including O91, O103, and O113. The hes gene was detected in 50% of the isolates from Paraguay and Chile. Therefore, the detection of LAA and hes in STEC could complement current genetic evaluation schemes, allowing to classify LEE negative STEC strains as LAA-positive or LAA-negative STEC strains.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Argentina , Chile , Proteínas de Escherichia coli/genética , Humanos , América Latina , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética
4.
Food Microbiol ; 75: 55-60, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056963

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is one of the main cause of foodborne disease worldwide, but isolation rates or characteristics of this bacteria from ground beef in Chile are unknown. The present study aimed to isolate and characterize non-O157 STEC from ground beef sold at retail in the city of Santiago, Chile. We analyzed 430 ground beef samples for the presence of STEC, and isolated the microorganism in 10% of samples (43/430). We obtained 56 isolates from the 43 positive samples; 55 of these (98.2%) fermented sorbitol. Most isolates (98.2%; 55/56) showed ß-glucoronidase activity, and only six (10.7%; 6/56) were resistant to tellurite. Among the virulence factors studied (stx1, stx2, eae, and hlyA), stx2 was the only virulence factor in 41% of the isolates (23/56), whereas 10.7% (6/56) of isolates carried a combination of three virulence factors (stx1 + stx2 + hlyA). None of the isolates carried the gene eae. Finally, isolates were neither serogroups O157 nor "big six". In conclusion, ground beef sold in Santiago, Chile is contaminated with STEC; however, further studies are required for understanding their virulence potential.


Assuntos
Carne Vermelha/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Bovinos , Chile , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Contaminação de Alimentos/análise , Carne Vermelha/economia , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Emerg Infect Dis ; 22(7): 1235-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27315090

RESUMO

In 2009, an outbreak of Vibrio parahaemolyticus occurred in Piura, Cajamarca, Lambayeque, and Lima, Peru. Whole-genome sequencing of clinical and environmental samples from the outbreak revealed a new V. parahaemolyticus clone. All the isolates identified belonged to a single clonal complex described exclusively in Asia before its emergence in Peru.


Assuntos
Surtos de Doenças , Vibrioses/epidemiologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/classificação , Genoma Bacteriano , Humanos , Epidemiologia Molecular/métodos , Tipagem de Sequências Multilocus , Peru/epidemiologia , Software , Vibrio parahaemolyticus/genética
6.
Appl Environ Microbiol ; 82(11): 3208-3216, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994080

RESUMO

UNLABELLED: In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. IMPORTANCE: Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations.


Assuntos
Surtos de Doenças , Ostreidae/microbiologia , Vibrioses/epidemiologia , Vibrio parahaemolyticus/classificação , Vibrio parahaemolyticus/isolamento & purificação , Animais , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genótipo , Humanos , Maryland/epidemiologia , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Análise de Sequência de DNA , Vibrio parahaemolyticus/genética
7.
Appl Environ Microbiol ; 82(13): 3900-3912, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27107118

RESUMO

UNLABELLED: Escherichia coli O26 is the second most important enterohemorrhagic E. coli (EHEC) serogroup worldwide. Serogroup O26 strains are categorized mainly into two groups: enteropathogenic (EPEC) O26, carrying a locus of enterocyte effacement (LEE) and mostly causing mild diarrhea, and Shiga-toxigenic (STEC) O26, which carries the Shiga toxin (STX) gene (stx), responsible for more severe outcomes. stx-negative O26 strains can be further split into two groups. One O26 group differs significantly from O26 EHEC, while the other O26 EHEC-like group shows all the characteristics of EHEC O26 except production of STX. In order to determine the different populations of O26 E. coli present in U.S. cattle, we sequenced 42 O26:H11 strains isolated from feedlot cattle and compared them to 37 O26:H11 genomes available in GenBank. Phylogenetic analysis by whole-genome multilocus sequence typing (wgMLST) showed that O26:H11/H(-) strains in U.S. cattle were highly diverse. Most strains were sequence type 29 (ST29). By wgMLST, two clear lineages could be distinguished among cattle strains. Lineage 1 consisted of O26:H11 EHEC-like strains (ST29) (4 strains) and O26:H11 EHEC strains (ST21) (2 strains), and lineage 2 (36 strains) consisted of O26:H11 EPEC strains (ST29). Overall, our analysis showed U.S. cattle carried pathogenic (ST21; stx1 (+) ehxA(+) toxB(+)) and also potentially pathogenic (ST29; ehxA(+) toxB(+)) O26:H11 E. coli strains. Furthermore, in silico analysis showed that 70% of the cattle strains carried at least one antimicrobial resistance gene. Our results showed that whole-genome sequence analysis is a robust and valid approach to identify and genetically characterize E. coli O26:H11, which is of importance for food safety and public health. IMPORTANCE: Escherichia coli O26 is the second most important type of enterohemorrhagic E. coli (EHEC) worldwide. Serogroup O26 strains are categorized into two groups: enteropathogenic (EPEC) carrying LEE, causing mild diarrhea, and Shiga toxigenic (STEC) carrying the stx gene, responsible for more severe outcomes. However, there are currently problems in distinguishing one group from the other. Furthermore, several O26 stx-negative strains are consistently misidentified as either EHEC-like or EPEC. The use of whole-genome sequence (WGS) analysis of O26 strains from cattle in the United States (i) allowed identification of O26 strains present in U.S. cattle, (ii) determined O26 strain diversity, (iii) solved the misidentification problem, and (iv) screened for the presence of antimicrobial resistance and virulence genes in the strains. This study provided a framework showing how to easily and rapidly use WGS information to identify and genetically characterize E. coli O26:H11, which is important for food safety and public health.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Genes Bacterianos , Variação Genética , Genoma Bacteriano , Fatores de Virulência/análise , Animais , Bovinos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Estados Unidos/epidemiologia , Fatores de Virulência/genética
8.
Appl Environ Microbiol ; 82(20): 6223-6232, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520817

RESUMO

Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S Enteritidis clinical strains and S Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S Enteritidis regional markers might exist and could be used for trace-back investigations. IMPORTANCE: This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S Enteritidis strains clustered separately from most of S Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world.


Assuntos
Doenças das Aves/microbiologia , Charadriiformes/microbiologia , Genoma Bacteriano , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enteritidis/genética , Animais , Doenças das Aves/transmissão , Chile , Humanos , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/transmissão , Infecções por Salmonella/transmissão , Salmonelose Animal/transmissão , Salmonella enteritidis/isolamento & purificação , Sorogrupo
9.
Appl Environ Microbiol ; 80(4): 1411-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334663

RESUMO

Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P < 0.05). Fewer spacers were found in strains that had a greater probability of causing outbreaks and disease than in those with lower virulence potential (P < 0.05). The relationship between the CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Fatores de Virulência/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Dados de Sequência Molecular , Análise de Sequência de DNA , Sorotipagem , Escherichia coli Shiga Toxigênica/classificação
10.
Foodborne Pathog Dis ; 11(5): 342-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24694187

RESUMO

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are increasingly recognized as foodborne pathogens worldwide. Serogroups O26, O111, and O103 cause most known outbreaks related to non-O157 STEC. Pathogenicity islands (PAIs) play a major role in the evolution of STEC pathogenicity. To determine the distribution of PAIs often associated with highly virulent STECs (OI-122, OI-43/48, OI-57, and high pathogenicity islands) among STEC O26, O103, and O111, a collection of STEC O26 (n=45), O103 (n=29), and O111 (n=52) from humans and animals were included in this study. Pulsed-field gel electrophoresis (PFGE) with XbaI digestion was used to characterize the clonal relationship of the strains. In addition, a polymerase chain reaction-restriction fragment length polymorphism assay was used to determine eae subtypes. Additional virulence genes on PAIs were identified using specific PCR assays, including OI-122: pagC, sen, efa-1, efa-2, and nleB; OI-43/48: terC, ureC, iha, and aidA-1; OI-57: nleG2-3, nleG5-2, and nleG6-2; and HPI: fyuA and irp2. A PFGE dendrogram demonstrated that instead of clustering together with strains from the same O type (O111:H8), the O111:H11 (n=14) strains clustered together with strains of the same H type (O26:H11, n=45). In addition, O26:H11 and O111:H11 strains carried eae subtype ß, whereas O111:H8 strains had eae γ2/θ. The O26:H11 and O111:H11 stains contained an incomplete OI-122 lacking pagC and a complete HPI. However, a complete OI-122 but no HPI was found in the O111:H8 strains. Additionally, aidA-1 of OI-43/48 and nleG6-2 of OI-57 were significantly associated with O26:H11 and O111:H11 strains but were almost missing in O111:H8 strains (p<0.001). This study demonstrated that H11 (O111:H11 and O26:H11) strains were closely related and may have come from the same ancestor.


Assuntos
Ilhas Genômicas , Escherichia coli Shiga Toxigênica/classificação , Adesinas Bacterianas/genética , Adesinas de Escherichia coli/genética , Animais , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Proteínas de Escherichia coli/genética , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Fatores de Virulência/genética
11.
mBio ; : e0077724, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920393

RESUMO

This study examined the diversity and persistence of Salmonella in the surface waters of agricultural regions of Brazil, Chile, and Mexico. Research groups (three in 2019-2020 and five in 2021-2022) conducted a long-term survey of surface water across 5-8 months annually (n = 30 monthly). On-site, each team filtered 10-L water samples with modified Moore Swabs to capture Salmonella, which were then isolated and identified using conventional microbiological techniques. Salmonella isolates were sequenced on Illumina platforms. Salmonella was present in 1,493/3,291 water samples (45.8%), with varying isolation rates across countries and years. Newport, Infantis, and Typhimurium were the most frequent among the 128 different serovars. Notably, 22 serovars were found in all three countries, representing almost half of the 1,911 different isolates collected. The resistome comprised 72 antimicrobial resistance (AMR) genes and six point mutations in three genes. At least one AMR determinant was observed in 33.8% (646/1,911) of the isolates, of which 47.4% (306/646) were potentially multidrug resistant. Phylogeny based on core genome multilocus sequence typing (cgMLST) showed that most isolates clustered according to sequence type and country of origin. Only 14 cgMLST multi-country clusters were detected among the 275 clusters. However, further analysis confirmed that close genetic relatedness occurred mostly among isolates from the same country, with three exceptions. Interestingly, isolates closely related phylogenetically were recovered over multiple years within the same country, indicating the persistence of certain Salmonella in those areas. In conclusion, surface waters in these regions are consistently contaminated with diverse Salmonella, including strains that persist over time.IMPORTANCESalmonella is a leading foodborne pathogen responsible for millions of illnesses, hospitalizations, and deaths annually. Although Salmonella-contaminated water has now been recognized as an important contamination source in the agrifood chain, there is a lack of knowledge on the global occurrence and diversity of Salmonella in surface water. Moreover, there has been insufficient research on Salmonella in surface waters from Latin American countries that are major producers and exporters of agricultural products. Incorporating genetic profiling of Salmonella isolates from underrepresented regions, such as Latin America, enhances our understanding of the pathogen's ecology, evolution, antimicrobial resistance, and pathogenicity. Moreover, leveraging genomic data derived from pathogens isolated from diverse geographical areas is critical for assessing the potential public health risk posed by the pathogen and expediting investigations of foodborne outbreaks. Ultimately, global efforts contribute significantly to reducing the incidence of foodborne infections.

12.
Lancet Reg Health Am ; 32: 100711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495315

RESUMO

Background: Multidrug-resistant (MDR) Salmonella Infantis has disseminated worldwide, mainly linked to the consumption of poultry products. Evidence shows dissemination of this pathogen in Chile; however, studies are primarily limited to phenotypic data or involve few isolates. As human cases of Salmonella Infantis infections have substantially increased in recent years, this study aimed to characterise the genomic epidemiology and antimicrobial-resistance profiles of isolates obtained from different sources, aiming to inform effective surveillance and control measures. Methods: We sequenced 396 Salmonella Infantis genomes and analysed them with all publicly available genomes of this pathogen from Chile (440 genomes in total), representing isolates from environmental, food, animal, and human sources obtained from 2009 to 2022. Based on bioinformatic and phenotypic methods, we assessed the population structure, dissemination among different niches, and antimicrobial resistance (AMR) profiles of Salmonella Infantis in the country. Findings: The genomic and phylogenetic analyses showed that Salmonella Infantis from Chile comprised several clusters of highly related isolates dominated by sequence type 32. The HC20_343 cluster grouped an important proportion of all isolates. This was the only cluster associated with pESI-like megaplasmids, and up to 12 acquired AMR genes/mutations predicted to result in an MDR phenotype. Accordingly, antimicrobial-susceptibility testing revealed a strong concordance between the AMR genetic determinants and their matching phenotypic expression, indicating that a significant proportion of HC20_343 isolates produce extended-spectrum ß-lactamases and have intermediate fluoroquinolone resistance. HC20_343 Salmonella Infantis were spread among environmental, animal, food, and human niches, showing a close relationship between isolates from different years and sources, and a low intra-source genomic diversity. Interpretation: Our findings show a widespread dissemination of MDR Salmonella Infantis from the HC20_343 cluster in Chile. The high proportion of isolates with resistance to first-line antibiotics and the evidence of active transmission between the environment, animals, food, and humans highlight the urgency of improved surveillance and control measures in the country. As HC20_343 isolates predominate in the Americas, our results suggest a high prevalence of ESBL-producing Salmonella Infantis with intermediate fluoroquinolone resistance in the continent. Funding: Partially supported by the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services as part of an award, FDU001818, with 30% percent funded by FDA/HHS; and by Agencia de Investigación y Desarrollo de Chile (ANID) through FONDECYT de Postdoctorado Folio 3230796 and Folio 3210317, FONDECYT Regular Folio 1231082, and ANID-Millennium Science Initiative Program-ICN2021_044.

13.
Microbiol Spectr ; 12(5): e0004724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546218

RESUMO

Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.


Assuntos
Farmacorresistência Bacteriana Múltipla , Filogenia , Salmonella enterica , Salmonella typhimurium , Sorogrupo , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Brasil , Farmacorresistência Bacteriana Múltipla/genética , México , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/classificação , Integrons/genética , Genoma Bacteriano , Chile , Genômica , Antibacterianos/farmacologia , América Latina , Microbiologia da Água , Polimorfismo de Nucleotídeo Único , Plasmídeos/genética , Testes de Sensibilidade Microbiana
14.
Appl Environ Microbiol ; 79(11): 3406-12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23524679

RESUMO

Pathogenicity islands (PAIs) play an important role in Shiga toxin-producing Escherichia coli (STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtype eae and stx genes, respectively. Phylogenetic trees were constructed based on the sequences of pagC among 34 STEC strains and iha among 67 diverse pathogenic E. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs. terC (62.5%) and ureC (62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (except iha) were found to be primarily associated with eae-positive STEC, whereas HPI occurred independently of the eae presence. The strong association of OI-122, OI-43/48, and OI-57 with eae-positive STEC suggests in part that different pathogenic mechanisms exist between eae-positive and eae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.


Assuntos
Marcadores Genéticos/genética , Ilhas Genômicas/genética , Filogenia , Escherichia coli Shiga Toxigênica/patogenicidade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Sorotipagem , Especificidade da Espécie
15.
Foodborne Pathog Dis ; 10(5): 478-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23531122

RESUMO

A suspension array assay was developed for molecular serotyping of the seven most prevalent Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157). Fluorescence values of 59 STEC were 30 to >270 times greater than the signals of negative controls, demonstrating the method's effectiveness for the molecular serotyping of STEC.


Assuntos
Proteínas de Escherichia coli/genética , Microbiologia de Alimentos , Escherichia coli Shiga Toxigênica/classificação , Primers do DNA/genética , DNA Bacteriano/genética , Proteínas de Membrana Transportadoras/genética , Microesferas , Reação em Cadeia da Polimerase Multiplex , Hibridização de Ácido Nucleico , Sorotipagem , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação
16.
Microorganisms ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764158

RESUMO

The bacterial community of the intestinal microbiota influences many host functions, and similar effects have been recently reported for the fungal community (mycobiota). Cobia is a tropical fish that has been studied for its potential in marine aquaculture. However, the study of its bacterial community has been underreported and the mycobiota has not been investigated. We analyzed the gut bacterial and fungal profile present in the intestinal mucosa of reared adult cobias fed two diets (frozen fish pieces (FFPs) and formulated feed (FF)) for 4 months by sequencing the 16S rRNA (V3-V4) and internal transcribed spacer-2 (ITS2) regions using Illumina NovaSeq 6000. No significant differences in the alpha diversity of the bacterial community were observed, which was dominated by the phyla Proteobacteria (~96%) and Firmicutes (~1%). Cobia fed FF showed higher abundance of 10 genera, mainly UCG-002 (Family Oscillospiraceae) and Faecalibacterium, compared to cobia fed FFPs, which showed higher abundance of 7 genera, mainly Methylobacterium-Methylorubrum and Cutibacterium. The inferred bacterial functions were related to metabolism, environmental information processing and cellular processes; and no differences were found between diets. In mycobiota, no differences were observed in the diversity and composition of cobia fed the two diets. The mycobiota was dominated by the phyla Ascomycota (~88%) and Basidiomycota (~11%). This is the first study to describe the gut bacterial and fungal communities in cobia reared under captive conditions and fed on different diets and to identify the genus Ascobulus as a new member of the core fish mycobiota.

17.
Foods ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38231772

RESUMO

Salmonella is one of the leading causes of foodborne disease worldwide, usually related to contaminated poultry or poultry products, such as eggs. Since egg contamination with Salmonella depends on multiple factors that make it challenging to control, consumers' knowledge about food safety and the proper handling of eggs is crucial. The aims of the study were (1) to determine the prevalence of Salmonella in eggs from conventional and alternative production systems, (2) to characterize the Salmonella isolates according to phenotypic-genotypic and antimicrobial-resistant traits, and (3) to understand how consumers manage the hazards related to egg contamination in the household. A total of 426 egg samples were analyzed (conventional systems = 240; alternative systems = 186). Culture-based and molecular microbiological methods were used to identify Salmonella and bioinformatics analysis of whole genome sequences was used to determine the serotype and antimicrobial-resistant genes. Salmonella enterica serotype Enteritidis was detected only in eggs from alternative systems (1.1%, 2/186). Isolates showed resistance to nalidixic acid (100%, 2/2), and the aac(6')-Iaa gene and a mutation in the gyrA gene were identified in both isolates. Overall, consumers demonstrated knowledge regarding food safety; however, many still engage in practices that pose a risk of acquiring foodborne illnesses.

18.
Food Microbiol ; 32(2): 371-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986203

RESUMO

The prevalence and characteristics of non-O157 Shiga toxin-producing Escherichia coli (STEC) in retail ground meat from the Washington D.C. area were investigated in this study. STEC from 480 ground beef and pork samples were identified using PCR screening followed by colony hybridization. The STEC isolates were serogrouped and examined for the presence of virulence genes (stx1, stx2, eae and hlyA), and antimicrobial susceptibility. PFGE was used to identify the clonal relationships of STEC isolates, and PCR-RFLP was employed to determine stx subtypes. In addition, the cytotoxicity of STEC isolates was determined using a Vero cell assay. STEC were identified in 12 (5.2%) of 231 ground pork and 13 (5.2%) of 249 ground beef samples. Among 32 STEC isolates recovered from the 25 samples, 12 (37.5%) carried stx2dact and 7 (21.9%) carried hlyA, but none carried eae. Nine isolates were identified as O91, and 17 (53.1%) isolates were resistant to two or more antimicrobials. Verotoxicity was detected in 26 (81.3%) of the STEC isolates. Thus, the retail ground meat was contaminated with a heterogeneous population of non-O157 STEC, some of which were potential human pathogens.


Assuntos
Contaminação de Alimentos/análise , Carne/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Qualidade de Produtos para o Consumidor , District of Columbia , Farmacorresistência Bacteriana , Toxinas Shiga/metabolismo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Suínos
19.
Front Vet Sci ; 9: 799710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923819

RESUMO

Pet food can be a source of microbiological hazards that might affect companion animals and owners. Even though owners usually rely on conventional pet diets, such as extruded diets, new feeding practices, such as raw meat-based diets (RMBDs), have grown. RMBDs' benefits are still scientifically uncertain, while its risks have been documented. The use of canine RMBDs might increase the exposure to zoonotic pathogens, such as Salmonella spp., Listeria monocytogenes, Campylobacter spp., among others. Identifying pathogen prevalence in canine food and pets is required to contribute to public health measures. The aims of this study were: (1) to compare the microbiological quality of RMBDs and extruded diets (2) to identify and compare the prevalence of Salmonella spp., Campylobacter jejuni, and L. monocytogenes from raw and extruded canine diets and canine fecal samples, and (3) to characterize pet owners according to the diet chosen to be used on their pets, their motivations for using RMBDs, and their knowledge about benefits and risks related to this feeding practice. Conventional and molecular microbiological methods were used to identify pathogen presence from food and fecal samples, while pulsed-field gel electrophoresis (PFGE) was performed to evaluate the clonal relationship between isolates. Aerobic plate counts for RMBDs were higher than those detected for extruded diets. Salmonella spp. and L. monocytogenes were isolated from 35.7% (15/42) RMBDs, while Salmonella spp., C. jejuni, and L. monocytogenes from 33.3% (11/33) fecal samples from RMBD-fed dogs. From the RMBD samples positive to Salmonella spp., chicken was the main meat ingredient composing the diets. PFGE analysis confirmed a genetic association between Salmonella spp. isolates from fecal and raw food samples from the same household. We did not detect pathogens from extruded food samples or feces from extruded-fed dogs. Using a survey, we identified dog owners' unawareness and/or underestimation of risks related to RMBDs. We demonstrated that canine raw pet food might be a source of zoonotic foodborne pathogens that represent a health risk for both humans and pets. While clinical findings caused by the mentioned pathogens vary among pets, the zoonotic potential implies a significant concern.

20.
Foods ; 11(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35327308

RESUMO

Listeria monocytogenes is a major foodborne pathogen that can contaminate food products and colonize food-producing facilities. Foodservice operations (FSOp) are frequently responsible for foodborne outbreaks due to food safety practices failures. We investigated the presence of and characterized L. monocytogenes from two FSOp (cafeterias) distributing ready-to-eat meals and verified FSOp's compliance with good manufacturing practices (GMP). Two facilities (FSOp-A and FSOp-B) were visited three times each over 5 months. We sampled foods, ingredients, and surfaces for microbiological analysis, and L. monocytogenes isolates were characterized by phylogenetic analyses and phenotypic characteristics. GMP audits were performed in the first and third visits. A ready-to-eat salad (FSOp-A) and a frozen ingredient (FSOp-B) were contaminated with L. monocytogenes, which was also detected on Zone 3 surfaces (floor, drains, and a boot cover). The phylogenetic analysis demonstrated that FSOp-B had persistent L. monocytogenes strains, but environmental isolates were not closely related to food or ingredient isolates. GMP audits showed that both operations worked under "fair" conditions, and "facilities and equipment" was the section with the least compliances. The presence of L. monocytogenes in the environment and GMP failures could promote food contamination with this pathogen, presenting a risk to consumers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA