Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Brain ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938188

RESUMO

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

2.
Cell ; 142(2): 270-83, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655468

RESUMO

Mechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP(3)R-mediated Ca(2+) release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP(3)R Ca(2+) signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca(2+) uptake. Mitochondrial uptake of InsP(3)R-released Ca(2+) is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics.


Assuntos
Linfócitos B/metabolismo , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Animais , Autofagia , Cálcio/metabolismo , Linhagem Celular , Galinhas , Técnicas de Inativação de Genes
3.
Mol Cell ; 67(4): 711-723.e7, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28820965

RESUMO

The mitochondrial calcium uniporter complex is essential for calcium (Ca2+) uptake into mitochondria of all mammalian tissues, where it regulates bioenergetics, cell death, and Ca2+ signal transduction. Despite its involvement in several human diseases, we currently lack pharmacological agents for targeting uniporter activity. Here we introduce a high-throughput assay that selects for human MCU-specific small-molecule modulators in primary drug screens. Using isolated yeast mitochondria, reconstituted with human MCU, its essential regulator EMRE, and aequorin, and exploiting a D-lactate- and mannitol/sucrose-based bioenergetic shunt that greatly minimizes false-positive hits, we identify mitoxantrone out of more than 600 clinically approved drugs as a direct selective inhibitor of human MCU. We validate mitoxantrone in orthogonal mammalian cell-based assays, demonstrating that our screening approach is an effective and robust tool for MCU-specific drug discovery and, more generally, for the identification of compounds that target mitochondrial functions.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Mitocôndrias/efeitos dos fármacos , Mitoxantrona/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Equorina/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Cinética , Ácido Láctico/metabolismo , Manitol/metabolismo , Potenciais da Membrana , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitoxantrona/química , Modelos Moleculares , Estrutura Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Sacarose/metabolismo , Xenopus laevis
4.
Cell ; 133(7): 1149-61, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585350

RESUMO

Alzheimer's disease (AD) is a genetically heterogeneous disorder characterized by early hippocampal atrophy and cerebral amyloid-beta (Abeta) peptide deposition. Using TissueInfo to screen for genes preferentially expressed in the hippocampus and located in AD linkage regions, we identified a gene on 10q24.33 that we call CALHM1. We show that CALHM1 encodes a multipass transmembrane glycoprotein that controls cytosolic Ca(2+) concentrations and Abeta levels. CALHM1 homomultimerizes, shares strong sequence similarities with the selectivity filter of the NMDA receptor, and generates a large Ca(2+) conductance across the plasma membrane. Importantly, we determined that the CALHM1 P86L polymorphism (rs2986017) is significantly associated with AD in independent case-control studies of 3404 participants (allele-specific OR = 1.44, p = 2 x 10(-10)). We further found that the P86L polymorphism increases Abeta levels by interfering with CALHM1-mediated Ca(2+) permeability. We propose that CALHM1 encodes an essential component of a previously uncharacterized cerebral Ca(2+) channel that controls Abeta levels and susceptibility to late-onset AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Predisposição Genética para Doença , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Polimorfismo Genético , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Canais de Cálcio , Membrana Celular/metabolismo , Cromossomos Humanos Par 10 , Citosol/metabolismo , Feminino , Genoma Humano , Humanos , Masculino , Glicoproteínas de Membrana/química , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
5.
Proc Natl Acad Sci U S A ; 117(35): 21731-21739, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801213

RESUMO

Ca2+ uptake by mitochondria regulates bioenergetics, apoptosis, and Ca2+ signaling. The primary pathway for mitochondrial Ca2+ uptake is the mitochondrial calcium uniporter (MCU), a Ca2+-selective ion channel in the inner mitochondrial membrane. MCU-mediated Ca2+ uptake is driven by the sizable inner-membrane potential generated by the electron-transport chain. Despite the large thermodynamic driving force, mitochondrial Ca2+ uptake is tightly regulated to maintain low matrix [Ca2+] and prevent opening of the permeability transition pore and cell death, while meeting dynamic cellular energy demands. How this is accomplished is controversial. Here we define a regulatory mechanism of MCU-channel activity in which cytoplasmic Ca2+ regulation of intermembrane space-localized MICU1/2 is controlled by Ca2+-regulatory mechanisms localized across the membrane in the mitochondrial matrix. Ca2+ that permeates through the channel pore regulates Ca2+ affinities of coupled inhibitory and activating sensors in the matrix. Ca2+ binding to the inhibitory sensor within the MCU amino terminus closes the channel despite Ca2+ binding to MICU1/2. Conversely, disruption of the interaction of MICU1/2 with the MCU complex disables matrix Ca2+ regulation of channel activity. Our results demonstrate how Ca2+ influx into mitochondria is tuned by coupled Ca2+-regulatory mechanisms on both sides of the inner mitochondrial membrane.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Apoptose , Transporte Biológico , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Citoplasma/metabolismo , Citosol/metabolismo , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Oxirredução , Multimerização Proteica , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 113(13): E1953-62, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976600

RESUMO

Antiapoptotic Bcl-2 family members interact with inositol trisphosphate receptor (InsP3R) Ca(2+)release channels in the endoplasmic reticulum to modulate Ca(2+)signals that affect cell viability. However, the molecular details and consequences of their interactions are unclear. Here, we found that Bcl-xL activates single InsP3R channels with a biphasic concentration dependence. The Bcl-xLBcl-2 homology 3 (BH3) domain-binding pocket mediates both high-affinity channel activation and low-affinity inhibition. Bcl-xL activates channel gating by binding to two BH3 domain-like helices in the channel carboxyl terminus, whereas inhibition requires binding to one of them and to a previously identified Bcl-2 interaction site in the channel-coupling domain. Disruption of these interactions diminishes cell viability and sensitizes cells to apoptotic stimuli. Our results identify BH3-like domains in an ion channel and they provide a unifying model of the effects of antiapoptotic Bcl-2 proteins on the InsP3R that play critical roles in Ca(2+) signaling and cell viability.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteína bcl-X/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Ativação do Canal Iônico/fisiologia , Células MCF-7 , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética
7.
Proc Natl Acad Sci U S A ; 110(51): 20593-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297914

RESUMO

K-Ras4B is targeted to the plasma membrane by a farnesyl modification that operates in conjunction with a polybasic domain. We characterized a farnesyl-electrostatic switch whereby protein kinase C phosphorylates K-Ras4B on serine 181 in the polybasic region and thereby induces translocation from the plasma membrane to internal membranes that include the endoplasmic reticulum (ER) and outer mitochondrial membrane. This translocation is associated with cell death. Here we have explored the mechanism of phospho-K-Ras4B toxicity and found that GTP-bound, phosphorylated K-Ras4B associates with inositol trisphosphate receptors on the ER in a Bcl-xL-dependent fashion and, in so doing, blocks the ability of Bcl-xL to potentiate the InsP3 regulated flux of calcium from ER to mitochondria that is required for efficient respiration, inhibition of autophagy, and cell survival. Thus, we have identified inositol trisphosphate receptors as unique effectors of K-Ras4B that antagonize the prosurvival signals of other K-Ras effectors.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína bcl-X/metabolismo , Animais , Cálcio/metabolismo , Morte Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Sobrevivência Celular/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Inositol 1,4,5-Trifosfato/genética , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Membranas Mitocondriais/metabolismo , Fosforilação/fisiologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Sf9 , Spodoptera , Proteína bcl-X/genética
8.
Anesthesiology ; 121(3): 528-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24878495

RESUMO

BACKGROUND: Pharmacological evidence suggests that inhalational general anesthetics induce neurodegeneration in vitro and in vivo through overactivation of inositol trisphosphate receptor (InsP3R) Ca-release channels, but it is not clear whether these effects are due to direct modulation of channel activity by the anesthetics. METHODS: Using single-channel patch clamp electrophysiology, the authors examined the gating of rat recombinant type 3 InsP3R (InsP3R-3) Ca-release channels in isolated nuclei (N = 3 to 15) from chicken lymphocytes modulated by isoflurane at clinically relevant concentrations in the absence and presence of physiological levels of the agonist inositol 1,4,5-trisphosphate (InsP3). The authors also examined the effects of isoflurane on InsP3R-mediated Ca release from the endoplasmic reticulum and changes in intracellular Ca concentration ([Ca]i). RESULTS: Clinically relevant concentrations (approximately 1 minimal alveolar concentration) of the commonly used general anesthetic, isoflurane, activated InsP3R-3 channels with open probability similar to channels activated by 1 µM InsP3 (Po ≈ 0.2). This isoflurane modulation of InsP3R-3 Po depended biphasically on [Ca]i. Combination of isoflurane with subsaturating levels of InsP3 in patch pipettes resulted in at least two-fold augmentations of InsP3R-3 channel Po compared with InsP3 alone. These effects were not noted in the presence of saturating [InsP3]. Application of isoflurane to DT40 cells resulted in a 30% amplification of InsP3R-mediated [Ca]i oscillations, whereas InsP3-induced increase in [Ca]i and cleaved caspase-3 activity were enhanced by approximately 2.5-fold. CONCLUSION: These results suggest that the InsP3R may be a direct molecular target of isoflurane and plays a role in the mechanisms of anesthetic-mediated pharmacological or neurotoxic effects.


Assuntos
Anestésicos Inalatórios/farmacologia , Canais de Cálcio/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Isoflurano/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Galinhas , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Ratos
9.
J Biol Chem ; 286(41): 35998-36010, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21859719

RESUMO

The type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) is a ubiquitous intracellular Ca(2+) release channel that is vital to intracellular Ca(2+) signaling. InsP(3)R1 is a proteolytic target of calpain, which cleaves the channel to form a 95-kDa carboxyl-terminal fragment that includes the transmembrane domains, which contain the ion pore. However, the functional consequences of calpain proteolysis on channel behavior and Ca(2+) homeostasis are unknown. In the present study we have identified a unique calpain cleavage site in InsP(3)R1 and utilized a recombinant truncated form of the channel (capn-InsP(3)R1) corresponding to the stable, carboxyl-terminal fragment to examine the functional consequences of channel proteolysis. Single-channel recordings of capn-InsP(3)R1 revealed InsP(3)-independent gating and high open probability (P(o)) under optimal cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) conditions. However, some [Ca(2+)](i) regulation of the cleaved channel remained, with a lower P(o) in suboptimal and inhibitory [Ca(2+)](i). Expression of capn-InsP(3)R1 in N2a cells reduced the Ca(2+) content of ionomycin-releasable intracellular stores and decreased endoplasmic reticulum Ca(2+) loading compared with control cells expressing full-length InsP(3)R1. Using a cleavage-specific antibody, we identified calpain-cleaved InsP(3)R1 in selectively vulnerable cerebellar Purkinje neurons after in vivo cardiac arrest. These findings indicate that calpain proteolysis of InsP(3)R1 generates a dysregulated channel that disrupts cellular Ca(2+) homeostasis. Furthermore, our results demonstrate that calpain cleaves InsP(3)R1 in a clinically relevant injury model, suggesting that Ca(2+) leak through the proteolyzed channel may act as a feed-forward mechanism to enhance cell death.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Calpaína/farmacologia , Homeostase/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Células de Purkinje/metabolismo , Animais , Canais de Cálcio/metabolismo , Ionóforos de Cálcio/farmacologia , Calpaína/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/metabolismo , Ionomicina/farmacologia , Masculino , Proteólise/efeitos dos fármacos , Ratos , Ratos Long-Evans
11.
J Biol Chem ; 285(45): 34850-63, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20739289

RESUMO

The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl(-) and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl(-) secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca(2+) from the endoplasmic reticulum (ER), lowering [Ca(2+)] in the ER and thereby activating the Ca(2+)-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca(2+)] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl(-) current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca(2+) buffer that lowers [Ca(2+)] in the ER similar to the effect of 3O-C12 also increased cAMP and I(Cl). The results suggest that 3O-C12 stimulates CFTR-dependent Cl(-) and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca(2+)] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl(-) and fluid secretion.


Assuntos
4-Butirolactona/análogos & derivados , Cloretos/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/metabolismo , 4-Butirolactona/metabolismo , Ânions/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Linhagem Celular Transformada , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Retículo Endoplasmático/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Infecções por Pseudomonas/genética , Percepção de Quorum/efeitos dos fármacos , Mucosa Respiratória/microbiologia , Molécula 1 de Interação Estromal
12.
Biophys J ; 99(2): 407-16, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20643058

RESUMO

To clarify the molecular mechanisms behind quantal Ca2+ release, the graded Ca2+ release from intracellular stores through inositol 1,4,5-trisphosphate receptor (InsP3R) channels responding to incremental ligand stimulation, single-channel patch-clamp electrophysiology was used to continuously monitor the number and open probability of InsP3R channels in the same excised cytoplasmic-side-out nuclear membrane patches exposed alternately to optimal and suboptimal cytoplasmic ligand conditions. Progressively more channels were activated by more favorable conditions in patches from insect cells with only one InsP3R gene or from cells solely expressing one recombinant InsP3R isoform, demonstrating that channels with identical primary sequence have different ligand recruitment thresholds. Such heterogeneity was largely abrogated, in a fully reversible manner, by treatment of the channels with sulfhydryl reducing agents, suggesting that it was mostly regulated by different levels of posttranslational redox modifications of the channels. In contrast, sulfhydryl reduction had limited effects on channel open probability. Thus, sulfhydryl redox modification can regulate various aspects of intracellular Ca2+ signaling, including quantal Ca2+ release, by tuning ligand sensitivities of InsP3R channels. No intrinsic termination of channel activity with a timescale comparable to that for quantal Ca2+ release was observed under any steady ligand conditions, indicating that this process is unlikely to contribute.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Galinhas , Ditiotreitol/farmacologia , Insetos/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Ratos , Proteínas Recombinantes/metabolismo , Compostos de Sulfidrila/metabolismo
13.
Elife ; 92020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420875

RESUMO

Modulating cytoplasmic Ca2+ concentration ([Ca2+]i) by endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+-release channels is a universal signaling pathway that regulates numerous cell-physiological processes. Whereas much is known regarding regulation of InsP3R activity by cytoplasmic ligands and processes, its regulation by ER-luminal Ca2+ concentration ([Ca2+]ER) is poorly understood and controversial. We discovered that the InsP3R is regulated by a peripheral membrane-associated ER-luminal protein that strongly inhibits the channel in the presence of high, physiological [Ca2+]ER. The widely-expressed Ca2+-binding protein annexin A1 (ANXA1) is present in the nuclear envelope lumen and, through interaction with a luminal region of the channel, can modify high-[Ca2+]ER inhibition of InsP3R activity. Genetic knockdown of ANXA1 expression enhanced global and local elementary InsP3-mediated Ca2+ signaling events. Thus, [Ca2+]ER is a major regulator of InsP3R channel activity and InsP3R-mediated [Ca2+]i signaling in cells by controlling an interaction of the channel with a peripheral membrane-associated Ca2+-binding protein, likely ANXA1.


Assuntos
Anexina A1/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células A549 , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/fisiologia , Galinhas , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico , Camundongos , Técnicas de Patch-Clamp , Ratos
14.
Cell Rep ; 14(3): 403-410, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26774479

RESUMO

The mitochondrial uniporter (MCU) is an ion channel that mediates Ca(2+) uptake into the matrix to regulate metabolism, cell death, and cytoplasmic Ca(2+) signaling. Matrix Ca(2+) concentration is similar to that in cytoplasm, despite an enormous driving force for entry, but the mechanisms that prevent mitochondrial Ca(2+) overload are unclear. Here, we show that MCU channel activity is governed by matrix Ca(2+) concentration through EMRE. Deletion or charge neutralization of its matrix-localized acidic C terminus abolishes matrix Ca(2+) inhibition of MCU Ca(2+) currents, resulting in MCU channel activation, enhanced mitochondrial Ca(2+) uptake, and constitutively elevated matrix Ca(2+) concentration. EMRE-dependent regulation of MCU channel activity requires intermembrane space-localized MICU1, MICU2, and cytoplasmic Ca(2+). Thus, mitochondria are protected from Ca(2+) depletion and Ca(2+) overload by a unique molecular complex that involves Ca(2+) sensors on both sides of the inner mitochondrial membrane, coupled through EMRE.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Citoplasma/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/genética , Técnicas de Patch-Clamp , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
Cold Spring Harb Protoc ; 2013(9): 787-97, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24003191

RESUMO

The modulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) is a universal intracellular signaling pathway that regulates numerous cellular physiological processes. Ubiquitous intracellular Ca(2+)-release channels localized to the endoplasmic/sarcoplasmic reticulum-inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels-play a central role in [Ca(2+)]i signaling in all animal cells. Despite their intracellular localization, electrophysiological studies of the single-channel permeation and gating properties of these Ca(2+)-release channels using the powerful patch-clamp approach have been possible by application of this technique to isolated nuclei because the channels are present in membranes of the nuclear envelope. Here we provide a concise description of how nuclear patch-clamp experiments have been used to study single-channel properties of different InsP3R channels in the outer nuclear membrane. We compare this with other methods for studying intracellular Ca(2+) release. We also briefly describe application of the technique to InsP3R channels in the inner nuclear membrane and to channels in the outer nuclear membrane of HEK293 cells expressing recombinant RyR.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Técnicas Citológicas/métodos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membrana Nuclear/fisiologia , Técnicas de Patch-Clamp/métodos , Cátions Bivalentes/metabolismo , Linhagem Celular , Humanos
16.
Cold Spring Harb Protoc ; 2013(9): 880-4, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24003193

RESUMO

Nuclear patch-clamp experiments can be performed with intact nuclei or with nuclei from which the outer nuclear membrane has been removed. This protocol presents procedures for harvesting different types of cultured cells, isolating nuclei, and exposing the inner nuclear membrane by agitating in the presence of sodium citrate. Particulars about obtaining and maintaining the cells of interest in culture are not described here. However, care should be taken not to allow the cells to grow beyond a density of 2-3 × 10(6) cells/mL because this may decrease both the cell viability and the success rate of detecting active inositol 1,4,5-trisphosphate receptor (InsP3R) channels in nuclear patches.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Técnicas Citológicas/métodos , Membrana Nuclear/fisiologia , Técnicas de Patch-Clamp/métodos , Animais , Cátions Bivalentes/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Citratos/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Citrato de Sódio
17.
Cold Spring Harb Protoc ; 2013(9): 885-91, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24003194

RESUMO

Patch-clamping the outer or inner nuclear membrane of isolated nuclei is very similar to patch-clamping the plasma membrane of isolated cells. This protocol describes in detail all the steps required to successfully obtain nuclear membrane patches, in various configurations, from both the outer and inner nuclear membranes of isolated nuclei.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Técnicas Citológicas/métodos , Membrana Nuclear/fisiologia , Técnicas de Patch-Clamp/métodos , Cátions Bivalentes/metabolismo , Células Cultivadas
18.
J Gen Physiol ; 140(6): 697-716, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23148262

RESUMO

The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) Ca(2+) release channel plays a central role in the generation and modulation of intracellular Ca(2+) signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP(3), free Ca(2+), free ATP(4-)) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins. However, regulation of InsP(3)R channel activity by free Ca(2+) in the ER lumen ([Ca(2+)](ER)) remains poorly understood because of limitations of Ca(2+) flux measurements and imaging techniques. Here, we used nuclear patch-clamp experiments in excised luminal-side-out configuration with perfusion solution exchange to study the effects of [Ca(2+)](ER) on homotetrameric rat type 3 InsP(3)R channel activity. In optimal [Ca(2+)](i) and subsaturating [InsP(3)], jumps of [Ca(2+)](ER) from 70 nM to 300 µM reduced channel activity significantly. This inhibition was abrogated by saturating InsP(3) but restored when [Ca(2+)](ER) was raised to 1.1 mM. In suboptimal [Ca(2+)](i), jumps of [Ca(2+)](ER) (70 nM to 300 µM) enhanced channel activity. Thus, [Ca(2+)](ER) effects on channel activity exhibited a biphasic dependence on [Ca(2+)](i). In addition, the effect of high [Ca(2+)](ER) was attenuated when a voltage was applied to oppose Ca(2+) flux through the channel. These observations can be accounted for by Ca(2+) flux driven through the open InsP(3)R channel by [Ca(2+)](ER), raising local [Ca(2+)](i) around the channel to regulate its activity through its cytoplasmic regulatory Ca(2+)-binding sites. Importantly, [Ca(2+)](ER) regulation of InsP(3)R channel activity depended on cytoplasmic Ca(2+)-buffering conditions: it was more pronounced when [Ca(2+)](i) was weakly buffered but completely abolished in strong Ca(2+)-buffering conditions. With strong cytoplasmic buffering and Ca(2+) flux sufficiently reduced by applied voltage, both activation and inhibition of InsP(3)R channel gating by physiological levels of [Ca(2+)](ER) were completely abolished. Collectively, these results rule out Ca(2+) regulation of channel activity by direct binding to the luminal aspect of the channel.


Assuntos
Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico/fisiologia , Animais , Sítios de Ligação/fisiologia , Citoplasma/metabolismo , Cinética , Ligantes , Ratos
19.
J Gen Physiol ; 136(6): 687-700, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21078871

RESUMO

The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.


Assuntos
Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Proteínas Recombinantes/metabolismo , Animais , Sinalização do Cálcio , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Cinética , Ligantes , Técnicas de Patch-Clamp , Ratos , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA