Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Opt Express ; 32(2): 2223-2234, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297757

RESUMO

The biphenylene network (BPN) has a unique two-dimensional atomic structure, where hexagonal unit cells are arranged on a square lattice. Inspired by such a BPN structure, we design a counterpart in the fashion of photonic crystals (PhCs), which we refer to as the BPN PhC. We study the photonic band structure using the finite element method and characterize the topological properties of the BPN PhC through the use of the Wilson loop. Our findings reveal the emergence of topological edge states in the BPN PhC, specifically in the zigzag edge and the chiral edge, as a consequence of the nontrivial Zak phase in the corresponding directions. In addition, we find the localization of electromagnetic waves at the corners formed by the chiral edges, which can be considered as second-order topological states, i.e., topological corner states.

2.
Opt Express ; 29(12): 18277-18290, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154086

RESUMO

We study topological states of honeycomb photonic crystals in the absence of inversion symmetry using plane wave expansion and finite element methods. The breaking of inversion symmetry in honeycomb lattice leads to contrasting topological valley indices, i.e., the valley-dependent Chern numbers in momentum space. We find that the topological corner states appear for 60° degree corners, but absent for other corners, which can be understood as the sign flip of valley Chern number at the corner. Our results provide an experimentally feasible platform for exploring valley-dependent higher-order topology in photonic systems.

3.
Phys Rev Lett ; 126(2): 025502, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512192

RESUMO

We theoretically investigate high-pressure effects on the atomic dynamics of metallic glasses. The theory predicts compression-induced rejuvenation and the resulting strain hardening that have been recently observed in metallic glasses. Structural relaxation under pressure is mainly governed by local cage dynamics. The external pressure restricts the dynamical constraints and slows down the atomic mobility. In addition, the compression induces a rejuvenated metastable state (local minimum) at a higher energy in the free-energy landscape. Thus, compressed metallic glasses can rejuvenate and the corresponding relaxation is reversible. This behavior leads to strain hardening in mechanical deformation experiments. Theoretical predictions agree well with experiments.

4.
Phys Chem Chem Phys ; 22(42): 24365-24371, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084661

RESUMO

We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulations. An external pressure restricts local motions of a single molecule within its cage and triggers slowing down of cooperative mobility. While the ECNLE theory and simulations generally predict a monotonic increase of the glass transition temperature and dynamic fragility with pressure, the simulations indicate a decrease of fragility as pressures above 1000 bar. The structural relaxation time is found to be linearly coupled with the inverse diffusion constant. Remarkably, this coupling is independent of compression. The theoretical calculations quantitatively agree well with the simulations and are also consistent with prior work.

5.
Phys Rev Lett ; 122(8): 086804, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932563

RESUMO

A topological electric quadrupole is a recently proposed concept that extends the theory of electric polarization of crystals to higher orders. Such a quadrupole phase supports topological states localized on both edges and corners. In this work, we show that in a quadrupole phase of a honeycomb lattice, topological helical edge states and pseudospin-polarized corner states appear by making use of a pseudospin degree of freedom related to point group symmetry. Furthermore, we argue that a general condition for the emergence of helical edge states in a (pseudo)spinful quadrupole phase is the existence of either mirror or time-reversal symmetry. Our results offer a way of generating topological helical edge states without spin-orbital couplings.

6.
Mol Pharm ; 16(7): 2992-2998, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095393

RESUMO

We propose a simple approach to investigate the structural relaxation time and glass transition of amorphous drugs. Amorphous materials are modeled as a set of equal sized hard spheres. The structural relaxation time over many decades in hard-sphere fluids is theoretically calculated using the elastically collective nonlinear Langevin equation theory associated with Kramer's theory. Then, new thermal mapping from a real material to an effective hard-sphere fluid provides temperature-dependent relaxation time, which can be compared to experiments. Numerical results quantitatively agree with previous experiments for pharmaceutical binary mixtures having different weight ratios. We carry out experiments to test our calculations for an ezetimibe-simvastatin-Kollidon VA64 mixture. Our approach would provide a simple but comprehensive description of glassy dynamics in amorphous composites.


Assuntos
Composição de Medicamentos/métodos , Ezetimiba/química , Modelos Moleculares , Pirrolidinas/química , Sinvastatina/química , Compostos de Vinila/química , Vitrificação , Varredura Diferencial de Calorimetria , Espectroscopia Dielétrica , Liberação Controlada de Fármacos , Cinética , Solubilidade , Temperatura
7.
Phys Chem Chem Phys ; 21(36): 19915-19920, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31475266

RESUMO

We propose a theoretical approach to describe quantitatively the heating process in aqueous solutions of dispersed TiN nanoparticles under solar illumination. The temperature gradients of the solution with different concentrations of the TiN nanoparticles are calculated when confinement effects of the container on the solar absorption are taken into account. We find that the average penetration of solar radiation into the solution is significantly reduced upon increasing the nanoparticle concentration. At high concentrations, our numerical results show that photons are localized near the surface of the solution. Moreover, the heat energy balance equation at the vapor-liquid interface is used to describe the solar steam generation. The theoretical time dependence of temperature rise and vaporization weight losses is consistent with experiments. Our calculations give strong evidence that the substantially localized heating near the vapor-liquid interface is the main reason for the more efficient steam generation process by floating plasmonic membranes when compared to randomly dispersed nanoparticles. The validated theoretical model suggests that our approach can be applied towards new predictions and other experimental data descriptions.

8.
Phys Rev Lett ; 118(7): 076803, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256872

RESUMO

We present a two-dimensional (2D) lattice model that exhibits a nontrivial topological phase in the absence of the Berry curvature. Instead, the Berry connection provides the topological nontrivial phase in the model, whose integration over the momentum space, the so-called 2D Zak phase, yields a fractional wave polarization in each direction. These fractional wave polarizations manifest themselves as degenerated edge states with opposite parities in the model.

9.
Nano Lett ; 15(3): 2067-73, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25646637

RESUMO

Growth of a uniform oxide film with a tunable thickness on two-dimensional transition metal dichalcogenides is of great importance for electronic and optoelectronic applications. Here we demonstrate homogeneous surface oxidation of atomically thin WSe2 with a self-limiting thickness from single- to trilayers. Exposure to ozone (O3) below 100 °C leads to the lateral growth of tungsten oxide selectively along selenium zigzag-edge orientations on WSe2. With further O3 exposure, the oxide regions coalesce and oxidation terminates leaving a uniform thickness oxide film on top of unoxidized WSe2. At higher temperatures, oxidation evolves in the layer-by-layer regime up to trilayers. The oxide films formed on WSe2 are nearly atomically flat. Using photoluminescence and Raman spectroscopy, we find that the underlying single-layer WSe2 is decoupled from the top oxide but hole-doped. Our findings offer a new strategy for creating atomically thin heterostructures of semiconductors and insulating oxides with potential for applications in electronic devices.

10.
Angew Chem Int Ed Engl ; 54(3): 951-5, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25425340

RESUMO

Here we report the thermal conversion of one-dimensional (1D) fullerene (C60) single-crystal nanorods and nanotubes to nanoporous carbon materials with retention of the initial 1D morphology. The 1D C60 crystals are heated directly at very high temperature (up to 2000 °C) in vacuum, yielding a new family of nanoporous carbons having π-electron conjugation within the sp(2)-carbon robust frameworks. These new nanoporous carbon materials show excellent electrochemical capacitance and superior sensing properties for aromatic compounds compared to commercial activated carbons.

11.
Nano Lett ; 13(8): 3546-52, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862641

RESUMO

Two-dimensional semiconductors are structurally ideal channel materials for the ultimate atomic electronics after silicon era. A long-standing puzzle is the low carrier mobility (µ) in them as compared with corresponding bulk structures, which constitutes the main hurdle for realizing high-performance devices. To address this issue, we perform a combined experimental and theoretical study on atomically thin MoS2 field effect transistors with varying the number of MoS2 layers (NLs). Experimentally, an intimate µ-NL relation is observed with a 10-fold degradation in µ for extremely thinned monolayer channels. To accurately describe the carrier scattering process and shed light on the origin of the thinning-induced mobility degradation, a generalized Coulomb scattering model is developed with strictly considering device configurative conditions, that is, asymmetric dielectric environments and lopsided carrier distribution. We reveal that the carrier scattering from interfacial Coulomb impurities (e.g., chemical residues, gaseous adsorbates, and surface dangling bonds) is greatly intensified in extremely thinned channels, resulting from shortened interaction distance between impurities and carriers. Such a pronounced factor may surpass lattice phonons and serve as dominant scatterers. This understanding offers new insight into the thickness induced scattering intensity, highlights the critical role of surface quality in electrical transport, and would lead to rational performance improvement strategies for future atomic electronics.

12.
Nat Commun ; 13(1): 7814, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535919

RESUMO

Graphene's original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon-ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics.

13.
Sci Technol Adv Mater ; 11(5): 054504, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877361

RESUMO

Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron-electron interaction are briefly discussed.

14.
Pharmaceutics ; 12(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093033

RESUMO

Compression effects on alpha and beta relaxation process of amorphous drugs are theoretically investigated by developing the elastically collective nonlinear Langevin equation theory. We describe the structural relaxation as a coupling between local and nonlocal activated process. Meanwhile, the secondary beta process is mainly governed by the nearest-neighbor interactions of a molecule. This assumption implies the beta relaxation acts as a precursor of the alpha relaxation. When external pressure is applied, a small displacement of a molecule is additionally exerted by a pressure-induced mechanical work in the dynamic free energy, which quantifies interactions between a molecule with its nearest neighbors. The local dynamics has more restriction and it induces stronger effects of collective motions on single-molecule dynamics. Thus, the alpha and beta relaxation times are significantly slowed down with increasing compression. We apply this approach to determine the temperature and pressure dependence of the alpha and beta relaxation time for curcumin, glibenclamide, and indomethacin, and compare numerical results with prior experimental studies. Both qualitative and quantitative agreement between theoretical calculations and experiments validate our assumptions and reveal their limitations. Our approach would pave the way for the development of the drug formulation process.

15.
RSC Adv ; 10(68): 41830-41836, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516554

RESUMO

We theoretically investigate equilibrium behaviors and photothermal effects of a flexible plasmonic metamaterial composed of aramid nanofibers and gold nanoparticles. The fiber matrix is considered as an external field to reconfigure a nanoparticle assembly. We find that the heating process tunes particle-particle and fiber-particle interactions, which alter adsorption of nanoparticles on fiber surfaces or clustering in pore spaces. Thus, it is possible to control the nanoparticle self-assembly by laser illumination. Gold nanoparticles strongly absorb radiations and efficiently dissipate absorbed energy into heat. By solving the heat transfer equation associated with an effective medium approximation, we calculate the spatial temperature rise. Remarkably, our theoretical results quantitatively agree with prior experiments. This indicates that we can ignore plasmonic coupling effects induced by particle clustering. Effects of the laser spot size and intensity on the photothermal heating are also discussed.

16.
Sci Rep ; 10(1): 21737, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303881

RESUMO

Triangular growth patterns of pristine two-dimensional (2D) transition metal dichalcogenides (TMDs) are ubiquitous in experiments. Here, we use first-principles calculations to investigate the growth of triangular shaped oxide islands upon layer-by-layer controlled oxidation in monolayer and few-layer [Formula: see text] systems. Pristine 2D TMDs with a trigonal prismatic geometry prefer the triangular growth morphology due to structural stability arising from the edge chalcogen atoms along its three sides. Our ab-initio energetics and thermodynamic study show that, since the Se atoms are more susceptible to oxygen replacement, the preferential oxidation happens along the Se zigzag lines, producing triangular islands of transition metal oxides. The thermodynamic stability arising from the preferential triangular self-formation of TMD based oxide heterostructures and their electronic properties opens a new avenue for their exploration in advanced electronic and optoelectronic devices.

17.
ACS Omega ; 5(19): 11035-11042, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455224

RESUMO

We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore significantly slows down the molecular dynamics when increasing the pressure. We quantitatively determine the temperature and pressure dependence of the structural relaxation time. To validate our model, dielectric spectroscopy experiments for three rigid and nonpolymeric supramolecules are carried out at ambient and elevated pressures. The numerical results quantitatively agree with experimental data.

18.
RSC Adv ; 10(47): 28447-28453, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519101

RESUMO

The photothermal energy conversion in hanging and floating polyaniline (PANi)-cotton fabrics is investigated using a model based on the heat diffusion equation. Perfect absorption and anti-reflection of wet hanging PANi-cotton fabrics cause quick transfer of total incident light into water confining nearly 100% of the sunlight. As a result, a hanging membrane is found to have more attractive properties than a floating above water fabric. We find, however, that the photothermal properties of a floating PANi-cotton membrane can greatly be enhanced by dispersing TiN nanoparticles in the water below the fabric. The calculated temperature gradients for TiN nanoparticle solutions show that the absorbed energy grows with increasing the nanoparticle density and that the photothermal process occurs mostly near the surface. The collective heating effects depend on the size and density of nanoparticles, which can further be used to modulate the photothermal process.

19.
Nat Commun ; 11(1): 2428, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415121

RESUMO

2D van der Waals ferroelectrics have emerged as an attractive building block with immense potential to provide multifunctionality in nanoelectronics. Although several accomplishments have been reported in ferroelectric switching for out-of-plane ferroelectrics down to the monolayer, a purely in-plane ferroelectric has not been experimentally validated at the monolayer thickness. Herein, an in-plane ferroelectricity is demonstrated for micrometer-size monolayer SnS at room temperature. SnS has been commonly regarded to exhibit the odd-even effect, where the centrosymmetry breaks only in the odd-number layers to exhibit ferroelectricity. Remarkably, however, a robust room temperature ferroelectricity exists in SnS below a critical thickness of 15 layers with both an odd and even number of layers, suggesting the possibility of controlling the stacking sequence of multilayer SnS beyond the limit of ferroelectricity in the monolayer. This work will pave the way for nanoscale ferroelectric applications based on SnS as a platform for in-plane ferroelectrics.

20.
RSC Adv ; 9(69): 40214-40221, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-35542647

RESUMO

Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA