RESUMO
Although magnesium and magnesium alloys are considered biocompatible and biodegradable, they suffer from poor corrosion performance in the human body environment. In light of this, surface modification via rapid surface melting of AZ31B Mg alloy using a continuous-wave Nd:YAG laser was conducted. Laser processing was performed with laser energy ranging from 1.06 to 3.18 J/mm2. The corrosion behavior in simulated body fluid of laser surface-treated and untreated AZ31B Mg alloy samples was evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using X-ray diffraction and scanning electron microscopy. Microstructure examination revealed grain refinement as well as formation and uniform distribution of Mg17Al12 phase along the grain boundary for laser surface-treated samples. Evolution of such unique microstructure during laser surface treatment indicated enhancement in the corrosion resistance of laser surface-treated samples compared to untreated alloy.
Assuntos
Ligas/química , Ligas/efeitos da radiação , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Lasers , Magnésio/química , Magnésio/efeitos da radiação , Teste de Materiais/métodos , Próteses e Implantes , Corrosão , Técnicas Eletroquímicas , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios XRESUMO
Magnesium and its alloys have been considered for consumable bio-implant applications due to their similar mechanical properties to the natural bone and biodegradability. Nevertheless, uncontrollable corrosion rate and limited bioactivity of Mg based materials in biological environment restrain their application. In light of this, objective of the present study was to explore addition of hydroxyapatite (HA, Ca10(PO4)6OH2), a ceramic similar to bone mineral, into AZ31B Mg alloy and its effects on bio-corrosion behavior. Friction stir processing based additive manufacturing route was employed for producing AZ31B Mg-HA composites. Various HA contents (5, 10, and 20 wt%) were incorporated into Mg matrix. The microstructural observation revealed that the size of α-Mg grains reduced significantly after friction stir process. HA incorporation took place at micro/nanoscale in α-Mg matrix under the thermo-mechanical forces exerted by friction stir process. The corrosion behavior of friction stir processed Mg-HA composites was investigated using electrochemical methods in simulated body fluid. The results indicated an improvement in corrosion resistance for the composites compared to untreated AZ31B which was attributed to significant grain refinement upon friction stir process. On the other hand, incremental addition of HA had an opposing effect due to localized micro/nano-galvanic couples. As a result, friction stir process Mg-5 wt% HA composite demonstrated the highest corrosion resistance due to an optimum balance between beneficial effects of grain size refinement and limited number of local galvanic couples compared to the other friction stir process samples explored in the present work.
Assuntos
Ligas/química , Materiais Biocompatíveis/química , Durapatita/química , Magnésio/química , CorrosãoRESUMO
The present study aims to evaluate effect of hydroxyapatite (HA, Ca10(PO4)6OH2), a ceramic similar to natural bone, into AZ31B Mg alloy matrix on biomineralization and biocompatibility. The novel friction stir processing additive manufacturing route was employed to fabricate Mg-HA composites. Various HA contents (5, 10, 20 wt%) were incorporated into Mg matrix. Microstructural observation and chemical composition analysis revealed that refined Mg grains and dispersion of HA particles at micro/nanoscales were achieved in Mg-HA composites after the friction stir processing. The biomineralization evaluation were carried out using immersion experiments in simulated body fluid followed by mineral morphology observation and chemical composition analysis. The wettability measurements were conducted to correlate the biomineralization behavior. The results showed improvement in wettability and bone-like Ca/P ratio in apatite deposit on the composites compared to as-received Mg. In addition, the increase of blood compatibility, cell viability and spreading were found in the higher HA content composites, indicating the improved biocompatibility. Therefore, friction stir processed Mg-20 wt%HA composite exhibited the highest wettability and better cell adhesion among other composites due to the effect of increased HA content within Mg matrix.
RESUMO
Biodegradable bone implants can remove the need for subsequent bone-implant surgeries by controlled biomineralization and degradation. Although Mg-alloys generally possess biocompatible properties, they corrode rapidly, thereby preventing sufficient hydroxyapatite formation and biomineral growth. In an attempt to address these limitations, laser surface treatments were performed via the employment of a continuous wave Nd:YAG laser on the Mg-AZ31B alloy using laser fluences in the range of 1.06-4.24â¯J/mm2 (250-1000â¯W). The laser-treated samples were investigated for their wettability in simulated body fluid. In vitro analyses were performed in simulated body fluid to examine corrosion and biomineralization behavior on the laser-treated samples. Statistical optimization algorithms based on wettability data predicted an optimal laser fluence of 3.286J/mm2 (775â¯W) within the range of laser fluences used in the present study for achieving a balance between biodegradation and biomineralization. Confirmatory tests on optimized samples indicated an up to 84% grain size reduction in laser-treated surface regions, a several-fold increase in Mg17Al12 (ß) phase volume fraction, a reasonably abundant formation of hydroxyapatite, and increased rates of biomineralization that exceeded degradation. These findings indicate the potential of laser surface engineering to realize Mg-AZ31B alloy as a viable biodegradable bone implant material.