Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819379

RESUMO

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Assuntos
Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animais , Eritrócitos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Locomoção , Proteínas de Membrana/metabolismo , Transdução de Sinais
2.
PLoS Pathog ; 16(10): e1008917, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017449

RESUMO

Babesia bovis causes a pathogenic form of babesiosis in cattle. Following invasion of red blood cells (RBCs) the parasite extensively modifies host cell structural and mechanical properties via the export of numerous proteins. Despite their crucial role in virulence and pathogenesis, such proteins have not been comprehensively characterized in B. bovis. Here we describe the surface biotinylation of infected RBCs (iRBCs), followed by proteomic analysis. We describe a multigene family (mtm) that encodes predicted multi-transmembrane integral membrane proteins which are exported and expressed on the surface of iRBCs. One mtm gene was downregulated in blasticidin-S (BS) resistant parasites, suggesting an association with BS uptake. Induced knockdown of a novel exported protein encoded by BBOV_III004280, named VESA export-associated protein (BbVEAP), resulted in a decreased growth rate, reduced RBC surface ridge numbers, mis-localized VESA1, and abrogated cytoadhesion to endothelial cells, suggesting that BbVEAP is a novel virulence factor for B. bovis.


Assuntos
Babesia bovis/patogenicidade , Babesiose/parasitologia , Células Endoteliais/parasitologia , Eritrócitos/parasitologia , Animais , Babesia bovis/genética , Bovinos , Doenças dos Bovinos/parasitologia , Proteínas de Membrana , Parasitos/patogenicidade , Proteômica/métodos , Fatores de Virulência/genética
3.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801067

RESUMO

Chemical conversion of the extract of natural resources is a very attractive way to expand the chemical space to discover bioactive compounds. In order to search for new medicines to treat parasitic diseases that cause high morbidity and mortality in affected countries in the world, the ethyl acetate extract from the rhizome of Alpinia galanga (L.) has been chemically converted by epoxidation using dioxirane generated in situ. The biological activity of chemically converted extract (CCE) of A. galanga (L.) significantly increased the activity against Leishmania major up to 82.6 ± 6.2 % at 25 µg/mL (whereas 2.7 ± 0.8% for the original extract). By bioassay-guided fractionation, new phenylpropanoids (1-6) and four known compounds, hydroquinone (7), 4-hydroxy(4-hydroxyphenyl)methoxy)benzaldehyde (8), isocoumarin cis 4-hydroxymelein (9), and (2S,3S,6R,7R,9S,10S)-humulene triepoxide (10) were isolated from CCE. The structures of isolated compounds were determined by spectroscopic analyses of 1D and 2D NMR, IR, and MS spectra. The most active compound was hydroquinone (7) with IC50 = 0.37 ± 1.37 µg/mL as a substantial active principle of CCE. In addition, the new phenylpropanoid 2 (IC50 = 27.8 ± 0.34 µg/mL) also showed significant activity against L. major compared to the positive control miltefosine (IC50 = 7.47 ± 0.3 µg/mL). The activities of the isolated compounds were also evaluated against Plasmodium falciparum, Trypanosoma brucei gambisense and Trypanosoma brucei rhodeisense. Interestingly, compound 2 was selectively active against trypanosomes with potent activity. To the best of our knowledge, this is the first report on the bioactive "unnatural" natural products from the crude extract of A. galanga (L.) by chemical conversion and on its activities against causal pathogens of leishmaniasis, trypanosomiasis, and malaria.


Assuntos
Alpinia/química , Antimaláricos , Extratos Vegetais/química , Plasmodium falciparum/crescimento & desenvolvimento , Propanóis , Trypanosoma brucei gambiense/crescimento & desenvolvimento , Trypanosoma brucei rhodesiense/crescimento & desenvolvimento , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Propanóis/química , Propanóis/isolamento & purificação , Propanóis/farmacologia , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/farmacologia
4.
PLoS Pathog ; 13(7): e1006447, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704525

RESUMO

Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites.


Assuntos
Antígenos de Protozoários/genética , Malária/imunologia , Malária/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium yoelii/genética , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Imunidade , Malária/genética , Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Virulência
5.
Malar J ; 16(1): 98, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28253868

RESUMO

BACKGROUND: Plasmodium falciparum SURFIN4.1 is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf 4.1 sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand. RESULTS: Positively significant departures from neutral expectations were detected on the surf 4.1 region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf 4.1 gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36). CONCLUSIONS: The authors infer that the high polymorphism of SURFIN4.1 Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1 Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1 on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.


Assuntos
Mutação da Fase de Leitura , Dosagem de Genes , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Seleção Genética , Quênia , Plasmodium falciparum/isolamento & purificação , Análise de Sequência de DNA , Tailândia
6.
Malar J ; 15: 323, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27316546

RESUMO

BACKGROUND: Rab5 GTPase regulates membrane trafficking between the plasma membrane and endosomes and harbours a conserved C-terminal isoprenyl modification that is necessary for membrane recruitment. Plasmodium falciparum encodes three Rab5 isotypes, and one of these, Rab5b (PfRab5b), lacks the C-terminal modification but possesses the N-terminal myristoylation motif. PfRab5b was reported to localize to the parasite periphery. However, the trafficking pathway regulated by PfRab5b is unknown. METHODS: A complementation analysis of Rab5 isotypes was performed in Plasmodium berghei. A constitutively active PfRab5b mutant was expressed under the regulation of a ligand-dependent destabilization domain (DD)-tag system in P. falciparum. The localization of PfRab5b was evaluated after removing the ligand followed by selective permeabilization of the membrane with different detergents. Furthermore, P. falciparum N-terminally myristoylated adenylate kinase 2 (PfAK2) was co-expressed with PfRab5b, and trafficking of PfAK2 to the parasitophorous vacuole membrane was examined by confocal microscopy. RESULTS: PfRab5b complemented the function of PbRab5b, however, the conventional C-terminally isoprenylated Rab5, PbRab5a or PbRab5c, did not. The constitutively active PfRab5b mutant localized to the cytosol of the parasite and the tubovesicular network (TVN), a region that extends from the parasitophorous vacuole membrane (PVM) in infected red blood cells (iRBCs). By removing the DD-ligand, parasite cytosolic PfRab5b signal disappeared and a punctate structure adjacent to the endoplasmic reticulum (ER) and parasite periphery accumulated. The peripheral PfRab5b was sensitive to extracellular proteolysis after treatment with streptolysin O, which selectively permeabilizes the red blood cell plasma membrane, indicating that PfRab5b localized on the iRBC cytoplasmic face of the TVN. Transport of PfAK2 to the PVM was abrogated by overexpression of PfRab5b, and PfAK2 accumulated in the punctate structure together with PfRab5b. CONCLUSION: N-myristoylated Plasmodium Rab5b plays a role that is distinct from that of conventional mammalian Rab5 isotypes. PfRab5b localizes to a compartment close to the ER, translocated to the lumen of the organelle, and co-localizes with PfAK2. PfRab5b and PfAK2 are then transported to the TVN, and PfRab5b localizes on the iRBC cytoplasmic face of TVN. These data demonstrate that PfRab5b is transported from the parasite cytosol to TVN together with N-myristoylated PfAK2 via an uncharacterized membrane-trafficking pathway.


Assuntos
Adenilato Quinase/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium berghei/enzimologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Adenilato Quinase/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas rab5 de Ligação ao GTP/genética
7.
Nature ; 451(7180): 796-801, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18235444

RESUMO

Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to 'cohesinopathies' such as Cornelia de Lange syndrome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Alelos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Fator de Ligação a CCCTC , Diferenciação Celular , Sequência Consenso/genética , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Genoma Humano/genética , Células HeLa , Humanos , Fator de Crescimento Insulin-Like II/genética , Camundongos , Mitose , Mães , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante , RNA não Traduzido/genética , Coesinas
8.
Parasitol Int ; 86: 102479, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628068

RESUMO

Plasmodium, the causative agents of malaria, are obligate intracellular organisms. In humans, pathogenesis is caused by the blood stage parasite, which multiplies within erythrocytes, thus erythrocyte invasion is an essential developmental step. Merozoite form parasites released into the blood stream coordinately secrets a panel of proteins from the microneme secretory organelles for gliding motility, establishment of a tight junction with a target naive erythrocyte, and subsequent internalization. A protein identified in Toxoplasma gondii facilitates microneme fusion with the plasma membrane for exocytosis; namely, acylated pleckstrin homology domain-containing protein (APH). To obtain insight into the differential microneme discharge by malaria parasites, in this study we analyzed the consequences of APH deletion in the rodent malaria model, Plasmodium yoelii, using a DiCre-based inducible knockout method. We found that APH deletion resulted in a reduction in parasite asexual growth and erythrocyte invasion, with some parasites retaining the ability to invade and grow without APH. APH deletion impaired the secretion of microneme proteins, MTRAP and AMA1, and upon contact with erythrocytes the secretion of MTRAP, but not AMA1, was observed. APH-deleted merozoites were able to attach to and deform erythrocytes, consistent with the observed MTRAP secretion. Tight junctions were formed, but echinocytosis after merozoite internalization into erythrocytes was significantly reduced, consistent with the observed absence of AMA1 secretion. Together with our observation that APH largely colocalized with MTRAP, but less with AMA1, we propose that APH is directly involved in MTRAP secretion; whereas any role of APH in AMA1 secretion is indirect in Plasmodium.


Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Plasmodium yoelii/genética , Proteínas de Protozoários/genética , Acilação , Antígenos de Protozoários/metabolismo , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/metabolismo
9.
Nat Methods ; 5(12): 1011-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19054851

RESUMO

Appropriate resources and expression technology necessary for human proteomics on a whole-proteome scale are being developed. We prepared a foundation for simple and efficient production of human proteins using the versatile Gateway vector system. We generated 33,275 human Gateway entry clones for protein synthesis, developed mRNA expression protocols for them and improved the wheat germ cell-free protein synthesis system. We applied this protein expression system to the in vitro expression of 13,364 human proteins and assessed their biological activity in two functional categories. Of the 75 tested phosphatases, 58 (77%) showed biological activity. Several cytokines containing disulfide bonds were produced in an active form in a nonreducing wheat germ cell-free expression system. We also manufactured protein microarrays by direct printing of unpurified in vitro-synthesized proteins and demonstrated their utility. Our 'human protein factory' infrastructure includes the resources and expression technology for in vitro proteome research.


Assuntos
Clonagem Molecular/métodos , Genoma Humano/genética , Engenharia de Proteínas/métodos , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo , Sistema Livre de Células , Humanos
10.
Southeast Asian J Trop Med Public Health ; 42(6): 1313-21, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22299398

RESUMO

Plasmodium vivax subtelomeric transmembrane protein (PvSTP) is a homolog of P. falciparum SURFIN4.2', a protein exposed on the parasite-infected erythrocyte (iE) surface, and is thus considered to be exposed on P. vivax-iE. Because antibodies targeting antigens located on the surface of P. falciparum-iE, such as P. falciparum erythrocyte membrane protein 1, play an important role in regulating the course of disease, we evaluated the presence of antibodies in P. vivax-infected patients against two PvSTP paralogs, PvSTP1 and PvSTP2. Recombinant proteins corresponding to cysteine-rich domain (CRD) of the PvSTP extracellular region and the cytoplasmic region (CYT) were generated and used for the enzyme-linked immunosorbent assay. Plasma samples (n = 70) reacted positively with recombinant PvSTP1-CRD (40%), PvSTP1-CYT (31%), PvSTP2-CRD (27%), and PvSTP2-CYT (56%), suggesting that PvSTP1 and -2 are naturally immunogenic. Specific response against either PvSTP1 or PvSTP2 indicates the existence of specific antibodies for either PvSTP1 or -2.


Assuntos
Imunidade Humoral , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Antimaláricos/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Malária Vivax/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Estatísticas não Paramétricas , Tailândia
11.
Parasitol Int ; 85: 102435, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390881

RESUMO

Malaria remains a heavy global burden on human health, and it is important to understand the molecular and cellular biology of the parasite to find targets for drug and vaccine development. The mouse malaria model is an essential tool to characterize the function of identified molecules; however, robust technologies for targeted gene deletions are still poorly developed for the widely used rodent malaria parasite, Plasmodium yoelii. To overcome this problem, we established a DiCre-loxP inducible knockout (iKO) system in P. yoelii, which showed more than 80% excision efficacy of the target locus and more than 90% reduction of locus transcripts 24 h (one cell cycle) after RAP administration. Using this developed system, cAMP-dependent protein kinase (PKAc) was inducibly disrupted and the phenotypes of the resulting PKAc-iKO parasites were analyzed. We found that PKAc-iKO parasites showed severe growth and erythrocyte invasion defects. We also found that disruption of PKAc impaired the secretion of AMA1 in P. yoelii, in contrast to a report showing no role of PKAc in AMA1 secretion in P. falciparum. This discrepancy may be related to the difference in the timing of AMA1 distribution to the merozoite surface, which occurs just after egress for P. falciparum, but after several minutes for P. yoelii. Secretions of PyEBL, Py235, and RON2 were not affected by the disruption of PKAc in P. yoelii. PyRON2 was already secreted to the merozoite surface immediately after merozoite egress, which is inconsistent with the current model that RON2 is injected into the erythrocyte cytosol. Further investigations are required to understand the role of RON2 exposed on the merozoite surface.


Assuntos
Antígenos de Protozoários/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Membrana/biossíntese , Plasmodium yoelii/genética , Proteínas de Protozoários/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Merozoítos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Plasmodium yoelii/enzimologia , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/metabolismo
12.
Parasitol Int ; 83: 102358, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33901679

RESUMO

Plasmodium falciparum malaria parasites export several hundred proteins to the cytoplasm of infected red blood cells (RBCs) to modify the cell environment suitable for their growth. A Plasmodium translocon of exported proteins (PTEX) is necessary for both soluble and integral membrane proteins to cross the parasitophorous vacuole (PV) membrane surrounding the parasite inside the RBC. However, the molecular composition of the translocation complex for integral membrane proteins is not fully characterized, especially at the parasite plasma membrane. To examine the translocation complex, here we used mini-SURFIN4.1, consisting of a short N-terminal region, a transmembrane region, and a cytoplasmic region of an exported integral membrane protein SURFIN4.1. We found that mini-SURFIN4.1 forms a translocation intermediate complex with core PTEX components, EXP2, HSP101, and PTEX150. We also found that several proteins are exposed to the PV space, including Pf113, an uncharacterized PTEX-associated protein. We determined that Pf113 localizes in dense granules at the merozoite stage and on the parasite periphery after RBC invasion. Using an inducible translocon-clogged mini-SURFIN4.1, we found that a stable translocation intermediate complex forms at the parasite plasma membrane and contains EXP2 and a processed form of Pf113. These results suggest a potential role of Pf113 for the translocation step of mini-SURFIN4.1, providing further insights into the translocation mechanisms for parasite integral membrane proteins.


Assuntos
Eritrócitos/parasitologia , Proteínas de Membrana/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Animais , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/metabolismo
13.
Parasitol Int ; 76: 102056, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31953169

RESUMO

Malaria parasites proliferate by repeated invasion of and multiplication within erythrocytes in the vertebrate host. Sexually committed intraerythrocytic parasites undergo sexual stage differentiation to become gametocytes. After ingestion by the mosquito, male and female gametocytes egress from erythrocytes and fertilize within the mosquito midgut. A complex signaling pathway likely responds to environmental events to trigger gametogenesis and regulate fertilization; however, such knowledge remains limited for malaria parasites. Several pseudokinases are highly transcribed at the gametocyte stage and are possible multi-functional regulators controlling critical steps of the life cycle. Here we characterized one pseudokinase, termed PypPK1, in Plasmodium yoelii that is highly expressed in schizonts and male gametocytes. Immunofluorescence assays for parasites expressing Myc-tagged PypPK1 confirmed that PypPK1 protein is expressed in schizonts and sexual stage parasites. Transgenic ΔpPK1 parasites, in which the PypPK1 gene locus was deleted by the CRISPR/Cas9 method, showed significant growth defect and reduced virulence in mice. In the blood stage, ΔpPK1 parasites were able to egress from erythrocytes similar to wild type parasites; however, erythrocyte invasion efficacy was significantly reduced. During sexual stage development, no clear changes were seen in male and female gametocytemias as well as gametocyte egress from erythrocytes; but, the number of exflagellation centers and oocysts were significantly reduced in ΔpPK1 parasites. Taken together, PypPK1 has an important role for both erythrocyte invasion and exflagellation center formation.


Assuntos
Eritrócitos/parasitologia , Plasmodium yoelii/enzimologia , Proteínas de Protozoários/genética , Animais , Feminino , Gametogênese , Estágios do Ciclo de Vida , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/metabolismo , Esquizontes/enzimologia , Esquizontes/patogenicidade
14.
Parasitol Int ; 71: 186-193, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31028841

RESUMO

Plasmodium falciparum, an obligate intracellular protozoan parasite which causes the severe form of human malaria, exports numerous proteins to the infected red blood cell that are important for its survival and of severe pathological effect to its host. These proteins and their export mechanisms are candidates for drug and vaccine development, and among them is the Plasmodium SURFIN family of proteins. Previously we showed that the N-terminal region along with the sequence surrounding the transmembrane domain of SURFIN4.1 is essential for its export to Maurer's clefts in the red blood cell cytoplasm. We proposed that this region is recognized by a machinery responsible for protein translocation across the parasitophorous vacuole membrane surrounding the parasite. To understand the export mechanism further, we utilized a fluorescent protein-tagged mini-SURFIN4.1 consisting of the minimum essential components for export. Alanine scanning of all charged amino acids within the N-terminal region revealed that replacement of 3 glutamic acid and 2 lysine residues significantly impairs the export efficiency of this protein across the parasitophorous vacuole membrane. In addition, N-terminally Myc-tagged mini-SURFIN4.1 and mini-SURFIN4.2 with similar architectures were detected with anti-Myc antibody at Maurer's clefts, indicating that elements required for export to Maurer's clefts are conserved between SURFIN4.1 and SURFIN4.2, and that N-terminal sequences of these SURFIN members are not cleaved during export. Our results implicate a conserved nature of SURFIN export to the red blood cell, particularly an important role of multiple glutamic acid and lysine residues in the SURFIN N-terminal region.


Assuntos
Aminoácidos/química , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Proteínas de Membrana/química , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Ácido Glutâmico/química , Humanos , Lisina/química , Transporte Proteico
15.
PLoS One ; 14(12): e0226884, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860644

RESUMO

Plasmodium vivax is the leading cause of malaria outside Africa and represents a significant health and economic burden on affected countries. A major obstacle for P. vivax eradication is the dormant hypnozoite liver stage that causes relapse infections and the limited antimalarial drugs that clear this stage. Advances in studying the hypnozoite and other unique biological aspects of this parasite are hampered by the lack of a continuous in vitro laboratory culture system and poor availability of molecular tools for genetic manipulation. In this study, we aim to develop molecular tools that can be used for genetic manipulation of P. vivax. A putative P. vivax centromere sequence (PvCEN) was cloned and episomal centromere based plasmids expressing a GFP marker were constructed. Centromere activity was evaluated using a rodent malaria parasite Plasmodium yoelii. A plasmid carrying PvCEN was stably maintained in asexual-stage parasites in the absence of drug pressure, and approximately 45% of the parasites retained the plasmid four weeks later. The same retention rate was observed in parasites possessing a native P. yoelii centromere (PyCEN)-based control plasmid. The segregation efficiency of the plasmid per nuclear division was > 99% in PvCEN parasites, compared to ~90% in a control parasite harboring a plasmid without a centromere. In addition, we observed a clear GFP signal in both oocysts and salivary gland sporozoites isolated from mosquitoes. In blood-stage parasites after liver stage development, GFP positivity in PvCEN parasites was comparable to control PyCEN parasites. Thus, PvCEN plasmids were maintained throughout the parasite life cycle. We also validated several P. vivax promoter activities and showed that hsp70 promoter (~1 kb) was active throughout the parasite life cycle. This is the first data for the functional characterization of a P. vivax centromere that can be used in future P. vivax biological research.


Assuntos
Centrômero/genética , Plasmodium vivax/genética , Plasmodium yoelii/genética , Regiões Promotoras Genéticas/genética , Animais , Segregação de Cromossomos/genética , Culicidae/parasitologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Malária Vivax/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Microrganismos Geneticamente Modificados/genética , Plasmídeos/genética , Plasmodium yoelii/crescimento & desenvolvimento , Glândulas Salivares/parasitologia , Esporozoítos/metabolismo , Tetra-Hidrofolato Desidrogenase/genética
16.
mBio ; 10(5)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530668

RESUMO

Plasmodium falciparum has a complex life cycle that involves interaction with multiple tissues inside the human and mosquito hosts. Identification of essential genes at all different stages of the P. falciparum life cycle is urgently required for clinical development of tools for malaria control and eradication. However, the study of P. falciparum is limited by the inability to genetically modify the parasite throughout its life cycle with the currently available genetic tools. Here, we describe the detailed characterization of a new marker-free P. falciparum parasite line that expresses rapamycin-inducible Cre recombinase across the full life cycle. Using this parasite line, we were able to conditionally delete the essential invasion ligand AMA1 in three different developmental stages for the first time. We further confirm efficient gene deletion by targeting the nonessential kinase FIKK7.1.IMPORTANCE One of the major limitations in studying P. falciparum is that so far only asexual stages are amenable to rapid conditional genetic modification. The most promising drug targets and vaccine candidates, however, have been refractory to genetic modification because they are essential during the blood stage or for transmission in the mosquito vector. This leaves a major gap in our understanding of parasite proteins in most life cycle stages and hinders genetic validation of drug and vaccine targets. Here, we describe a method that supports conditional gene deletion across the P. falciparum life cycle for the first time. We demonstrate its potential by deleting essential and nonessential genes at different parasite stages, which opens up completely new avenues for the study of malaria and drug development. It may also allow the realization of novel vaccination strategies using attenuated parasites.


Assuntos
Deleção de Genes , Genes de Protozoários , Estágios do Ciclo de Vida/genética , Biologia Molecular/métodos , Plasmodium falciparum/genética , Técnicas de Inativação de Genes , Integrases/genética , Mosquitos Vetores , Fenótipo , Plasmodium falciparum/enzimologia , Sirolimo
17.
J Biotechnol ; 136(3-4): 113-21, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18640161

RESUMO

Much attention has been focused on manipulating multiple genes in living cells for analyzing protein function. In order to perform high-throughput generation of multi-gene expression clones, gateway cloning technology (which represents a high-throughput DNA transfer from vector to vector) can be anticipated. In the conventional strategy for gateway cloning, the construction of two or more expression elements into tandem elements on a single plasmid requires the recombination of multiple entry clones with a destination vector in a single reaction mixture. Use of increasing numbers of entry clones in a single reaction is inefficient due to the difficulty in successfully recognizing multiple pairs of matched att signals simultaneously. To address this problem, a "Modular Destination" vector has been devised and constructed, whereby cDNA inserts are sequentially introduced, resulting in a tandem structure with multiple inserts. Whereas the standard destination vector contains only Cm(R) and ccdB genes flanked by two attR signals, this destination vector contains, in addition, one or two cDNA expression elements. Here, we show the rapid construction of expression vectors containing three or four tandemly arrayed cDNA expression elements and their expression in mammalian cells.


Assuntos
Clonagem Molecular/métodos , DNA Complementar/metabolismo , Expressão Gênica/genética , Proteínas Recombinantes/genética , Elementos Reguladores de Transcrição , Sequência de Bases , Sequência Consenso , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese
18.
J Biotechnol ; 136(3-4): 103-12, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18640160

RESUMO

Two types of eukaryotic operon-type Expression clones were constructed using the Multisite Gateway system employing six types of att signals. These clones harbored a DNA cassette containing two heterologous ORFs (cDNAs) or three heterologous ORFs in tandem downstream of a single promoter. The most promoter-proximal ORF was translated via a Kozak signal and the downstream one or two ORF(s) were translated as directed by internal ribosome entry site(s) (IRES). These clones were observed to produce two or three different proteins at levels that depended on the activities of the translational initiation signals used. With the intention of modulating the expression level of the first ORF, the translational initiation signals including a Kozak sequence and 11 different IRESs were investigated for their efficiency using a single ORF. The translational activity of these signals varied within a 10-fold magnitude. Using these results, expression at pre-described relative levels was achieved from the optional IRES of the respective ORFs in the cassette. Controllable expression at desired levels of two different ORFs directed by optional IRESs on a bicistronic construct, transcribed from a single promoter, was demonstrated.


Assuntos
Clonagem Molecular/métodos , Células Eucarióticas/metabolismo , Mutagênese Insercional/métodos , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Proteínas de Capeamento de Actina/biossíntese , Proteínas de Capeamento de Actina/genética , Citomegalovirus/genética , Escherichia coli/genética , Expressão Gênica , Genes Reporter , Células HeLa , Hepacivirus/genética , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção , Proteínas Virais/biossíntese , Proteínas Virais/genética
19.
J Phys Chem B ; 122(33): 7970-7977, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30067362

RESUMO

Plasmodium falciparum, the causative agent of malignant malaria, is insensitive to thapsigargin (TG), a well-known inhibitor of the human sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). To understand the key factor causing the difference of the sensitivity, the molecular interaction of TG and each SERCA was analyzed by the fragment molecular orbital (FMO) method. While the major component of the interaction energy was the nonpolar interaction, the major difference in the molecular interaction arose from the polar interaction, namely, the hydrogen bonding interaction with a hydroxyl group of TG. Additionally, we successfully confirmed these FMO calculation results by measuring the inhibitory activity of a synthesized TG derivative. Our calculations and experiments indicated that, by replacing the hydroxyl group of TG with another functional group, the sensitivities of TG to human and P. falciparum SERCAs can be reversed. This study provides important information to develop antimalarial compounds targeting P. falciparum SERCA.


Assuntos
Antimaláricos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/metabolismo , Sequência de Aminoácidos , Antimaláricos/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Plasmodium falciparum/enzimologia , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Teoria Quântica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Alinhamento de Sequência , Tapsigargina/análogos & derivados , Tapsigargina/síntese química
20.
Parasitol Int ; 67(6): 706-714, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30025976

RESUMO

Plasmodium malaria parasites multiply within erythrocytes and possess a repertoire of proteins whose function is to recognize and invade these vertebrate host cells. One such protein involved in erythrocyte invasion is the micronemal protein, Erythrocyte Binding-Like (EBL), which has been studied as a potential target of vaccine development in Plasmodium vivax (PvDBP) and Plasmodium falciparum (EBA-175). In the rodent malaria parasite model Plasmodium yoelii, specific substitutions in the EBL regions responsible for intracellular trafficking (17XL parasite line) or receptor recognition (17X1.1pp. parasite line), paradoxically increase invasion ability and virulence rather than abolish EBL function. Attempts to disrupt the ebl gene locus in the 17XL and 17XNL lines were unsuccessful, suggesting EBL essentiality. To understand the mechanisms behind these potentially conflicting outcomes, we generated 17XL-based transfectants in which ebl expression is suppressed with anhydrotetracycline (ATc) and investigated merozoite behavior during erythrocyte invasion. In the absence of ATc, EBL was secreted to the merozoite surface, whereas following ATc administration parasitemia was negligible in vivo. Merozoites lacking EBL were unable to invade erythrocytes in vitro, indicating that EBL has a critical role for erythrocyte invasion. Quantitative time-lapse imaging revealed that with ATc administration a significant number of merozoites were detached from the erythrocyte after the erythrocyte deformation event and no echinocytosis was observed, indicating that EBL is required for merozoites to establish an irreversible connection with erythrocytes during invasion.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Malária/parasitologia , Parasitemia/parasitologia , Plasmodium yoelii/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Feminino , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA