Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(1): 96-118, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
2.
Am J Hum Genet ; 110(5): 809-825, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37075751

RESUMO

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.


Assuntos
Anormalidades Craniofaciais , Disostose Mandibulofacial , Humanos , Camundongos , Animais , Disostose Mandibulofacial/genética , Apoptose , Mutagênese , Ribossomos/genética , Fenótipo , Crista Neural/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia
3.
J Biol Chem ; 299(8): 105012, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414152

RESUMO

Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.


Assuntos
IMP Desidrogenase , Purinas , Humanos , Regulação Alostérica , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Mutação , Guanosina Trifosfato
4.
Ann Neurol ; 93(2): 330-335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333996

RESUMO

Infantile striatonigral degeneration is caused by a homozygous variant of the nuclear-pore complex (NPC) gene NUP62, involved in nucleo-cytoplasmic trafficking. By querying sequencing-datasets of patients with dystonia and/or Leigh(-like) syndromes, we identified 3 unrelated individuals with biallelic variants in NUP54. All variants clustered in the C-terminal protein region that interacts with NUP62. Associated phenotypes were similar to those of NUP62-related disease, including early-onset dystonia with dysphagia, choreoathetosis, and T2-hyperintense lesions in striatum. In silico and protein-biochemical studies gave further evidence for the argument that the variants were pathogenic. We expand the spectrum of NPC component-associated dystonic conditions with localized basal-ganglia abnormalities. ANN NEUROL 2023;93:330-335.


Assuntos
Distonia , Distúrbios Distônicos , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Corpo Estriado , Distonia/genética , Distúrbios Distônicos/genética , Neostriado , Complexo de Proteínas Formadoras de Poros Nucleares/genética
5.
Brain ; 146(7): 2730-2738, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36860166

RESUMO

ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação de Sentido Incorreto , Linhagem , Proteínas/genética
6.
J Neurosci ; 42(8): 1557-1573, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34965974

RESUMO

Collagen VI is a key component of muscle basement membranes, and genetic variants can cause monogenic muscular dystrophies. Conversely, human genetic studies recently implicated collagen VI in central nervous system function, with variants causing the movement disorder dystonia. To elucidate the neurophysiological role of collagen VI, we generated mice with a truncation of the dystonia-related collagen α3 VI (COL6A3) C-terminal domain (CTD). These Col6a3CTT mice showed a recessive dystonia-like phenotype in both sexes. We found that COL6A3 interacts with the cannabinoid receptor 1 (CB1R) complex in a CTD-dependent manner. Col6a3CTT mice of both sexes have impaired homeostasis of excitatory input to the basal pontine nuclei (BPN), a motor control hub with dense COL6A3 expression, consistent with deficient endocannabinoid (eCB) signaling. Aberrant synaptic input in the BPN was normalized by a CB1R agonist, and motor performance in Col6a3CTT mice of both sexes was improved by CB1R agonist treatment. Our findings identify a readily therapeutically addressable synaptic mechanism for motor control.SIGNIFICANCE STATEMENT Dystonia is a movement disorder characterized by involuntary movements. We previously identified genetic variants affecting a specific domain of the COL6A3 protein as a cause of dystonia. Here, we created mice lacking the affected domain and observed an analogous movement disorder. Using a protein interaction screen, we found that the affected COL6A3 domain mediates an interaction with the cannabinoid receptor 1 (CB1R). Concordantly, our COL6A3-deficient mice showed a deficit in synaptic plasticity linked to a deficit in cannabinoid signaling. Pharmacological cannabinoid augmentation rescued the motor impairment of the mice. Thus, cannabinoid augmentation could be a promising avenue for treating dystonia, and we have identified a possible molecular mechanism mediating this.


Assuntos
Canabinoides , Colágeno Tipo VI , Distonia , Distúrbios Distônicos , Neurônios Motores , Plasticidade Neuronal , Animais , Canabinoides/metabolismo , Canabinoides/farmacologia , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distonia/genética , Distonia/metabolismo , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Feminino , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Mutação , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
7.
Genet Med ; 25(12): 100971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675773

RESUMO

PURPOSE: ATP2B2 encodes the variant-constrained plasma-membrane calcium-transporting ATPase-2, expressed in sensory ear cells and specialized neurons. ATP2B2/Atp2b2 variants were previously linked to isolated hearing loss in patients and neurodevelopmental deficits with ataxia in mice. We aimed to establish the association between ATP2B2 and human neurological disorders. METHODS: Multinational case recruitment, scrutiny of trio-based genomics data, in silico analyses, and functional variant characterization were performed. RESULTS: We assembled 7 individuals harboring rare, predicted deleterious heterozygous ATP2B2 variants. The alleles comprised 5 missense substitutions that affected evolutionarily conserved sites and 2 frameshift variants in the penultimate exon. For 6 variants, a de novo status was confirmed. Unlike described patients with hearing loss, the individuals displayed a spectrum of neurological abnormalities, ranging from ataxia with dystonic features to complex neurodevelopmental manifestations with intellectual disability, autism, and seizures. Two cases with recurrent amino-acid variation showed distinctive overlap with cerebellar atrophy-associated ataxia and epilepsy. In cell-based studies, all variants caused significant alterations in cytosolic calcium handling with both loss- and gain-of-function effects. CONCLUSION: Presentations in our series recapitulate key phenotypic aspects of Atp2b2-mouse models and underline the importance of precise calcium regulation for neurodevelopment and cerebellar function. Our study documents a role for ATP2B2 variants in causing heterogeneous neurodevelopmental and movement-disorder syndromes.


Assuntos
Ataxia Cerebelar , Distonia , Perda Auditiva , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Sintomas Comportamentais , Cálcio , Ataxia Cerebelar/genética , Distonia/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática , Convulsões/genética
8.
Ann Neurol ; 91(2): 225-237, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954817

RESUMO

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Distonia/enzimologia , Distonia/genética , Epilepsia/genética , Variação Genética , Humanos , Mitocôndrias/genética , Translocases Mitocondriais de ADP e ATP/genética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Proteômica , Sequenciamento do Exoma
9.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485550

RESUMO

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , MicroRNAs , Transtornos dos Movimentos , Adolescente , Criança , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Haploinsuficiência/genética , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Tremor
10.
Brain ; 145(2): 644-654, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34590685

RESUMO

Dystonia is a prevalent, heterogeneous movement disorder characterized by involuntarily abnormal postures. Biomarkers of dystonia are notoriously lacking. Here, a biomarker is reported for histone lysine methyltransferase (KMT2B)-deficient dystonia, a leading subtype among the individually rare monogenic dystonias. It was derived by applying a support vector machine to an episignature of 113 DNA CpG sites, which, in blood cells, showed significant epigenome-wide association with KMT2B deficiency and at least 1× log-fold change of methylation. This classifier was accurate both when tested on the general population and on samples with various other deficiencies of the epigenetic machinery, thus allowing for definitive evaluation of variants of uncertain significance and identifying patients who may profit from deep brain stimulation, a highly successful treatment in KMT2B-deficient dystonia. Methylation was increased in KMT2B deficiency at all 113 CpG sites. The coefficients of variation of the normalized methylation levels at these sites also perfectly classified the samples with KMT2B-deficient dystonia. Moreover, the mean of the normalized methylation levels correlated well with the age at onset of dystonia (P = 0.003)-being lower in samples with late or incomplete penetrance-thus serving as a predictor of disease onset and severity. Similarly, it may also function in monitoring the recently envisioned treatment of KMT2B deficiency by inhibition of DNA methylation.


Assuntos
Distonia , Distúrbios Distônicos , Biomarcadores , Metilação de DNA/genética , Distonia/genética , Distonia/terapia , Distúrbios Distônicos/genética , Distúrbios Distônicos/terapia , Histona-Lisina N-Metiltransferase/genética , Humanos , Mutação
13.
Mov Disord ; 37(2): 375-383, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34636445

RESUMO

BACKGROUND: In a large pedigree with an unusual phenotype of spastic paraplegia or dystonia and autosomal dominant inheritance, linkage analysis previously mapped the disease to chromosome 2q24-2q31. OBJECTIVE: The aim of this study is to identify the genetic cause and molecular basis of an unusual autosomal dominant spastic paraplegia and dystonia. METHODS: Whole exome sequencing following linkage analysis was used to identify the genetic cause in a large family. Cosegregation analysis was also performed. An additional 384 individuals with spastic paraplegia or dystonia were screened for pathogenic sequence variants in the adenosine triphosphate (ATP) synthase membrane subunit C locus 3 gene (ATP5MC3). The identified variant was submitted to the "GeneMatcher" program for recruitment of additional subjects. Mitochondrial functions were analyzed in patient-derived fibroblast cell lines. Transgenic Drosophila carrying mutants were studied for movement behavior and mitochondrial function. RESULTS: Exome analysis revealed a variant (c.318C > G; p.Asn106Lys) (NM_001689.4) in ATP5MC3 in a large family with autosomal dominant spastic paraplegia and dystonia that cosegregated with affected individuals. No variants were identified in an additional 384 individuals with spastic paraplegia or dystonia. GeneMatcher identified an individual with the same genetic change, acquired de novo, who manifested upper-limb dystonia. Patient fibroblast studies showed impaired complex V activity, ATP generation, and oxygen consumption. Drosophila carrying orthologous mutations also exhibited impaired mitochondrial function and displayed reduced mobility. CONCLUSION: A unique form of familial spastic paraplegia and dystonia is associated with a heterozygous ATP5MC3 variant that also reduces mitochondrial complex V activity.


Assuntos
Distonia , Distúrbios Distônicos , Paraplegia Espástica Hereditária , Distonia/genética , Distúrbios Distônicos/genética , Humanos , Mutação/genética , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética
14.
Mov Disord ; 37(1): 137-147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596301

RESUMO

BACKGROUND: Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE: We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS: After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS: Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS: Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Aminopeptidases , Distonia , Distúrbios Distônicos , Mutação com Perda de Função , Aminopeptidases/genética , Distonia/genética , Distúrbios Distônicos/genética , Exoma , Humanos , Mutação , Linhagem , Fenótipo
15.
Brain ; 144(9): 2610-2615, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33871597

RESUMO

The homotypic fusion and protein sorting (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the aetiopathogenesis of inherited dystonias (i.e. VPS16, VPS41, and VPS11). Functional and microstructural studies conducted on patient-derived fibroblasts carrying mutations of HOPS complex subunits displayed clear abnormalities of the lysosomal and autophagic compartments. We propose to name this group of diseases HOPS-associated neurological disorders (HOPSANDs), which are mainly characterized by dystonic presentations. The delineation of HOPSANDs further confirms the connection of lysosomal and autophagic dysfunction with the pathogenesis of dystonia, prompting researchers to find innovative therapies targeting this pathway.


Assuntos
Distonia/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Doenças do Sistema Nervoso/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Distonia/genética , Distonia/patologia , Endossomos/genética , Endossomos/patologia , Humanos , Lisossomos/genética , Lisossomos/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Proteínas de Transporte Vesicular/genética
16.
Neuropediatrics ; 53(5): 361-365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863334

RESUMO

ASXL3 loss-of-function variants represent a well-established cause of Bainbridge-Ropers syndrome, a syndromic neurodevelopmental disorder with intellectual and motor disabilities. Although a recent large-scale genomics-based study has suggested an association between ASXL3 variation and cerebral palsy, there have been no detailed case descriptions. We report, here, a female individual with a de novo pathogenic c.1210C > T, p.Gln404* nonsense variant in ASXL3, identified within the frame of an ongoing research project applying trio whole-exome sequencing to the diagnosis of dystonic cerebral palsy. The patient presented with a mixture of infantile-onset limb/trunk dystonic postures and secondarily evolving distal spastic contractures, in addition to more typical features of ASXL3-related diseases such as severe feeding issues, intellectual disability, speech impairment, and facial dysmorphic abnormalities. Our case study confirms a role for ASXL3 pathogenic variants in the etiology of cerebral-palsy phenotypes and indicates that dystonic features can be part of the clinical spectrum in Bainbridge-Ropers syndrome. ASXL3 should be added to target-gene lists used for molecular evaluation of cerebral palsy.


Assuntos
Paralisia Cerebral , Deficiência Intelectual , Paralisia Cerebral/complicações , Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Criança , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/diagnóstico , Feminino , Humanos , Deficiência Intelectual/genética , Fenótipo , Síndrome , Fatores de Transcrição/genética
17.
Hum Mutat ; 42(6): 762-776, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33847017

RESUMO

Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing ß-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.


Assuntos
Proteínas de Transporte/genética , Neuropatias Hereditárias Sensoriais e Autônomas , Deficiência Intelectual , Proteínas do Tecido Nervoso/genética , Adolescente , Proteínas de Transporte/química , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Família , Feminino , Neuropatias Hereditárias Sensoriais e Autônomas/complicações , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Neuroimagem/métodos , Linhagem , Fenótipo , Conformação Proteica
18.
Neurogenetics ; 22(2): 137-141, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677721

RESUMO

Intragenic rearrangements and sequence variants in the calmodulin-binding transcription activator 1 gene (CAMTA1) can result in a spectrum of clinical presentations, most notably congenital ataxia with or without intellectual disability. We describe for the first time a myoclonic dystonia-predominant phenotype associated with a novel CAMTA1 sequence variant. Furthermore, by identifying an additional, recurrent CAMTA1 sequence variant in an individual with a more typical neurodevelopmental disease manifestation, we contribute to the elucidation of phenotypic variability associated with CAMTA1 gene mutations.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Códon sem Sentido , Distúrbios Distônicos/genética , Mutação da Fase de Leitura , Deleção de Sequência , Transativadores/genética , Adulto , Pré-Escolar , Feminino , Estudos de Associação Genética , Perda Auditiva/genética , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Fenótipo , Transtornos da Visão/genética , Sequenciamento do Exoma
19.
Neurogenetics ; 22(1): 81-86, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32830305

RESUMO

The spectrum of coenzyme Q10 (CoQ10) deficiency syndromes comprises a variety of disorders, including a form of autosomal recessive cerebellar ataxia (ARCA2) caused by mutations in the AarF domain-containing kinase 3 gene (ADCK3). Due to the potential response to CoQ10 supplementation, a timely diagnosis is crucial. Herein, we describe two siblings with a novel homozygous ADCK3 variant and an unusual presentation consisting of isolated writer's cramp with adult-onset. Cerebellar ataxia developed later in the disease course and remained stable during the follow-up. This report highlights that ARCA2 should be considered in the differential diagnosis of familial writer's cramp.


Assuntos
Distúrbios Distônicos/genética , Mutação/genética , Ubiquinona/análogos & derivados , Adulto , Ataxia/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Distúrbios Distônicos/diagnóstico , Feminino , Homozigoto , Humanos , Proteínas Mitocondriais/genética , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismo
20.
Clin Genet ; 100(1): 14-28, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33619735

RESUMO

Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability, developmental delay, autism spectrum disorder, and developmental motor abnormalities have a documented underlying monogenic defect, primarily due to de novo variants. Still, the overall burden of de novo variants as well as novel disease genes in NDDs await discovery. We performed parent-offspring trio exome sequencing in 231 individuals with NDDs. Phenotypes were compiled using human phenotype ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo variants contributing to more than 80% (n = 93/115) of all solved cases. De novo variants affected 72 different-mostly constrained-genes. In addition, we identified putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis performed in 80 initially unsolved cases revealed a definitive diagnosis in two additional cases. Our study consolidates the contribution and genetic heterogeneity of de novo variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene discovery and the power of systematic reanalysis of unsolved cases.


Assuntos
Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Centros de Atenção Terciária , Sequenciamento do Exoma/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA