RESUMO
Matching the thickness of the graphitic carbon nitride (CN) nanolayer with the charge diffusion length is expected to compensate for the poor intrinsic conductivity and charge recombination in CN for photoelectrochemical cells (PEC). Herein, the compact CN nanolayer with tunable thickness is in situ coated on carbon fibers. The compact packing along with good contact with the substrate improves the electron transport and alleviates the charge recombination. The PEC investigation shows CN nanolayer of 93 nm-thick yields an optimum photocurrent of 116 µA cm-2 at 1.23 V versus RHE, comparable to most micrometer-thick CN layers, with a low onset potential of 0.2 V in 1 m KOH under 1 sun illumination. This optimum performance suggests the electron diffusion length matches with the thickness of the CN nanolayer. Further deposition of NiFe-layered double hydroxide enhanced the surface water oxidation kinetics, delivering an improved photocurrent of 210 µA cm-2 with IPCE of 12.8% at 400 nm. The CN nanolayer also shows extended potential in PEC organic synthesis. This work experimentally reveals the PEC behavior of the nanometer-thick CN layer, providing new insights into CN in the application of energy and environment-related fields.
RESUMO
Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261â mg/g) and congo red (CR, 1560â mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123â mg/g for CV and 1340â mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.
RESUMO
As a representative of zeolitic imidazolate framework glass, agZIF-62 has been reported to be synthesized using a melt-quenching method in which the ZIF-62 crystal is heated to a temperature above the melting point. Interestingly, we unexpectedly found that agZIF-62 can also be synthesized by simple heating at temperatures lower than the melting point, which may be assisted by the release of encapsulated solvent molecules. The structural differences between melt-quenched agZIF-62 (MQ-agZIF-62) and heat-cooled agZIF-62 (HC-agZIF-62) were investigated. The results indicated that MQ-agZIF-62 is closer to the liquid state, while HC-agZIF-62 is closer to the crystal state. Interestingly, their luminescent emissions exhibit significant differences. Compared with the ZIF-62 crystal, MQ-agZIF-62 showed a blue-shift of 14 nm, whereas HC-agZIF-62 showed a red-shift of 9 nm. The emission intensity of agZIF-62 is also significantly stronger than that of ZIF-62; thus, rapid semiquantitative detection of the content of the MOF glass in glass and crystal mixtures can be achieved. In addition, HC-agZIF-62 and MQ-agZIF-62 can transform into ZIF-62 crystals via a solvent-media mechanism. This study provides new insights into ZIF-62 glass.
RESUMO
Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.
RESUMO
BACKGROUND: We investigated the associations between IgM, IgG, IgA, and IgE levels and all-cause mortality risk in Chinese centenarians. METHODS: All participants were from the China Hainan Centenarian Cohort Study. Eligible participants were divided into quartiles based on their IgM, IgG, IgA, and IgE levels. We used restricted cubic spline analyses, Cox regression analyses, and Kaplan-Meier survival curves to analyze associations between IgM, IgG, IgA, and IgE and all-cause mortality risk. RESULTS: A total of 906 centenarian participants were included in this study (81.2% female; median age, 102 years). During a median follow-up of 30.1 months, 838 (92.5%) participants died. Restricted cubic spline analysis revealed a nonlinear relationship ("L" type) between serum IgM level and all-cause mortality. Compared with the higher three quartiles of serum IgM level, the lowest quartile was associated with a higher risk of death (Q1 versus Q2-Q4: HR, 1.365; 95% CI, 1.166-1.598; P < 0.001). Among individuals for whom IgM < 0.708 g/L (Q1), the risk of all-cause mortality was 36.5% higher. Kaplan-Meier analyses showed that centenarians with lower serum IgM levels had significantly shorter median survival time (Q1 versus Q2-Q4: 26 months versus 32 months, log-rank P = 0.001). CONCLUSION: Serum IgM levels in centenarians significantly correlated with the risk of death, suggesting that they are suitable for predicting the overall risk of death in centenarians and can be used as an independent predictor of death.
RESUMO
Efficient oil/water separation tackles various issues in occasions of oil leakage and oil discharge, such as environmental pollution, recollection of the oil, and saving the water. Herein, a compact superhydrophobic/superoleophilic graphitic carbon nitride nanolayer coated on carbon fiber networks (CNBA/CF) is designed and synthesized for efficient gravity-driven oil/water separation. The CNBA/CF shows excellent oil absorption and an impressive oil/water filtration separation performance. The flux reaches the state-of-art value of 4.29 × 105 L/m2/h for dichloromethane with separation efficiency up to 99%. Successive oil absorption tests, long-term filtration separation, and harsh conditions experiments confirm the remarkable separation and chemical structure stability of the CNBA/CF filter. Besides, the CNBA/CF demonstrates good photocatalytic antifouling ability thanks to the extended visible light absorption and improved charge separation. This work combines the material surface wettability modulation with a photocatalytic self-cleaning property in the fabrication of efficient oil/water separation materials while overcoming the filter fouling issue.
RESUMO
Exploring self-standing chiral covalent organic framework (COF) thin films with controllable circularly polarized luminescence (CPL) is of paramount significance but remains a challenging task. Herein, we demonstrate the first example of self-standing chiral COF films employing a polymerization-dispersion-filtration strategy. Pristine, low-quality chiral COF films were produced by interfacial polymerization and then re-dispersed into COF colloidal solutions. Via vacuum assisted assembly, these COF colloids were densely stacked and assembled into self-standing, pure chiral COF films (L-/D-CCOF-F) that were transparent, smooth, crack-free and highly crystalline. These films were tunable in thicknesses, areas, and roughness, along with strong diffuse reflectance circular dichroism (DRCD) and cyan CPL signals, showing an intrinsic luminescence asymmetric factor (glum) of ~4.3×10-3. Furthermore, these COF films served as host adsorbents to load various achiral organic dye guests through adsorption. The effective chiral transfer and energy transfer between CCOF-F and achiral fluorescent dyes endowed the dyes with strong chirality and tunable DRCD, resulting in intense, full-color-tunable solid-state CPL. Notably, the ordered arrangement of dye guest molecules within the preferentially oriented chiral pores of CCOF-F contributed to an amplified |glum| factor of up to 7.2×10-2, which is state-of-the-art for COF-based CPL materials. This work provides new insights into the design and fabrication of self-standing chiral COF films, demonstrating their great potential for chiroptical applications.
RESUMO
Interleukin-1 receptor antagonist (IL-1RA) has been shown to play an important role in cancer progression. However, its pathogenic effects and molecular mechanism in the malignant progression of esophageal squamous cell carcinoma (ESCC) remain largely unknown. This study was designed to explore the function of IL-1RA in ESCC and determine the relationship between IL-1RA and lymph node metastasis in ESCC patients. The clinical relevance of IL-1RA in relation to the clinicopathological features and prognosis of 100 ESCC patients was analyzed. The function and underlying mechanisms of IL-1RA in the growth, invasion, and lymphatic metastasis in ESCC were explored both in vitro and in vivo. The therapeutic effect of anakinra, an IL-1 receptor antagonist, on ESCC was also evaluated in animal experiments. Downregulation of IL-1RA was observed in ESCC tissues and cells and was found to be strongly correlated with pathological stage (P = 0.034) and lymphatic metastasis (P = 0.038). Functional assays demonstrated that upregulation of IL-1RA reduced cell proliferation, migration, and lymphangiogenesis both in vitro and in vivo. Mechanistic studies revealed that overexpression of IL-1RA activated the epithelial-to-mesenchymal transition (EMT) in the ESCC cells through activation of MMP9 and regulation of the expression and secretion of VEGF-C through the PI3K/NF-κB pathway. Anakinra treatment resulted in significant inhibition of tumor growth, lymphangiogenesis, and metastasis. IL-1RA inhibits lymph node metastasis of ESCC by regulating the EMT through activation of matrix metalloproteinase 9(MMP9) and lymphangiogenesis, driven by VEGF-C and the NF-κB signaling pathway. Anakinra may be an effective drug for the inhibition of ESCC tumor formation and lymph node metastasis.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Linfangiogênese/genética , Metástase Linfática , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismoRESUMO
PURPOSE: Extradomain B of fibronectin (EDB-FN) is a promising diagnostic and therapeutic biomarker for thyroid cancer (TC). Here, we identified a high-affinity EDB-FN targeted peptide named EDBp (AVRTSAD) and developed three EDBp-based probes, Cy5-PEG4-EDBp(Cy5-EDBp), [18F]-NOTA-PEG4-EDBp([18F]-EDBp), and [177Lu]-DOTA-PEG4-EDBp ([177Lu]-EDBp), for the surgical navigation, radionuclide imaging, and therapy of TC. METHODS: Based on the previously identified EDB-FN targeted peptide ZD2, the optimized EDB-FN targeted peptide EDBp was identified by using the alanine scan strategy. Three EDBp-based probes, Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp, were developed for fluorescence imaging, positron emission tomography (PET) imaging, and radiotherapy in TC tumor-bearing mice, respectively. Additionally, [18F]-EDBp was evaluated in two TC patients. RESULTS: The binding affinity of EDBp to the EDB fragment protein (Kd = 14.4 ± 1.4 nM, n = 3) was approximately 336-fold greater than that of the ZD2 (Kd = 4839.7 ± 361.7 nM, n = 3). Fluorescence imaging with Cy5-EDBp facilitated the complete removal of TC tumors. [18F]-EDBp PET imaging clearly delineated TC tumors, with high tumor uptake (16.43 ± 1.008%ID/g, n = 6, at 1-h postinjection). Radiotherapy with [177Lu]-EDBp inhibited tumor growth and prolonged survival in TC tumor-bearing mice (survival time of different treatment groups: saline vs. EDBp vs. ABRAXANE vs. [177Lu]-EDBp = 8.00 d vs. 8.00 d vs. 11.67 d vs. 22.33 d, ***p < 0.001). Importantly, the first-in-human evaluation of [18F]-EDBp demonstrated that it had specific targeting properties (SUVmax value of 3.6) and safety. CONCLUSION: Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp are promising candidates for the surgical navigation, radionuclide imaging, and radionuclide therapy of TC, respectively.
Assuntos
Cirurgia Assistida por Computador , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Fibronectinas/metabolismo , Tomografia por Emissão de Pósitrons , Peptídeos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/terapia , Linhagem Celular TumoralRESUMO
Transparent nanopaper (T-paper) can be applied in the field of electromagnetic shielding materials, antistatic materials, composite conductive materials, electric pool materials, super capacitors, and thermal management systems. However, this kind of T-paper has not been employed in ultrafast photonics yet. For the first time, to our knowledge, transparent electrical nanopaper is used in fiber lasers, different from the conventional pulsed fiber laser, which operates in the Q-switched regime under low pump power and then in the mode-locked regime under high pump power. Mode-locking is achieved first with a pulse duration of 550 fs under low pump power (166 mW). When further increasing the pump power up to 198 mW, the proposed fiber laser can be converted from a mode-locked to Q-switched state, which is a result of the two-photon absorption effect. The proposed fiber laser based on T-paper can be potentially applied in optical tomography, metrology, spectroscopy, micro-machining technology, and biomedical diagnostics.
RESUMO
Paclobutrazol is a plant growth inhibitor widely used in agricultural production. However, toxicology studies of paclobutrazol enantiomers towards aquatic organisms are limited. Herein, effects of paclobutrazol and its two enantiomers (2R, 3R; 2S, 3S) on glycolipid metabolism of zebrafish have been systemically explored at the concentration of 10 mg/L through biochemical analyses, LC-MS/MS, molecular dynamics simulation, and gene expression. In all treatments, the contents of glucose, citric acid and lactate significantly were increased while the glycogen and pyruvate contents were decreased, in which (2R, 3R)-paclobutrazol exhibited a greater effect than the (2S, 3S)-enantiomer (P < 0.05). Then, activities of hexokinase and lactate dehydrogenase in (2R, 3R)-paclobutrazol treatment were 0.74- and 1.18-fold higher than (2S, 3S)-enantiomer treatment, respectively (P < 0.001), and the results of molecular dynamics simulation revealed that the binding free energy of hexokinase 1 to (2R, 3R)-paclobutrazol was higher than that to the antipode. Moreover, lipids including triglycerides, total cholesterol, fatty acids, bile acids and glycerophospholipids in zebrafish were strikingly affected after paclobutrazol exposure. The (2R, 3R)-paclobutrazol-treated group showed the most obvious changes, indicating that it possessed much stronger disruption ability on the lipid metabolism of zebrafish. Furthermore, qRT-PCR analysis results revealed that (2R, 3R)-enantiomer significantly impacted expressions of glycolipid metabolism-related genes (hk1, g6pc, pck1, pk, aco, cebpa, cyp51, fasn and ppara) in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Briefly, this study provides new evidences for the toxicity of paclobutrazol to aquatic organisms and the potential risk to human health at the chiral level.
Assuntos
Hexoquinase , Peixe-Zebra , Humanos , Animais , Estereoisomerismo , Cromatografia Líquida , Hexoquinase/genética , Espectrometria de Massas em Tandem , GlicolipídeosRESUMO
Despite significant progress on the design and synthesis of covalent organic frameworks (COFs), precise control over microstructures of such materials remains challenging. Herein, two chiral COFs with well-defined one-handed double-helical nanofibrous morphologies were constructed via an unprecedented template-free method, capitalizing on the diastereoselective formation of aminal linkages. Detailed time-dependent experiments reveal the spontaneous transformation of initial rod-like aggregates into the double-helical microstructures. We have further demonstrated that the helical chirality and circular dichroism signal can be facilely inversed by simply adjusting the amount of acetic acid during synthesis. Moreover, by transferring chirality to achiral fluorescent molecular adsorbents, the helical COF nanostructures can effectively induce circularly polarized luminescence with the highest luminescent asymmetric factor (glum ) up to ≈0.01.
RESUMO
Colorectal cancer (CRC) is a common malignant tumor of digestive tract, but the molecular mechanism of its occurrence and development is not clear. Some studies have shown that microRNA (miRNA) plays an important role in the occurrence and development of cancer, but many miRNAs which play an important role in the progression of CRC remain to be investigated. In this studyï¼we found that the expression of miR-1538 was significantly down-regulated in CRC tissues and cells, and its expression level was significantly correlated with tumor size, clinical stage and prognosis. Functional and mechanism experiments showed that miR-1538 decreased the protein level of DNA methyltransferases 3A (DNMT3A) and inhibited the proliferation, migration and invasion of CRC cells by targeting the 3'-UTR of DNMT3A mRNA. Our results identify the biological function and mechanism of miR-1538 as a tumor suppressor gene in the progression of CRC, and suggest that miR-1538 can be used as a potential prognostic marker and therapeutic target for CRC.
Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , DNA Metiltransferase 3A , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Colorectal cancer (CRC) is a commonly seen malignant tumor manifesting itself in the digestive tract, but it remains unclear what is the molecular mechanism behind its occurrence and development, which can have a significant impact on the clinical diagnosis and treatment of CRC. According to some studies, microRNA (miRNA) plays an essential role in the occurrence and development of cancer. In spite of this, there are still many miRNAs that play an important role in the progression of CRC but have yet to be reported. In our research, it was found out that the expression of mir-4746 is significantly down-regulated in CRC tissues and cells, and that its expression level is closely associated with the tumor size and prognosis of clinical patients. As revealed by function and mechanism experiments, targeting CCND1 mRNA 3'-UTR, mir-4746 can promote the degradation of CCND1 mRNA, thus reducing the protein level of CCND1, leading to cell G0-G1 phase arrest, and ultimately inhibiting the proliferation of CRC cells. For the first time, our study reported the biological functions of mir-4746 and its preliminary mechanism of action, in addition to demonstrating that mir-4746 can be applied as both a potential prognostic marker and the therapeutic target for CRC.
Assuntos
Proliferação de Células , Neoplasias Colorretais/metabolismo , Ciclina D1/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB CRESUMO
In this work, multi-spectroscopic and molecular docking methods have been conducted in the investigation of enantioselective interactions between diclazuril enantiomers and human/bovine serum albumins (HSA/BSA). The binding constants between serum albumins (SAs) and diclazuril enantiomers revealed that SAs exhibited stronger binding affinity for (R)-diclazuril than (S)-enantiomer. In addition, the fluorescence quenching of SAs induced by diclazuril enantiomers was ascribed to static quenching mechanism, in which hydrogen bonds and Van der Waals forces were the main interactions. According to the thermodynamic study, binding of diclazuril enantiomers and SAs was an exothermic process driven by enthalpy change. Then, circular dichroism spectroscopy of SAs with diclazuril enantiomers revealed that the SAs conformation had changed in the presence of diclazuril. Moreover, molecular docking technology was applied in exploration of interactions between SAs and diclazuril enantiomers. The docking energy between SAs and (R)-diclazuril was larger than (S)-diclazuril, which indicated that the affinity of SAs with (R)-diclazuril was stronger than (S)-enantiomer. This work may provide valuable information for explaining differences in pharmacokinetics and residue elimination of diclazuril enantiomers in living organisms.
Assuntos
Albumina Sérica Humana , Albumina Sérica , Sítios de Ligação , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Nitrilas , Ligação Proteica , Albumina Sérica/química , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Estereoisomerismo , Termodinâmica , TriazinasRESUMO
BACKGROUND: Established prediction models of Diabetic kidney disease (DKD) are limited to the analysis of clinical research data or general population data and do not consider hospital visits. Construct a 3-year diabetic kidney disease risk prediction model in patients with type 2 diabetes mellitus (T2DM) using machine learning, based on electronic medical records (EMR). METHODS: Data from 816 patients (585 males) with T2DM and 3 years of follow-up at the PLA General Hospital. 46 medical characteristics that are readily available from EMR were used to develop prediction models based on seven machine learning algorithms (light gradient boosting machine [LightGBM], eXtreme gradient boosting, adaptive boosting, artificial neural network, decision tree, support vector machine, logistic regression). Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Shapley additive explanation (SHAP) was used to interpret the results of the best performing model. RESULTS: The LightGBM model had the highest AUC (0.815, 95% CI 0.747-0.882). Recursive feature elimination with random forest and SHAP plot based on LightGBM showed that older patients with T2DM with high homocysteine (Hcy), poor glycemic control, low serum albumin (ALB), low estimated glomerular filtration rate (eGFR), and high bicarbonate had an increased risk of developing DKD over the next 3 years. CONCLUSIONS: This study constructed a 3-year DKD risk prediction model in patients with T2DM and normo-albuminuria using machine learning and EMR. The LightGBM model is a tool with potential to facilitate population management strategies for T2DM care in the EMR era.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Nefropatias Diabéticas/epidemiologia , Registros Eletrônicos de Saúde , Humanos , Modelos Logísticos , Aprendizado de Máquina , MasculinoRESUMO
PURPOSE: To explore the impact of a true half dose of [18F]-FDG on image quality in pediatric oncological patients undergoing total-body PET/CT and investigate short acquisition times with half-dose injected activity. METHODS: One hundred pediatric oncological patients who underwent total-body PET/CT using the uEXPLORER scanner after receiving a true half dose of [18F]-FDG (1.85 MBq/kg) were retrospectively enrolled. The PET images were first reconstructed using complete 600-s data and then split into 300-s, 180-s, 60-s, 40-s, and 20-s duration groups (G600 to G20). The subjective analysis was performed using 5-point Likert scales. Objective quantitative metrics included the maximum standard uptake value (SUVmax), SUVmean, standard deviation (SD), signal-to-noise ratio (SNR), and SNRnorm of the background. The variabilities in lesion SUVmean, SUVmax, and tumor-to-background ratio (TBR) were also calculated. RESULTS: The overall image quality scores in the G600, G300, G180, and G60 groups were 4.9 ± 0.2, 4.9 ± 0.3, 4.4 ± 0.5, and 3.5 ± 0.5 points, respectively. All the lesions identified in the half-dose images were localized in the G60 images, while 56% of the lesions could be clearly identified in the G20 images. With reduced acquisition time, the SUVmax and SD of the backgrounds were gradually increased, while the TBR values showed no statistically significant differences among the groups (all p > 0.1). Using the half-dose images as a reference, the variability in the lesion SUVmax gradually increased from the G180 to G20 images, while the lesion SUVmean remained stable across all age groups. SNRnorm was highly negatively correlated with age. CONCLUSION: Total-body PET/CT with a half dose of [18F]-FDG (1.85 MBq/kg, estimated whole-body effective dose: 1.76-2.57 mSv) achieved good performance in pediatric patients, with sufficient image quality and good lesion conspicuity. Sufficient image quality and lesion conspicuity could be maintained at a fast scanning time of 60 s with half-dose activity.
Assuntos
Fluordesoxiglucose F18 , Neoplasias , Criança , Humanos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Estudos RetrospectivosRESUMO
Metal-organic framework (MOF) glass is a new type of glass material, but it usually lacks sufficient porosity. Thus, regulating the pore structure of MOF glass to improve its adsorption performance is very important. Herein, we found that the porosity of MOF glasses agZIF-62 and agZIF-76 can be regulated via an ammonia-immersion approach. After ammonia immersion, the resulting agZIF-62-NH3 and agZIF-76-NH3 could be maintained in their glass states or converted to their amorphous states, respectively. Their porosity changed according to the gas adsorption experiments. Notably, compared with agZIF-62 and agZIF-76, the iodine uptake capacities for agZIF-62-NH3 and agZIF-76NH3 increased by 12 and 21 times, respectively. This work shows that the subsequent treatment of MOF glass can regulate their adsorption performance.
RESUMO
An efficient, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) chiral analysis method was established for determination of chloroquine and hydroxychloroquine enantiomers in rat liver microsomes. Effects of polysaccharide chiral stationary phases and basic additives on chiral separations of two analytes were discussed in detail. Amylose tris(3, 5-dimethylphenylcarbamate)-coated chiral stationary phase showed the best separation performance for them with acetonitrile-diethylamine-ethanol-diethylamine mixture (90:0.1:10:0.1, v/v/v/v) among four chiral stationary phases. Then, multiple reaction monitoring mode was selected as the data acquisition for determination of two pairs of enantiomers. The proposed LC-MS/MS chiral analysis method was validated in terms of linearity, accuracy, precision, and specificity. Good linearity with correlation coefficient over 0.998 was obtained in the concentration range of 0.05-5 µM. Limits of quantification for chloroquine and hydroxychloroquine enantiomers were 5.0 and 1.0 nM, respectively. The recoveries ranged from 81.14% to 111.09%. The intra-day and inter-day relative standard deviation were less than 6.5%. Moreover, concentrations of chloroquine and hydroxychloroquine enantiomers in rat liver microsomes were determined through the proposed LC-MS/MS analysis method. After incubated with rat liver microsomes for 10 min, the enantiomeric factor of hydroxychloroquine decreased from 0.50 to 0.45 (p < 0.001). In brief, our developed determination method for chloroquine and hydroxychloroquine enantiomers through LC-MS/MS spectrometry showed the characteristics of high-efficiency, fast speed, and very low detection limit, and would be greatly beneficial for screening and quantitation of them in biological matrices.
Assuntos
Hidroxicloroquina , Espectrometria de Massas em Tandem , Animais , Cloroquina , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Microssomos Hepáticos , Ratos , EstereoisomerismoRESUMO
Paclobutrazol is a widely used chiral plant growth regulator and its enantioselective toxicity in aquatic organisms is less explored till now. Herein, the enantioselective neurotoxicity of paclobutrazol mediated by oxidative stress in zebrafish were investigated. The oxidative stress parameters and neurotoxic biomarkers changed significantly in each exposure group, and paclobutrazol showed enantioselective toxicity in zebrafish. Firstly, (2R, 3R)-paclobutrazol exhibited a stronger oxidative stress in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Then, activities of acetylcholinesterase, calcineurin, and total nitric oxide synthase in (2R, 3R)-paclobutrazol treatments were 0.61-0.89, 1.24-1.53, and 1.21-1.35-fold stronger (P < 0.05) than those in (2S, 3S)-enantiomer treatments, respectively. Next, the content variations of four neurotransmitters in zebrafish exposed to (2R, 3R)-paclobutrazol were significantly larger than those in (2S, 3S)-enantiomer treatments (P < 0.05). Moreover, (2R, 3R)-paclobutrazol had stronger binding with the receptors than (2S, 3S)-enantiomer through molecular docking. The integrated biomarker response values further demonstrated that (2R, 3R)-paclobutrazol showed stronger toxicity to zebrafish than (2S, 3S)-enantiomer. Furthermore, the neurotoxicity of paclobutrazol can be interpreted as the mediating effect of oxidative stress in zebrafish through correlation analysis, and an adverse outcome pathway for the nervous system in zebrafish induced by paclobutrazol was proposed. This work will greatly extend our understanding on the enantioselective toxic effects of paclobutrazol in aquatic organisms.