Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.330
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 83(16): 2925-2940.e8, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37499663

RESUMO

Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression.


Assuntos
Proteína BRCA2 , Rad51 Recombinase , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA de Cadeia Simples/genética , DNA/metabolismo , Reparo do DNA , Ligação Proteica
2.
Proc Natl Acad Sci U S A ; 121(2): e2309670120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170755

RESUMO

Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP). Transcription initiation is highly regulated, and in bacteria, transcription initiation is mediated by sigma (σ) factors. σ recruits RNAP to the promoter DNA region, located upstream of the transcription start site (TSS) and facilitates open complex formation, where double-stranded DNA is opened up into a transcription bubble and template strand DNA is positioned inside RNAP for initial RNA synthesis. During initial transcription, RNAP remains bound to σ and upstream DNA, presumably with an enlarging transcription bubble. The release of RNAP from upstream DNA is required for promoter escape and processive transcription elongation. Bacteria sigma factors can be broadly separated into two classes with the majority belonging to the σ70 class, represented by the σ70 that regulates housekeeping genes. σ54 forms a class on its own and regulates stress response genes. Extensive studies on σ70 have revealed the molecular mechanisms of the σ70 dependent process while how σ54 transitions from initial transcription to elongation is currently unknown. Here, we present a series of cryo-electron microscopy structures of the RNAP-σ54 initial transcribing complexes with progressively longer RNA, which reveal structural changes that lead to promoter escape. Our data show that initially, the transcription bubble enlarges, DNA strands scrunch, reducing the interactions between σ54 and DNA strands in the transcription bubble. RNA extension and further DNA scrunching help to release RNAP from σ54 and upstream DNA, enabling the transition to elongation.


Assuntos
Escherichia coli , Transcrição Gênica , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , RNA/metabolismo , Bactérias/metabolismo , Fator sigma/metabolismo , DNA Bacteriano/metabolismo
3.
Mol Cell ; 70(6): 1111-1120.e3, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932903

RESUMO

Gene transcription is carried out by multi-subunit RNA polymerases (RNAPs). Transcription initiation is a dynamic multi-step process that involves the opening of the double-stranded DNA to form a transcription bubble and delivery of the template strand deep into the RNAP for RNA synthesis. Applying cryoelectron microscopy to a unique transcription system using σ54 (σN), the major bacterial variant sigma factor, we capture a new intermediate state at 4.1 Å where promoter DNA is caught at the entrance of the RNAP cleft. Combining with new structures of the open promoter complex and an initial de novo transcribing complex at 3.4 and 3.7 Å, respectively, our studies reveal the dynamics of DNA loading and mechanism of transcription bubble stabilization that involves coordinated, large-scale conformational changes of the universally conserved features within RNAP and DNA. In addition, our studies reveal a novel mechanism of strand separation by σ54.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Iniciação da Transcrição Genética/fisiologia , Bactérias/genética , Microscopia Crioeletrônica/métodos , DNA , DNA Bacteriano/genética , Escherichia coli/genética , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Fator sigma/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética
4.
Proc Natl Acad Sci U S A ; 120(14): e2300150120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996117

RESUMO

The cell cycle checkpoint kinase Mec1ATR and its integral partner Ddc2ATRIP are vital for the DNA damage and replication stress response. Mec1-Ddc2 "senses" single-stranded DNA (ssDNA) by being recruited to the ssDNA binding Replication Protein A (RPA) via Ddc2. In this study, we show that a DNA damage-induced phosphorylation circuit modulates checkpoint recruitment and function. We demonstrate that Ddc2-RPA interactions modulate the association between RPA and ssDNA and that Rfa1-phosphorylation aids in the further recruitment of Mec1-Ddc2. We also uncover an underappreciated role for Ddc2 phosphorylation that enhances its recruitment to RPA-ssDNA that is important for the DNA damage checkpoint in yeast. The crystal structure of a phosphorylated Ddc2 peptide in complex with its RPA interaction domain provides molecular details of how checkpoint recruitment is enhanced, which involves Zn2+. Using electron microscopy and structural modeling approaches, we propose that Mec1-Ddc2 complexes can form higher order assemblies with RPA when Ddc2 is phosphorylated. Together, our results provide insight into Mec1 recruitment and suggest that formation of supramolecular complexes of RPA and Mec1-Ddc2, modulated by phosphorylation, would allow for rapid clustering of damage foci to promote checkpoint signaling.


Assuntos
Proteína de Replicação A , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
EMBO J ; 40(9): e105853, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555040

RESUMO

p97ATPase-mediated membrane fusion is required for the biogenesis of the Golgi complex. p97 and its cofactor p47 function in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) priming, but the tethering complex for p97/p47-mediated membrane fusion remains unknown. In this study, we identified formiminotransferase cyclodeaminase (FTCD) as a novel p47-binding protein. FTCD mainly localizes to the Golgi complex and binds to either p47 or p97 via its association with their polyglutamate motifs. FTCD functions in p97/p47-mediated Golgi reassembly at mitosis in vivo and in vitro via its binding to p47 and to p97. We also showed that FTCD, p47, and p97 form a big FTCD-p97/p47-FTCD tethering complex. In vivo tethering assay revealed that FTCD that was designed to localize to mitochondria caused mitochondria aggregation at mitosis by forming a complex with endogenous p97 and p47, which support a role for FTCD in tethering biological membranes in cooperation with the p97/p47 complex. Therefore, FTCD is thought to act as a tethering factor by forming the FTCD-p97/p47-FTCD complex in p97/p47-mediated Golgi membrane fusion.


Assuntos
Amônia-Liases/metabolismo , Glutamato Formimidoiltransferase/metabolismo , Complexo de Golgi/metabolismo , Enzimas Multifuncionais/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/metabolismo , Amônia-Liases/química , Sítios de Ligação , Glutamato Formimidoiltransferase/química , Células HeLa , Células Hep G2 , Humanos , Fusão de Membrana , Mitocôndrias , Mitose , Enzimas Multifuncionais/química , Complexos Multiproteicos/metabolismo , Ligação Proteica
6.
Nature ; 571(7766): 521-527, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270457

RESUMO

The integrity of genomes is constantly threatened by problems encountered by the replication fork. BRCA1, BRCA2 and a subset of Fanconi anaemia proteins protect stalled replication forks from degradation by nucleases, through pathways that involve RAD51. The contribution and regulation of BRCA1 in replication fork protection, and how this role relates to its role in homologous recombination, is unclear. Here we show that BRCA1 in complex with BARD1, and not the canonical BRCA1-PALB2 interaction, is required for fork protection. BRCA1-BARD1 is regulated by a conformational change mediated by the phosphorylation-directed prolyl isomerase PIN1. PIN1 activity enhances BRCA1-BARD1 interaction with RAD51, thereby increasing the presence of RAD51 at stalled replication structures. We identify genetic variants of BRCA1-BARD1 in patients with cancer that exhibit poor protection of nascent strands but retain homologous recombination proficiency, thus defining domains of BRCA1-BARD1 that are required for fork protection and associated with cancer development. Together, these findings reveal a BRCA1-mediated pathway that governs replication fork protection.


Assuntos
Proteína BRCA1/química , Proteína BRCA1/metabolismo , Replicação do DNA , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Isomerismo , Mutação , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Rad51 Recombinase/metabolismo
7.
Mol Cell ; 67(1): 106-116.e4, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28579332

RESUMO

Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo.


Assuntos
DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Klebsiella pneumoniae/enzimologia , Desnaturação de Ácido Nucleico , RNA Polimerase Sigma 54/metabolismo , Iniciação da Transcrição Genética , Sítios de Ligação , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/genética , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/ultraestrutura , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044551

RESUMO

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Assuntos
Conectoma , Insuficiência Cardíaca , Mitocôndrias Cardíacas , Retículo Sarcoplasmático , Síndrome do Nó Sinusal , Nó Sinoatrial , Animais , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patologia , Síndrome do Nó Sinusal/patologia , Síndrome do Nó Sinusal/fisiopatologia , Nó Sinoatrial/fisiopatologia
9.
Nano Lett ; 24(22): 6545-6552, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781416

RESUMO

Extracting interior photoinduced species to the surface before their recombination is of great importance in pursuing high-efficiency semiconductor-based photocatalysis. Traditional strategies toward charge-carrier extraction, mostly relying on the construction of an electric field gradient, would be invalid toward the neutral-exciton counterpart in low-dimensional systems. In this work, by taking bismuth oxybromide (BiOBr) as an example, we manipulate interior exciton extraction to the surface by implementing iodine doping at the edges of BiOBr plates. Spatial- and time-resolved spectroscopic analyses verified the accumulation of excitons and charge carriers at the edges of iodine-doped BiOBr (BiOBr-I) plates. This phenomenon could be associated with interior exciton extraction, driven by an energy-level gradient between interior and edge exciton states, and the following exciton dissociation processes. As such, BiOBr-I shows remarkable performance in photocatalytic C-H fluorination, mediated by both energy- and charge-transfer processes. This work uncovers the importance of spatial regulation of excitonic properties in low-dimensional semiconductor-based photocatalysis.

10.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619329

RESUMO

Excessive accumulation of reduced nicotinamide adenine dinucleotide (NADH) within biological organisms is closely associated with many diseases. It remains a challenge to efficiently convert superfluous and detrimental NADH to NAD+. NADH oxidase (NOX) is a crucial oxidoreductase that catalyzes the oxidation of NADH to NAD+. Herein, M1M2 (Mi=V/Mn/Fe/Co/Cu/Mo/Rh/Ru/Pd, i = 1 or 2) mated-atom nanozymes (MANs) are designed by mimicking natural enzymes with polymetallic active centers. Excitingly, RhCo MAN possesses excellent and sustainable NOX-like activity, with Km-NADH (16.11 µM) being lower than that of NOX-mimics reported so far. Thus, RhCo MAN can significantly promote the regeneration of NAD+ and regulate macrophage polarization toward the M2 phenotype through down-regulation of TLR4 expression, which may help to recover skin regeneration. However, RhRu MAN with peroxidase-like activity and RhMn MAN with superoxide dismutase-like activity exhibit little modulating effects on eczema. This work provides a new strategy to inhibit skin inflammation and promote skin regeneration.

11.
J Biol Chem ; 299(8): 104929, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330173

RESUMO

Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks, the most severe form of DNA damage. The Rad51 protein is central to HR, but multiple auxiliary factors regulate its activity. The heterodimeric Swi5-Sfr1 complex is one such factor. It was previously shown that two sites within the intrinsically disordered domain of Sfr1 are critical for the interaction with Rad51. Here, we show that phosphorylation of five residues within this domain regulates the interaction of Swi5-Sfr1 with Rad51. Biochemical reconstitutions demonstrated that a phosphomimetic mutant version of Swi5-Sfr1 is defective in both the physical and functional interaction with Rad51. This translated to a defect in DNA repair, with the phosphomimetic mutant yeast strain phenocopying a previously established interaction mutant. Interestingly, a strain in which Sfr1 phosphorylation was blocked also displayed sensitivity to DNA damage. Taken together, we propose that controlled phosphorylation of Sfr1 is important for the role of Swi5-Sfr1 in promoting Rad51-dependent DNA repair.


Assuntos
Reparo do DNA , Rad51 Recombinase , Proteínas de Schizosaccharomyces pombe , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Recombinação Homóloga , Rad51 Recombinase/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Mutação , Fosforilação
12.
BMC Genomics ; 25(1): 447, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714941

RESUMO

BACKGROUND: The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS: Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION: The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.


Assuntos
Adenosina , Maturidade Sexual , Testículo , Animais , Masculino , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Adenosina/análogos & derivados , Adenosina/metabolismo , Suínos/genética , Maturidade Sexual/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Perfilação da Expressão Gênica
13.
Small ; : e2401089, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705868

RESUMO

With ever-increasing requirements for cathodes in the lithium-ion batteries market, an efficiency and eco-friendly upcycling regeneration strategy is imperative to meet the demand for high-performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the stability at 4.6 V. Double effects combination of relithiation and outside surface reconstruction are simultaneously achieved via a facile solid-phase sintering method. The evolution process of the Li-supplement and grain-recrystallization is systematically investigated, and the high performance of the upcycled materials at high voltage is comprehensively demonstrated. Thanks to the favorable spinel LiCoxMn2-xO4 surface coating, the upcycled sample displays outstanding electrochemical performance, superior to the pristine cathode materials. Notably, the 1% surface-coated LiCoO2 achieves a high discharge-specific capacity of 207.9 mA h g-1 at 0.1 C and delivers excellent cyclability with 77.0% capacity retention after 300 cycles. Significantly, this in situ created spinel coating layer can be potentially utilized for recycling spent LiCoO2, thus providing a viable, promising recycling strategy insights into the upcycling of degraded cathodes.

14.
Mol Carcinog ; 63(7): 1392-1405, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38651944

RESUMO

Na, K-ATPase interaction (NKAIN) is a transmembrane protein family, which can interact with Na, K-ATPase ß1 subunit. NKAIN1 plays an important role in alcohol-dependent diseases such as endometrial and prostate cancers. However, the relationship between NKAIN1 and human breast cancer has not been studied. Hence, this study aimed to explore the relationship between NKAIN1 expression and breast cancer. Data used in this study were mainly from the Cancer Genome Atlas, including differential expression analysis, Kaplan-Meier survival analysis, receiver operating characteristic curve analysis, multiple Cox regression analysis, co-expression gene analysis, and gene set enrichment analysis. Analyses were performed using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunohistochemistry on 46 collected samples. The knockdown or overexpression of NKAIN1 in vitro in MCF-7 and MDA-MB-231 cell lines altered the proliferation and migration abilities of tumor cells. In vivo experiments further confirmed that NKAIN1 knockdown effectively inhibited the proliferation and migration of cancer cells. Therefore, our study identified NKAIN1 as an oncogene that is highly expressed in breast cancer tissues. The findings highlight the potential of NKAIN1 as a molecular biomarker of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Prognóstico , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Camundongos , Linhagem Celular Tumoral , Oncogenes , Camundongos Nus , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Pessoa de Meia-Idade
15.
J Transl Med ; 22(1): 152, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355615

RESUMO

BACKGROUND: This study aimed to assess the clinical application of the Artery Occlusion Image Score (AOIS), a new metric based on computed tomographic angiography (CTA) that reflects the severity of occlusive changes in the main intracranial arteries. MATERIALS AND METHODS: Patients diagnosed with acute ischemic stroke (AIS) were divided into three groups: anterior circulation infarcts (ACI group), posterior circulation infarcts (PCI group), and both anterior and posterior circulation infarcts (ACI + PCI group). The sensitivity and specificity of AOIS were evaluated using the Basilar Artery on Computed Tomography Angiography (BATMAN) score, the Clot Burden Score (CBS), and the National Institutes of Health Stroke Scale (NIHSS) as comparators through receiver-operating characteristic (ROC) curve analysis. RESULTS: The final analysis included 439 consecutive patients. In the ACI group, AOIS demonstrated high sensitivity (86.3%) and specificity (85.0%) and outperformed CBS in predicting patient prognosis. In the PCI group, AOIS also showed high sensitivity (88.9%) and specificity (90.0%) and outperformed BATMAN in predicting patient prognosis. In the ACI + PCI group, AOIS positively correlated with the NIHSS score (Spearman's ρ = 0.602, P < .001). Additionally, the scoring time of AOIS did not significantly differ from CBS and BATMAN. CONCLUSION: AOIS is a convenient and reliable method for guiding treatment and predicting outcomes in patients with ACI or/and PCI. Furthermore, AOIS is the first CTA-based scoring system that covers both the anterior and posterior circulation, providing a convenient and reliable evaluation for patients with concurrent acute ischemic stroke in both circulations.


Assuntos
AVC Isquêmico , Intervenção Coronária Percutânea , Acidente Vascular Cerebral , Trombose , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Artéria Basilar , Infarto , Estudos Retrospectivos , Resultado do Tratamento
16.
Cell Immunol ; 401-402: 104836, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38776753

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) negatively modulate immune activity. Prior investigations have shown much promise in using MDSCs-assisted immunotherapy for organ transplantation patients. Additionally, owing to its immunosuppressive activity, MDSCs can also be used to manage immune-associated disorders. METHODS: Granulocyte-macrophage colony-stimulating factor (GM-CSF) was employed to stimulate myeloid progenitor cell differentiation. Triptolide (PG490) was introduced toward the later phases of in vitro MDSCs induction. Lastly, real-time PCR (RT-PCR) and flow cytometry were used to assess transcript expression and cell phenotype, and a mouse skin transplantation model was established to evaluate the MDSCs-mediated immune suppression in vivo. RESULTS: Co-stimulation with PG490 and GM-CSF potently induced myeloid-derived monocytes to form MDSCs, with remarkable immune-suppressive activity. The underlying mechanism involved downregulation of T cell proliferation, activation, enhancement of inflammatory cytokine release, as well as T cell conversion to Treg cells. PG490 strongly enhanced iNOS expression in MDSCs, and iNOS inhibition successfully reversed the immune-suppression. The PG490- and GM-CSF-induced MDSCs substantially extended survival duration of murine skin grafts, thereby validating their strong immune-suppressive activity in vivo. CONCLUSIONS: Herein, we presented a new approach involving MDSCs-based immunosuppression in vitro. PG490 and GM-CSF co-treatment strongly induced immuno-suppressive activity in MDSCs both in vitro and in vivo. Our findings highlight the promise of applying MDSCs-based therapy in clinical organ transplantation treatment.

17.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557019

RESUMO

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/toxicidade , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
18.
Opt Express ; 32(5): 7987-8009, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439467

RESUMO

In recent years, extensive research and development have been conducted on an active fluid jet (AFJ) polishing-based post-polishing process aimed at removing periodic marks from diamond-turned surfaces. This cost-effective method demonstrates its machining capability across a wide range of materials. Notably, it excels in preserving the form accuracy during the post-polishing process for traditional optics, allowing for the attainment of high-precision shape and an ultra-smooth texture. However, the challenge arises when attempting to maintain form preservation on diamond-cut surfaces located on the side-walls of structures due to non-uniform material removal. This limitation significantly restricts its application in advanced opto-mechanical systems, including monolithic multi-surface workpieces. Therefore, this paper systematically investigates the form-preserving capability of AFJ polishing for side-wall surfaces through multi-scale analysis. The micromachining characteristics of the diamond-cut surface are elaborated upon using elastic-plastic theory, and the impact of polishing parameters on form preservation is studied at the microscopic scale. Furthermore, at the macroscopic scale, a simulation model of the AFJ polishing process is established based on fluid-structure interaction (FSI) analysis and rigid dynamic analysis. To validate the proposed theory, a series of tests are conducted. Theoretical and experimental results indicate that non-uniform material removal occurs in the contact area between the tool and the workpiece due to the influence of gravity, thereby hindering the form-preservation polishing process. Building upon the simulation model, a new AFJ tool is designed and optimized to enhance the form-preserving capability of AFJ post-polishing for side-wall surfaces. Experimental results confirm that the innovative AFJ tool uniformly eliminates the periodic marks on diamond-cut surfaces. The theory and methodology presented in this work have broad applicability to various form-preservation post-polishing processes on diamond-cut surfaces.

19.
Cardiovasc Diabetol ; 23(1): 132, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650038

RESUMO

IMPORTANCE: Diabetes mellitus (DM) is thought to be closely related to arterial stenotic or occlusive disease caused by atherosclerosis. However, there is still no definitive clinical evidence to confirm that patients with diabetes have a higher risk of restenosis. OBJECTIVE: This meta-analysis was conducted to determine the effect of DM on restenosis among patients undergoing endovascular treatment, such as percutaneous transluminal angioplasty (PTA) or stenting. DATA SOURCES AND STUDY SELECTION: The PubMed/Medline, EMBASE and Cochrane Library electronic databases were searched from 01/1990 to 12/2022, without language restrictions. Trials were included if they satisfied the following eligibility criteria: (1) RCTs of patients with or without DM; (2) lesions confined to the coronary arteries or femoral popliteal artery; (3) endovascular treatment via PTA or stenting; and (4) an outcome of restenosis at the target lesion site. The exclusion criteria included the following: (1) greater than 20% of patients lost to follow-up and (2) a secondary restenosis operation. DATA EXTRACTION AND SYNTHESIS: Two researchers independently screened the titles and abstracts for relevance, obtained full texts of potentially eligible studies, and assessed suitability based on inclusion and exclusion criteria.. Disagreements were resolved through consultation with a third researcher. Treatment effects were measured by relative ratios (RRs) with 95% confidence intervals (CIs) using random effects models. The quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. MAIN OUTCOMES AND MEASURES: The main observation endpoint was restenosis, including > 50% stenosis at angiography, or TLR of the primary operation lesion during the follow-up period. RESULTS: A total of 31,066 patients from 20 RCTs were included. Patients with DM had a higher risk of primary restenosis after endovascular treatment (RR = 1.43, 95% CI: 1.25-1.62; p = 0.001). CONCLUSIONS AND RELEVANCE: This meta-analysis of all currently available RCTs showed that patients with DM are more prone to primary restenosis after endovascular treatment.


Assuntos
Diabetes Mellitus , Ensaios Clínicos Controlados Aleatórios como Assunto , Recidiva , Stents , Humanos , Resultado do Tratamento , Fatores de Risco , Masculino , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/terapia , Feminino , Pessoa de Meia-Idade , Medição de Risco , Idoso , Doença Arterial Periférica/terapia , Doença Arterial Periférica/diagnóstico , Fatores de Tempo , Grau de Desobstrução Vascular , Procedimentos Endovasculares/efeitos adversos , Idoso de 80 Anos ou mais
20.
NMR Biomed ; 37(1): e5035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721094

RESUMO

The aim of the current study was to investigate the feasibility of three-dimensional ultrashort echo time quantitative susceptibility mapping (3D UTE-QSM) for the assessment of gadolinium (Gd) deposition in cortical bone. To this end, 40 tibial bovine cortical bone specimens were divided into five groups then soaked in phosphate-buffered saline (PBS) solutions with five different Gd concentrations of 0, 0.4, 0.8, 1.2, and 1.6 mmol/L for 48 h. Additionally, eight rabbits were randomly allocated into three groups, consisting of a normal-dose macrocyclic gadolinium-based contrast agent (GBCA) group (n = 3), a high-dose macrocyclic GBCA group (n = 3), and a control group (n = 2). All bovine and rabbit tibial bone samples underwent magnetic resonance imaging (MRI) on a 3-T clinical MR system. A 3D UTE-Cones sequence was utilized to acquire images with five different echo times (i.e., 0.032, 0.2, 0.4, 0.8, and 1.2 ms). The UTE images were subsequently processed with the morphology-enabled dipole inversion algorithm to yield a susceptibility map. The average susceptibility was calculated in three regions of interest in the middle of each specimen, and the Pearson's correlation between the estimated susceptibility and Gd concentration was calculated. The bone samples soaked in PBS with higher Gd concentrations exhibited elevated susceptibility values. A mean susceptibility value of -2.47 ± 0.23 ppm was observed for bovine bone soaked in regular PBS, while the mean QSM value increased to -1.75 ± 0.24 ppm for bone soaked in PBS with the highest Gd concentration of 1.6 mmol/L. A strong positive correlation was observed between Gd concentrations and QSM values. The mean susceptibility values of rabbit tibial specimens in the control group, normal-dose GBCA group, and high-dose GBCA group were -4.11 ± 1.52, -3.85 ± 1.33, and -3.39 ± 1.35 ppm, respectively. In conclusion, a significant linear correlation between Gd in cortical bone and QSM values was observed. The preliminary results suggest that 3D UTE-QSM may provide sensitive noninvasive assessment of Gd deposition in cortical bone.


Assuntos
Gadolínio , Imageamento Tridimensional , Animais , Bovinos , Coelhos , Osso e Ossos/diagnóstico por imagem , Meios de Contraste , Osso Cortical/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA