Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 277, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668682

RESUMO

BACKGROUND: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS: TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS: Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS: Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.


Assuntos
Adipogenia , Osteogênese , Tensinas , Humanos , Actinas , Adipogenia/genética , Diferenciação Celular , Osteogênese/genética , Tensinas/genética
2.
J Cell Physiol ; 238(2): 379-392, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36538650

RESUMO

Arboviruses target bone forming osteoblasts and perturb bone remodeling via paracrine factors. We previously reported that Zika virus (ZIKV) infection of early-stage human mesenchymal stromal cells (MSCs) inhibited the osteogenic lineage commitment of MSCs. To understand the physiological interplay between bone development and ZIKV pathogenesis, we employed a primary in vitro model to examine the biological responses of MSCs to ZIKV infection at different stages of osteogenesis. Precommitted MSCs were infected at the late stage of osteogenic stimulation (Day 7) with ZIKV (multiplicity of infection of 5). We observe that MSCs infected at the late stage of differentiation are highly susceptible to ZIKV infection similar to previous observations with early stage infected MSCs (Day 0). However, in contrast to ZIKV infection at the early stage of differentiation, infection at a later stage significantly elevates the key osteogenic markers and calcium content. Comparative RNA sequencing (RNA-seq) of early and late stage infected MSCs reveals that ZIKV infection alters the mRNA transcriptome during osteogenic induction of MSCs (1251 genes). ZIKV infection provokes a robust antiviral response at both stages of osteogenic differentiation as reflected by the upregulation of interferon responsive genes (n > 140). ZIKV infection enhances the expression of immune-related genes in early stage MSCs while increasing cell cycle genes in late stage MSCs. Remarkably, ZIKA infection in early stage MSCs also activates lipid metabolism-related pathways. In conclusion, ZIKV infection has differentiation stage-dependent effects on MSCs and this mechanistic understanding may permit the development of new therapeutic or preventative measures for bone-related effects of ZIKV infection.


Assuntos
Células-Tronco Mesenquimais , Infecção por Zika virus , Zika virus , Humanos , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas
3.
J Cell Physiol ; 235(5): 4865-4877, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31667867

RESUMO

Activins regulate bone formation by controlling osteoclasts and osteoblasts. We investigated Activin-A mechanism of action on human osteoblast mineralization, RNA and microRNA (miRNA) expression profile. A single 2-day treatment of Activin-A at Day 5 of osteoblast differentiation significantly reduced matrix mineralization. Activin A-treated osteoblasts responded with transient change in gene expression, in a 2-wave-fashion. The 38 genes differentially regulated during the first wave (within 8 hr after Activin A start) were involved in transcription regulation. In the second wave (1-2 days after Activin A start), 65 genes were differentially regulated and related to extracellular matrix. Differentially expressed genes in both waves were associated to transforming growth factor beta signaling. We identified which microRNAs modulating osteoblast differentiation were regulated by Activin-A. In summary, 2-day treatment with Activin-A in premineralization period of osteoblast cultures influenced miRNAs, gene transcription, and reduced matrix mineralization. Modulation of Activin A signaling might be useful to control bone quality for therapeutic purposes.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Transformada , Matriz Extracelular/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Fosforilação , Transdução de Sinais , Vírus 40 dos Símios , Proteína Smad3/metabolismo , Fatores de Tempo , Transcriptoma
4.
FASEB J ; 33(5): 6001-6010, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759349

RESUMO

Inhibitors of the activin receptor signaling pathway (IASPs) have become candidate therapeutics for sarcopenia and bone remodeling disorders because of their ability to increase muscle and bone mass. However, IASPs utilizing activin type IIA and IIB receptors are also potent stimulators of erythropoiesis, a feature that may restrict their usage to anemic patients because of increased risk of venous thromboembolism. Based on the endogenous TGF-ß superfamily antagonist follistatin (FST), a molecule in the IASP class, FSTΔHBS-mFc, was generated and tested in both ovariectomized and naive BALB/c and C57BL/6 mice. In ovariectomized mice, FSTΔHBS-mFc therapy dose-dependently increased cancellous bone mass up to 42% and improved bone microstructural indices. For the highest dosage of FSTΔHBS-mFc (30 mg/kg, 2 times/wk), the increase in cancellous bone mass was similar to that observed with parathyroid hormone therapy (1-34, 80 µg/kg, 5 times/wk). Musculus quadriceps femoris mass dose-dependently increased up to 21% in ovariectomized mice. In both ovariectomized and naive mice, FSTΔHBS-mFc therapy did not influence red blood cell count or hematocrit or hemoglobin levels. If the results are reproduced, a human FSTΔHBS-mFc version could be applicable in patients with musculoskeletal conditions irrespective of hematocrit status.-Lodberg, A., van der Eerden, B. C. J., Boers-Sijmons, B., Thomsen, J. S., Brüel, A., van Leeuwen, J. P. T. M., Eijken, M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice.


Assuntos
Osso e Ossos/efeitos dos fármacos , Eritrócitos/citologia , Folistatina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Ativinas/metabolismo , Animais , Densidade Óssea , Proteínas Morfogenéticas Ósseas/metabolismo , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Contagem de Eritrócitos , Feminino , Fatores de Diferenciação de Crescimento/metabolismo , Hematócrito , Hemoglobinas/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Miostatina/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Cell Mol Med ; 22(2): 873-882, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28975700

RESUMO

We recently showed that patients with primary Sjögren Syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favourable effects on BMD. To study the direct effects of HCQ on human MSC-derived osteoblast activity. Osteoblasts were cultured from human mesenchymal stromal cells (hMSCs). Cultures were treated with different HCQ doses (control, 1 and 5 µg/ml). Alkaline phosphatase activity and calcium measurements were performed to evaluate osteoblast differentiation and activity, respectively. Detailed microarray analysis was performed in 5 µg/ml HCQ-treated cells and controls followed by qPCR validation. Additional cultures were performed using the cholesterol synthesis inhibitor simvastatin (SIM) to evaluate a potential mechanism of action. We showed that HCQ inhibits both MSC-derived osteoblast differentiation and mineralization in vitro. Microarray analysis and additional PCR validation revealed a highly significant up-regulation of the cholesterol biosynthesis, lysosomal and extracellular matrix pathways in the 5 µg/ml HCQ-treated cells compared to controls. Besides, we demonstrated that 1 µM SIM also decreases MSC-derived osteoblast differentiation and mineralization compared to controls. It appears that the positive effect of HCQ on BMD cannot be explained by a stimulating effect on the MSC-derived osteoblast. The discrepancy between high BMD and decreased MSC-derived osteoblast function due to HCQ treatment might be caused by systemic factors that stimulate bone formation and/or local factors that reduce bone resorption, which is lacking in cell cultures.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Hidroxicloroquina/farmacologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Reprodutibilidade dos Testes , Sinvastatina/farmacologia
6.
J Cell Physiol ; 233(6): 4895-4906, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29194609

RESUMO

Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. Identification of factors influencing osteoblast differentiation and bone formation is very important. Previously, we identified parbendazole to be a novel compound that stimulates osteogenic differentiation of human mesenchymal stromal cells (hMSCs), using gene expression profiling and bioinformatic analyzes, including the Connectivity Map (CMap), as an in-silico approach. The aim for this paper is to identify additional compounds affecting osteoblast differentiation using the CMap. Gene expression profiling was performed on hMSCs differentiated to osteoblasts using Illumina microarrays. Our osteoblast gene signature, the top regulated genes 6 hr after induction by dexamethasone, was uploaded into CMap (www.broadinstitute.org/cmap/). Through this approach we identified compounds with gene signatures positively correlating (withaferin-A, calcium folinate, amylocaine) or negatively correlating (salbutamol, metaraminol, diprophylline) to our osteoblast gene signature. All positively correlating compounds stimulated osteogenic differentiation, as indicated by increased mineralization compared to control treated cells. One of three negatively correlating compounds, salbutamol, inhibited dexamethasone-induced osteoblastic differentiation, while the other two had no effect. Based on gene expression data of withaferin-A and salbutamol, we identified HMOX1 and STC1 as being strongly differentially expressed . shRNA knockdown of HMOX1 or STC1 in hMSCs inhibited osteoblast differentiation. These results confirm that the CMap is a powerful approach to identify positively compounds that stimulate osteogenesis of hMSCs, and through this approach we can identify genes that play an important role in osteoblast differentiation and could be targets for novel bone anabolic therapies.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Diferenciação Celular/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Diferenciação Celular/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteogênese/genética , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos
7.
J Cell Physiol ; 233(2): 1424-1433, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28556961

RESUMO

We recently showed that patients with primary Sjögren syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favorable effects on BMD. The aim of the study was to evaluate whether HCQ modulates osteoclast function. Osteoclasts were cultured from PBMC-sorted monocytes for 14 days and treated with different HCQ doses (controls 1 and 5 µg/ml). TRAP staining and resorption assays were performed to evaluate osteoclast differentiation and activity, respectively. Staining with an acidification marker (acridine orange) was performed to evaluate intracellular pH at multiple timepoints. Additionally, a fluorescent cholesterol uptake assay was performed to evaluate cholesterol trafficking. Serum bone resorption marker ß-CTx was evaluated in rheumatoid arthritis patients. HCQ inhibits the formation of multinuclear osteoclasts and leads to decreased bone resorption. Continuous HCQ treatment significantly decreases intracellular pH and significantly enhanced cholesterol uptake in mature osteoclasts along with increased expression of the lowdensity lipoprotein receptor. Serum ß-CTx was significantly decreased after 6 months of HCQ treatment. In agreement with our clinical data, we demonstrate that HCQ suppresses bone resorption in vitro and decreases the resorption marker ß-CTx in vivo. We also showed that HCQ decreases the intracellular pH in mature osteoclasts and stimulates cholesterol uptake, suggesting that HCQ induces osteoclastic lysosomal membrane permeabilization (LMP) leading to decreased resorption without changes in apoptosis. We hypothesize that skeletal health of patients with increased risk of osteoporosis and fractures may benefit from HCQ by preventing BMD loss.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Hidroxicloroquina/uso terapêutico , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Biomarcadores/sangue , Reabsorção Óssea/sangue , Reabsorção Óssea/diagnóstico , Reabsorção Óssea/fisiopatologia , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Colesterol/metabolismo , Colágeno Tipo I/sangue , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Osteoclastos/metabolismo , Receptores de LDL/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fatores de Tempo , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 112(41): 12711-6, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26420877

RESUMO

Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. In this study, we have identified pathways that stimulate differentiation of bone forming osteoblasts from human mesenchymal stromal cells (hMSCs). Gene expression profiling was performed in hMSCs differentiated toward osteoblasts (at 6 h). Significantly regulated genes were analyzed in silico, and the Connectivity Map (CMap) was used to identify candidate bone stimulatory compounds. The signature of parbendazole matches the expression changes observed for osteogenic hMSCs. Parbendazole stimulates osteoblast differentiation as indicated by increased alkaline phosphatase activity, mineralization, and up-regulation of bone marker genes (alkaline phosphatase/ALPL, osteopontin/SPP1, and bone sialoprotein II/IBSP) in a subset of the hMSC population resistant to the apoptotic effects of parbendazole. These osteogenic effects are independent of glucocorticoids because parbendazole does not up-regulate glucocorticoid receptor (GR) target genes and is not inhibited by the GR antagonist mifepristone. Parbendazole causes profound cytoskeletal changes including degradation of microtubules and increased focal adhesions. Stabilization of microtubules by pretreatment with Taxol inhibits osteoblast differentiation. Parbendazole up-regulates bone morphogenetic protein 2 (BMP-2) gene expression and activity. Cotreatment with the BMP-2 antagonist DMH1 limits, but does not block, parbendazole-induced mineralization. Using the CMap we have identified a previously unidentified lineage-specific, bone anabolic compound, parbendazole, which induces osteogenic differentiation through a combination of cytoskeletal changes and increased BMP-2 activity.


Assuntos
Antígenos de Diferenciação/biossíntese , Benzimidazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia
9.
Calcif Tissue Int ; 99(3): 326-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27364341

RESUMO

Pseudovitamin D deficiency is the consequence of a genetic defect in the CYP27B1 gene resulting in diminished or absent conversion of 25-hydroxyvitamin D3 (25-(OH)D3) into 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and leads to growth retardation and rickets, usually in the first 2 years of life. DNA obtained from human leucocytes from a patient suspected of pseudovitamin D deficiency and her healthy parents was sequenced for a genetic defect in the CYP27B1 gene. In silico analyses on the mutations were performed using online available software. The 1α-hydroxylase activity of the patient, her parents, and a sample derived from a mixed buffy coat of healthy blood donors was measured by culturing peripheral blood mononuclear cells with 25-(OH)D3 and measuring 1,25-(OH)2D3 production. DNA sequencing of the patient suspected of pseudovitamin D deficiency revealed compound heterozygosity in the CYP27B1 gene for a (c413G>T) mutation in exon 3 (R138L) and a (c1232G>A) mutation in exon 8 (C411Y). In silico analyses confirmed that mutations at these positions are probably damaging for the protein since the amino acids are situated in a highly conserved region. In vitro analyses showed a nearly absent 1α-hydroxylase activity in the patient compared to the healthy blood donors. Her healthy parents each of whom carried one of the mutations also had compromised conversion of 25-(OH)D3 into 1,25-(OH)2D3 in peripheral blood mononuclear cells, being only marginally higher than in the patient. We discovered novel compound heterozygous mutations in the CYP27B1 gene in a young girl presenting with pseudovitamin D-deficient rickets, leading to severely decreased 1,25-(OH)2D3 production. Furthermore, both heterozygous parents showed a diminished 1α-hydroxylase activity.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Mutação/genética , Deficiência de Vitamina D/genética , Sequência de Bases/genética , Éxons/genética , Feminino , Heterozigoto , Humanos , Leucócitos Mononucleares/metabolismo , Deficiência de Vitamina D/sangue
10.
BMC Cell Biol ; 16: 9, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25887471

RESUMO

BACKGROUND: Osteoblasts and adipocytes share a common mesenchymal stem cell origin. Therefore, it has been suggested that the accumulation of marrow adipocytes observed in bone loss is caused by a shift in the commitment of mesenchymal stem cells from the osteogenic pathway to the adipogenic pathway. Supporting this hypothesis the competition between adipogenic and osteogenic lineages was widely demonstrated on partially homogeneous cell populations. However, some data from mouse models showed the existence of an independent relationship between bone mineral content and bone marrow adiposity. Therefore, the combination of adipogenesis and osteogenesis in primary culture would be helpful to determine if this competition would be observed on a whole bone marrow stromal cell population in a culture medium allowing both lineages. In this aim, mouse bone marrow stromal cells were cultured in a standard osteogenic medium added with different concentrations of Dexamethasone, known to be an important regulator of mesenchymal progenitor cell differentiation. RESULTS: Gene expression of osteoblast and adipocyte markers, biochemical and physical analyses demonstrated the presence of both cell types when Dexamethasone was used at 100 nM. Overall, our data showed that in this co-differentiation medium both differentiation lineages were enhanced compared to classical adipogenic or osteogenic culture medium. This suggests that in this model, adipocyte phenotype does not seem to increase at the expense of the osteoblast lineage. CONCLUSION: This model appears to be a promising tool to study osteoblast and adipocyte differentiation capabilities and the interactions between these two processes.


Assuntos
Adipócitos/citologia , Anti-Inflamatórios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Linhagem da Célula , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos
11.
Int J Cancer ; 136(2): 271-7, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24890436

RESUMO

Mortality from colorectal cancer increases with latitude and decreases with ambient UV radiation. We investigated whether moderate UV dosages could inhibit intestinal tumor development and whether this corresponded with UV-induced vitamin D. FabplCre;Apc(15lox/+) mice, which develop intestinal tumors, and their parents were put on a vitamin D-deficient diet. Next to a control group, one group was vitamin D supplemented and another one group was daily UV irradiated from 6 weeks of age. Vitamin D statuses after 6 weeks of treatment were markedly increased: mean ± SD from 7.7 ± 1.9 in controls to 75 ± 15 nmol/l with vitamin D supplementation (no gender difference), and to 31 ± 13 nmol/l in males and 85 ± 17 nmol/l in females upon UV irradiation. The tumor load (area covered by tumors) at 7.5 months of age was significantly reduced in both the vitamin D-supplemented group (130 ± 25 mm(2), p = 0.018) and the UV-exposed group (88 ± 9 mm(2), p < 0.0005; no gender differences) compared to the control group (202 ± 23 mm(2)). No reductions in tumor numbers were found. Only UV exposure appeared to reduce progression to malignancy (p = 0.014). Our experiments clearly demonstrate for the first time an inhibitory effect of moderate UV exposure on outgrowth and malignant progression of primary intestinal tumors, which at least in part can be attributed to vitamin D.


Assuntos
Genes APC/fisiologia , Neoplasias Intestinais/patologia , Neoplasias Intestinais/prevenção & controle , Raios Ultravioleta , Vitamina D/administração & dosagem , Vitaminas/administração & dosagem , Animais , Suplementos Nutricionais , Progressão da Doença , Feminino , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Mol Cell Proteomics ; 12(10): 2890-900, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23781072

RESUMO

During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-ß (TGF-ß) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP(1)) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration.


Assuntos
Ativinas/fisiologia , Osteoblastos/metabolismo , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Vesículas Transportadoras/metabolismo
13.
J Zoo Wildl Med ; 46(4): 682-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26667523

RESUMO

In order to prevent metabolic bone disease in growing captive-bred marabou storks (Leptoptilos crumeniferus), three hatchlings were exposed twice a day for 30 min each time to ultraviolet-B (UVB) radiation. During their first 35 days of life, body weights were monitored weekly, and blood was collected to determine total calcium, phosphorus, 25(OH) cholecalciferol, and 1.25(OH)2cholecalciferol plasma levels. Data were compared with those obtained from two marabou stork nestlings that were raised before, without being exposed to UVB. These two birds developed metabolic bone disease, while the UVB-exposed birds developed into healthy adult animals. Plasma chemistry data obtained in this study demonstrate that nestling marabou storks produce vitamin D3under the influence of UVB radiation. The absence of clinical metabolic bone disease in the nestlings that received UVB compared to the nestlings that were raised with the same diet without UVB radiation and that developed MBD demonstrates the importance of UVB radiation for normal development in this species.


Assuntos
Aves/sangue , Aves/crescimento & desenvolvimento , Cálcio/sangue , Colecalciferol/sangue , Fósforo/sangue , Raios Ultravioleta , Envelhecimento , Criação de Animais Domésticos , Animais , Animais de Zoológico , Feminino , Masculino
14.
BMC Genomics ; 15: 965, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25380738

RESUMO

BACKGROUND: Ectopic vascular calcifications represent a major clinical problem associated with cardiovascular disease and mortality. However, the mechanisms underlying pathological vascular calcifications are largely unknown hampering the development of therapies to tackle this life threatening medical condition. RESULTS: In order to gain insight into the genes and mechanisms driving this pathological calcification process we analyzed the transcriptional profile of calcifying vascular smooth muscle cells (C-VSMCs). These profiles were compared to differentiating osteoblasts, cells that constitute their physiological calcification counterparts in the body. Overall the transcriptional program of C-VSMC and osteoblasts did not overlap. Several genes, some of them relevant for bone formation, were distinctly modulated by C-VSMCs which did not necessarily lose their smooth muscle cell markers while calcifying. Bioinformatics gene clustering and correlation analysis disclosed limited bone-related mechanisms being shared by two cell types. Extracellular matrix (ECM) and biomineralization genes represented common denominators between pathological vascular and physiological bone calcifications. These genes constitute the strongest link between these cells and represent potential drivers for their shared end-point phenotype. CONCLUSIONS: The analyses support the hypothesis that VSMC trans-differentiate into C-VSMCs keeping their own identity while using mechanisms that osteoblasts use to mineralize. The data provide novel insights into groups of genes and biological processes shared in MSC and VSMC osteogenic differentiation. The distinct gene regulation between C-VSMC and osteoblasts might hold clues to find cell-specific pathway modulations, opening the possibility to tackle undesired vascular calcifications without disturbing physiologic bone formation and vice versa.


Assuntos
Matriz Extracelular/metabolismo , Minerais/metabolismo , Mimetismo Molecular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Osteoblastos/metabolismo , Calcificação Vascular/metabolismo , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Análise por Conglomerados , Regulação para Baixo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Contração Muscular/genética , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Osteogênese/genética , Análise de Componente Principal , Reprodutibilidade dos Testes , Calcificação Vascular/patologia
15.
Arch Biochem Biophys ; 561: 159-66, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25046842

RESUMO

Primary and secondary bone cancers are rare events. However, once settled, a complex process is started involving an extensive amount of factors and interactions. The bone micro-environment is a preferential site for (metastatic) tumor cells to enter, stay, colonize and expand. The fact that the tumor cells affect the complete bone environment involving many cell types and regulatory pathways to stimulate their own growth and escape from therapy is devastating for the patient. Many efforts have been made to get more insight into the mechanisms underlying the communication between bone cells and cancer cells and progress is made in therapeutic interventions. This review will discuss the biological mechanisms of primary bone malignancies (osteosarcoma, Ewing's sarcoma, chondrosarcoma, multiple myeloma) and secondary bone malignancies (bone metastases) and therapeutic interventions.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Proteínas de Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Animais , Humanos
16.
iScience ; 27(6): 109625, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883842

RESUMO

One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis are unclear. This study used MC3T3-E1 FGF23-producing cells to examine the transcriptomic responses to these phosphates. Most importantly, the expression and secretion of FGF23 were only increased in response to organic phosphate. Gene ontology terms related to a response to environmental change were only enriched in cells treated with organic phosphate while cells treated with inorganic phosphate were enriched for terms associated with regulation of cellular phosphate metabolism. Inhibition of MAPK signaling diminished the response of Fgf23 to organic phosphate, suggesting it activates FGF23. TGF-ß signaling inhibition increased Fgf23 expression after the addition of organic phosphate, while the negative TGF-ß regulator Skil decreased this response. In summary, the observed differential response of FGF23-producing to phosphate types may have consequences for phosphate homeostasis.

17.
Bone ; 181: 117043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341164

RESUMO

Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.


Assuntos
Osteogênese , Fatores de Transcrição , Osteogênese/genética , Fatores de Transcrição/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Epigênese Genética , Osteoblastos/metabolismo , Transferases/genética , Transferases/metabolismo
18.
J Cell Physiol ; 228(9): 1863-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23460080

RESUMO

Oxygen tension plays an important role in the regulation of cellular processes. During hematopoietic stem cell (HSC) differentiation, HSCs migrate from one stem cell niche to the next, each with a different oxygen tension that determines which signaling pathways are on and off, determining the differentiation stage of the cell. Oxygen tension influences osteoblast differentiation and mineralization. Low oxygen levels inhibit matrix formation and mineralization. We were interested in the regulatory mechanisms that underlie this inhibition and wondered whether a switch in oxygen tension could have varying effects depending on the differentiation phase of the osteoblasts. We performed an oxygen tension switch phase study in which we switched osteoblasts from high to low oxygen tension during their 3 week differentiation and mineralization process. We performed microarray expression profiling on samples collected during this 3 week period and analyzed biochemical and histo-chemical endpoint parameters to determine the effect of a switch in oxygen levels on mineralization. We found that low oxygen tension has the most profound impact on mineralization when administered during the period of matrix maturation. Additionally, a large set of genes was regulated by oxygen, independent of the differentiation phase. These genes were involved in cell metabolisms and matrix formation. Our study demonstrates that variation in oxygen tension strongly affects gene expression in differentiating osteoblasts. The magnitude of this change for either expression levels or the number of regulated probes, depends on the osteoblast differentiation stage, with the phase prior to the onset of mineralization being most sensitive.


Assuntos
Calcificação Fisiológica/fisiologia , Osteoblastos , Oxigênio/metabolismo , Diferenciação Celular , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Transdução de Sinais , Ativação Transcricional
19.
J Cell Physiol ; 228(2): 402-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22740316

RESUMO

Mice lacking the renal epithelial Ca(2+) channel TRPV5 (TRPV5(-/-)) display impaired renal Ca(2+) reabsorption, hypercalciuria, and intestinal Ca(2+) hyperabsorption, due to secondary hypervitaminosis D. Using these mice, we previously demonstrated that ZK191784 acts as an intestine-specific 1,25(OH)(2) D(3) antagonist without affecting serum calcium levels. On the other hand, it acted as an agonist in the kidney and the effects of ZK191784 on bone were ambiguous. The present study was undertaken to further evaluate the effect of the vitamin D receptor antagonist on murine bone in mice lacking TRPV5. Eight-week-old female Trpv5(+/+) and Trpv5(-/-) mice were treated for 4 weeks with or without 50 µg/kg/day ZK191784. Quantitative backscattered electron imaging showed that the reduced bone matrix mineralization found in femoral bones of Trpv5(-/-) mice was partially but significantly restored upon ZK191784 treatment, just as we observed for trabecular bone thickness. This supports the significance of 1,25(OH)(2) D(3) and optimal control of Ca(2+) homeostasis for bone formation and matrix mineralization. Restoration also took place at the bone gene expression level, where 1α-hydroxylase (Cyp27b1) mRNA in femurs from ZK-treated Trpv5(-/-) mice was upregulated compared to control levels. The downregulated 24-hydroxylase (Cyp24a1) gene expression in femoral bone indicated local vitamin D resistance in the mice treated with ZK191784. Phosphate homeostasis was unaffected between the groups as shown by unaltered serum PO(4)(3-) and fibroblast growth factor (FGF) 23 as well as Fgf23 mRNA expression in bone. In conclusion, circulating 1,25(OH)(2) D(3) is important for optimal control of Ca(2+) homeostasis but also for controlled bone formation and matrix mineralization.


Assuntos
Matriz Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Calcitriol/análogos & derivados , Canais de Cálcio/deficiência , Canais de Cátion TRPV/deficiência , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/biossíntese , Animais , Calcitriol/farmacologia , Cálcio/metabolismo , Colecalciferol/sangue , Colecalciferol/metabolismo , Feminino , Fêmur/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Fosfatos/sangue , Esteroide Hidroxilases/biossíntese , Vitamina D/antagonistas & inibidores , Vitamina D3 24-Hidroxilase
20.
J Zoo Wildl Med ; 44(3): 529-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24063079

RESUMO

The aim of the current study was to assess the effect of oral calcium and cholecalciferol supplementation on several parameters of calcium status in plasma and urine of captive Asian (Elephas maximus; n=10) and African elephants (Loxodonta africana; n=6) and to detect potential species differences. Calcium and cholecalciferol supplementation were investigated in a feeding trial using a crossover design consisting of five periods of 28 days each in summer. From days 28-56 (period 2), elephants were fed the Ca-supplemented diet and from days 84-112, elephants were fed the cholecalciferol-supplemented diet (period 4). The control diet was fed during the other periods and was based on their regular ration, and the study was repeated similarly during winter. Periods 1, 3, and 5 were regarded as washout periods. This study revealed species-specific differences with reference to calcium and cholecalciferol supplementation. Asian elephants showed a significant increase in mean plasma total calcium concentration following calcium supplementation during summer, suggesting summer-associated subclinical hypocalcemia in Western Europe. During winter, no effect was seen after oral calcium supplementation, but a significant increase was seen both in mean plasma, total, and ionized calcium concentrations after cholecalciferol supplementation in Asian elephants. In contrast, evidence of subclinical hypocalcemia could be demonstrated neither in summer nor in winter in African elephants, although 28 days of cholecalciferol supplementation during winter reversed the decrease in plasma 1,25(OH)2-cholecalciferol and was followed by a significant increase in mean plasma total calcium concentration. Preliminary findings indicate that the advisable permanent daily intake for calcium in Asian elephants and cholecalciferol in both elephant species at least during winter might be higher than current guidelines. It is strongly recommended to monitor blood calcium concentrations and, if available, blood parathyroid hormone levels to adjust the nutritional supplementation for each individual elephant.


Assuntos
Cálcio/sangue , Cálcio/farmacologia , Colecalciferol/farmacologia , Elefantes/sangue , Animais , Animais de Zoológico , Cálcio/urina , Colecalciferol/administração & dosagem , Estudos Cross-Over , Feminino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA