Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(1): 377-385, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38091499

RESUMO

Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. Here, we describe a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. The method is almost identical to conventional shotgun proteomics analysis of bone samples, except that the database used by the SEQUEST search engine consisted only of entries for collagen type 1 alpha 2 (COL1A2) proteins from various vertebrates. Accordingly, the COL1A2 peptides that differ in sequence among species act as species marker peptides. In SEQUEST-based shotgun proteomics, the protein entries that contain more marker peptide sequences are assigned higher scores; therefore, the highest-scoring protein entry will be the COL1A2 entry for the species from which the analyzed bone was derived. We tested our method using bone samples from 30 vertebrate species and found that all species were correctly identified. In conclusion, COL1A2 can be used as a bone protein barcode and can be read through shotgun proteomics, allowing for automatic bone species identification. Data are available via ProteomeXchange with the identifier PXD045402.


Assuntos
Proteínas , Proteômica , Animais , Proteômica/métodos , Proteínas/análise , Peptídeos/análise , Sequência de Aminoácidos , Bases de Dados de Proteínas
2.
Curr Issues Mol Biol ; 46(5): 4106-4118, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38785520

RESUMO

Osteogenesis imperfecta (OI) is a group of inherited disorders of connective tissue that cause significant deformities and fragility in bones. Most cases of OI are associated with pathogenic variants in collagen type I genes and are characterized by pronounced polymorphisms in clinical manifestations and the absence of clear phenotype-genotype correlation. The objective of this study was to conduct a comprehensive molecular-genetic and clinical analysis to verify the diagnosis of OI in six Russian patients with genetic variants in the COL1A1 and COL1A2 genes. Clinical and laboratory data were obtained from six OI patients who were observed at the Medical Genetics Center in Saint Petersburg from 2016 to 2023. Next-generation sequencing on MGISEQ G400 (MGI, China) was used for DNA analysis. The GATK bioinformatic software (version 4.5.0.0) was used for variant calling and hard filtering. Genetic variants were verified by the direct automatic sequencing of PCR products using the ABI 3500X sequencer. We identified six genetic variants, as follows pathogenic c.3505G>A (p. Gly1169Ser), c.769G>A (p.Gly257Arg), VUS c.4123G>A (p.Ala1375Thr), and c.4114A>T (p.Asn1372Tyr) in COL1A1; and likely pathogenic c.2035G>A (p.Gly679Ser) and c.739-2A>T in COL1A2. In addition, clinical cases are presented due to the presence of the c.4114A>T variant in the COL1A2 gene. Molecular genetics is essential for determining different OI types due to the high similarity across various types of the disease and the failure of unambiguous diagnosis based on clinical manifestations alone. Considering the variable approaches to OI classification, an integrated strategy is required for optimal patient management.

3.
Am J Med Genet C Semin Med Genet ; 193(2): 147-159, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896471

RESUMO

Pathogenic variants in COL1A1 and COL1A2 are involved in osteogenesis imperfecta (OI) and, rarely, Ehlers-Danlos syndrome (EDS) subtypes and OI-EDS overlap syndromes (OIEDS1 and OIEDS2, respectively). Here we describe a cohort of 34 individuals with likely pathogenic and pathogenic variants in COL1A1 and COL1A2, 15 of whom have potential OIEDS1 (n = 5) or OIEDS2 (n = 10). A predominant OI phenotype and COL1A1 frameshift variants are present in 4/5 cases with potential OIEDS1. On the other hand, 9/10 potential OIEDS2 cases have a predominant EDS phenotype, including four with an initial diagnosis of hypermobile EDS (hEDS). An additional case with a predominant EDS phenotype had a COL1A1 arginine-to-cysteine variant that was originally misclassified as a variant of uncertain significance despite this type of variant being associated with classical EDS with vascular fragility. Vascular/arterial fragility was observed in 4/15 individuals (including one individual with an original diagnosis of hEDS), which underscores the unique clinical surveillance and management needs in these patients. In comparison to previously described OIEDS1/2, we observed differentiating features that should be considered to refine currently proposed criteria for genetic testing in OIEDS, which will be beneficial for diagnosis and management. Additionally, these results highlight the importance of gene-specific knowledge for informed variant classification and point to a potential genetic resolution (COL1A2) for some cases of clinically diagnosed hEDS.


Assuntos
Síndrome de Ehlers-Danlos , Osteogênese Imperfeita , Humanos , Cadeia alfa 1 do Colágeno Tipo I , Mutação , Colágeno Tipo I/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/patologia , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Fenótipo
4.
Clin Genet ; 104(3): 287-297, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448157

RESUMO

Tooth eruption is an important and unique biological process during craniofacial development. Both the genetic and environmental factors can interfere with this process. Here we aimed to find the failure pattern of tooth eruption among five genetic diseases. Both systematic review and meta-analysis were used to identify the genotype-phenotype associations of unerupted teeth. The meta-analysis was based on the characteristics of abnormal tooth eruption in 223 patients with the mutations in PTH1R, RUNX2, COL1A1/2, CLCN7, and FAM20A respectively. We found all the patients presented selective failure of tooth eruption (SFTE). Primary failure of eruption patients with PTH1R mutations showed primary or isolated SFTE1 in the first and second molars (59.3% and 52% respectively). RUNX2 related cleidocranial dysplasia usually had SFTE2 in canines and premolars, while COL1A1/2 related osteogenesis imperfecta mostly caused SFTE3 in the maxillary second molars (22.9%). In CLCN7 related osteopetrosis, the second molars and mandibular first molars were the most affected. While FAM20A related enamel renal syndrome most caused SFTE5 in the second molars (86.2%) and maxillary canines. In conclusion, the SFTE was the common characteristics of most genetic diseases with abnormal isolated or syndromic tooth eruption. The selective pattern of unerupted teeth was gene-dependent. Here we recommend SFTE to classify those genetic unerupted teeth and guide for precise molecular diagnosis and treatment.


Assuntos
Anormalidades Dentárias , Dente não Erupcionado , Humanos , Erupção Dentária/genética , Dente não Erupcionado/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fenótipo , Genótipo , Canais de Cloreto/genética
5.
Oral Dis ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498913

RESUMO

OBJECTIVE: To investigate the effects of key pathogenic genes involved in the development of jaw ameloblastoma (AB) and its associated extracellular matrix (ECM) on osteogenic differentiation in order to provide a theoretical foundation for future research into bone aggressiveness of AB. METHODS: The essential genes were identified by five AB patients for whole-exome sequencing and the microarray datasets GES38494 and GES132472. Moreover, the expression of key genes and their encoded proteins in AB tissues was explored. In addition, AB-derived the decellularized ECM (ABdECM) tissues were generated by the decellularization technique. Furthermore, the osteogenic development of periodontal ligament stem cells (PDLSCs) was mimicked by simulating the effects of the AB tumor microenvironment (TME). RESULTS: The AB essential genes including COL1A2, COL4A2, FBN1, and HPSE were discovered. Among them, the expression of HPSE was down-regulated, while that of COL1A2, COL4A2, and FBN1 was noticeably upregulated in AB compared with normal gingival tissues of the jaws. In vitro osteogenic differentiation of PDLSCs was suppressed by the ABdECM. CONCLUSIONS: Abnormal ECM proteins encoded by COL4A2, COL1A2, FBN1, and HPSE genes can cause disturbance in the ECM environment of AB and promote bone resorption.

6.
Genet Med ; 24(9): 1920-1926, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35657380

RESUMO

PURPOSE: Short stature is common in osteogenesis imperfecta (OI) and is usually severe in OI types III and IV. The characteristics of pubertal growth in OI have not been studied in detail. METHODS: We assessed 82 individuals with OI caused by pathogenic variants in COL1A1 or COL1A2 who had annual height data between 6 and 16 years of age at a minimum. Height velocity curves were fitted to each individual's height data to describe the pubertal growth spurt. RESULTS: Curve fitting was successful in 30 of the 33 individuals with OI type I (91%), in 23 of the 32 individuals with OI type IV (72%), and in 4 of the 17 participants with OI type III (24%). Pubertal growth spurt could be identified in most individuals with OI types I and IV, but rarely in OI type III. The timing of the pubertal growth spurt was similar between OI types I and IV in both sexes. However, height velocity was consistently higher in OI type I, leading to a widening height gap between OI types I and IV. CONCLUSION: A pubertal growth spurt was present in most individuals with OI types I and IV, but rarely in OI type III.


Assuntos
Osteogênese Imperfeita , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Humanos , Masculino , Mutação , Osteogênese Imperfeita/genética
7.
Osteoporos Int ; 33(6): 1373-1384, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35044492

RESUMO

Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in COL1A1/2 genes. INTRODUCTION: Ninety percent of OI cases are caused by pathogenic variants in the COL1A1/COL1A2 gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms. METHODS: We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the COL1A1/COL1A2 genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features. RESULTS: With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for COL1A1 defects, 0.545 and 0.731, respectively, for COL1A2 defects. For the 17 patients from our hospital, prediction accuracy for the patient with the COL1A1 and COL1A2 defects was 76.5% (95% CI: 50.1-93.2%) and 88.2% (95% CI: 63.6-98.5%), respectively. CONCLUSION: We established an OI severity prediction model depending on multiple features of the specific variants in COL1A1/2 genes, with a prediction accuracy of 76-88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I , Osteogênese Imperfeita , Criança , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Humanos , Mutação , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética
8.
Am J Med Genet A ; 188(9): 2560-2575, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822426

RESUMO

Abnormalities in type I procollagen genes (COL1A1 and COL1A2) are responsible for hereditary connective tissue disorders including osteogenesis imperfecta (OI), specific types of Ehlers-Danlos syndrome (EDS), and COL1-related overlapping disorder (C1ROD). C1ROD is a recently proposed disorder characterized by predominant EDS symptoms of joint and skin laxity and mild OI symptoms of bone fragility and blue sclera. Patients with C1ROD do not carry specific variants for COL1-related EDS, including classical, vascular, cardiac-valvular, and arthrochalasia types. We describe clinical and molecular findings of 23 Japanese patients with pathogenic or likely pathogenic variants of COL1A1 or COL1A2, who had either OI-like or EDS-like phenotypes. The final diagnoses were OI in 17 patients, classical EDS in one, and C1ROD in five. The OI group predominantly experienced recurrent bone fractures, and the EDS group primarily showed joint hypermobility and skin hyperextensibility, though various clinical and molecular overlaps between OI, COL1-related EDS, and C1ROD as well as intrafamilial phenotypic variabilities were present. Notably, life-threatening vascular complications (vascular dissections, arterial aneurysms, subarachnoidal hemorrhages) occurred in seven patients (41% of those aged >20 years) with OI or C1ROD. Careful lifelong surveillance and intervention regarding bone and vascular fragility could be required.


Assuntos
Síndrome de Ehlers-Danlos , Osteogênese Imperfeita , Anormalidades da Pele , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Mutação , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética , Fenótipo
9.
Biochem Biophys Res Commun ; 581: 89-95, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34662808

RESUMO

Tooth development involves the coordinated transcriptional regulation of extracellular matrix proteins produced by ameloblasts and odontoblasts. In this study, whole-genome ChIP-seq analysis was applied to identify the transcriptional regulatory gene targets of Sp6 in mesenchymal cells of the developing tooth. Bioinformatic analysis of a pool of Sp6 target peaks identified the consensus nine nucleotide binding DNA motif CTg/aTAATTA. Consistent with these findings, a number of enamel and dentin matrix genes including amelogenin (Amelx), ameloblastin (Ambn), enamelin (Enam) and dental sialophosphoprotein (Dspp), were identified to contain Sp6 target sequences. Sp6 peaks were also found in other important tooth genes including transcription factors (Dlx2, Dlx3, Dlx4, Dlx5, Sp6, Sp7, Pitx2, and Msx2) and extracellular matrix-related proteins (Col1a2, Col11a2, Halpn1). Unsupervised UMAP clustering of tooth single cell RNA-seq data confirmed the presence of Sp6 transcripts co-expressed with many of the identified target genes within ameloblasts and odontoblasts. Lastly, transcriptional reporter assays using promoter fragments from the Hapln1 and Sp6 gene itself revealed that Sp6 co-expression enhanced gene transcriptional activity. Taken together these results highlight that Sp6 is a major regulator of multiple extracellular matrix genes in the developing tooth.


Assuntos
Ameloblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Fatores de Transcrição Kruppel-Like/genética , Dente Molar/metabolismo , Odontoblastos/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Amelogenina/genética , Amelogenina/metabolismo , Animais , Animais Recém-Nascidos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos/citologia , Regiões Promotoras Genéticas , Proteoglicanas/genética , Proteoglicanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo
10.
Mol Carcinog ; 60(7): 497-507, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004031

RESUMO

Epidermal squamous cell carcinoma (SCC) develops in response to ultraviolet light exposure and is among the most common cancers. The transglutaminase 2 cancer cell survival protein stimulates the activity of the YAP1/TEAD transcription complex to drive the expression of genes that promote aggressive epidermal SCC cell invasion, migration, and tumor formation. Therefore, we are interested in mechanisms that may inhibit these events. Vestigial-like protein-4 (VGLL4) is a transcription cofactor/tumor suppressor that inhibits several pro-cancer pathways including YAP1 signaling. Our present studies show that VGLL4 inhibits YAP1/TEAD-dependent transcription to reduce the expression of YAP1 target genes (CCND1, CYR61, and CTGF) and pro-cancer collagen genes (COL1A2 and COL3A1). We further show that loss of these YAP1 regulated genes is required for VGLL4 suppression of the cancer cell phenotype, as forced CCND1 or COL1A2 expression partially restores the aggressive cancer phenotype in VGLL4 expressing cells. Consistent with these findings, VGLL4 expression reduces tumor formation, and this is associated with reduced CCND1, CYR61, CTGF, COL1A2, and COL1A3 mRNA and protein levels, and reduced EMT marker expression. These findings indicate that VGLL4 suppresses the malignant epidermal SCC cancer phenotype by inhibiting YAP1/TEAD-dependent pro-cancer signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
11.
Mol Genet Metab ; 133(2): 201-210, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33707149

RESUMO

We report the clinical, biochemical and genetic findings from a Spanish boy of Caucasian origin who presented with fever-dependent RALF (recurrent acute liver failure) and osteogenesis imperfecta (OI). Whole-exome sequencing (WES) uncovered two compound heterozygous variants in NBAS (c.[1265 T > C];[1549C > T]:p.[(Leu422Pro)];[(Arg517Cys)]), and a heterozygous variant in P4HB (c.[194A > G];[194=]:p.[(Lys65Arg)];[(Lys65=)]) that was transmitted from the clinically unaffected mother who was mosaic carrier of the variant. Variants in NBAS protein have been associated with ILFS2 (infantile liver failure syndrome-2), SOPH syndrome (short stature, optic nerve atrophy, and Pelger-Huët anomaly syndrome), and multisystem diseases. Several patients showed clinical manifestations affecting the skeletal system, such as osteoporosis, pathologic fractures and OI. Experiments in the patient's fibroblasts demonstrated that mutated NBAS protein is overexpressed and thermally unstable, and reduces the expression of MGP, a regulator of bone homeostasis. Variant in PDI (protein encoded by P4HB) has been associated with CLCRP1 (Cole-Carpenter syndrome-1), a type of severe OI. An increase of COL1A2 protein retention was observed in the patient's fibroblasts. In order to study if the variant in P4HB was involved in the alteration in collagen trafficking, overexpression experiments of PDI were carried out. These experiments showed that overexpression of mutated PDI protein produces an increase in COL1A2 retention. In conclusion, these results corroborate that the variants in NBAS are responsible for the liver phenotype, and demonstrate that the variant in P4HB is involved in the bone phenotype, probably in synergy with NBAS variants.


Assuntos
Colágeno Tipo I/genética , Falência Hepática Aguda/genética , Proteínas de Neoplasias/genética , Osteogênese Imperfeita/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Isomerases de Dissulfetos de Proteínas/genética , Criança , Pré-Escolar , Craniossinostoses/complicações , Craniossinostoses/genética , Craniossinostoses/patologia , Nanismo/diagnóstico por imagem , Nanismo/genética , Nanismo/patologia , Anormalidades do Olho/complicações , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Febre/complicações , Febre/genética , Heterozigoto , Humanos , Hidrocefalia/complicações , Hidrocefalia/genética , Hidrocefalia/patologia , Lactente , Recém-Nascido , Fígado/diagnóstico por imagem , Fígado/patologia , Falência Hepática Aguda/complicações , Falência Hepática Aguda/diagnóstico por imagem , Falência Hepática Aguda/patologia , Masculino , Mutação/genética , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/patologia , Fenótipo , Sequenciamento do Exoma
12.
Cancer Cell Int ; 21(1): 7, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407453

RESUMO

BACKGROUND: LncRNA was known to be closely associated with the progression of human tumors. The role of lncRNA LIFR-AS1 in the pathogenesis and progression of gastric tumor is still unclear. The aim of this study was to investigate the function of LIFR-AS1 and the underlying mechanism in the pathogenesis and progression of gastric cancer. METHODS: QRT-PCR was used to evaluate the expression of LIFR-AS1, miR-29a-3p and COL1A2 in gastric tumor tissues and cells. Western blotting was used to evaluate the protein expression of COL1A2 in gastric tumor cells. CCK-8 assay, transwell assay and flow cytometry were used to evaluate the roles of LIFR-AS1, miR-29a-3p and COL1A2 in cell proliferation, invasion, migration and apoptosis. The relationship among LIFR-AS1, miR-29a-3p and COL1A2 was assessed by bioinformatics analyses and luciferase reporter assay. RESULTS: The expression levels of LIFR-AS1 were significantly increased in gastric tumor tissues and cells, while the expression levels of miR-29a-3p were decreased. The expression of miR-29a-3p was negatively correlated with the expression of LIFR-AS1 in gastric cancer tumor tissues. Knocking down of LIFR-AS1 inhibited proliferation, invasion and migration of gastric tumor cells, and induced apoptosis of gastric tumor cells. Bioinformatics analyses and integrated experiments revealed that LIFR-AS1 elevated the expression of COL1A2 through sponging miR-29a-3p, which further resulted in the progression of gastric tumor. CONCLUSION: LIFR-AS1 plays an important role as a competing endogenous RNA in gastric tumor pathogenesis and may be a potential target for the diagnosis and treatment of gastric tumor.

13.
Exp Dermatol ; 30(8): 1090-1098, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33354832

RESUMO

LncRNA COL1A2-AS1 has been demonstrated to inhibit fibroblast proliferation of hypertrophic scars. However, the function of COL1A2-AS1 in normal skin fibroblasts remains poorly studied. Here, we report that overexpression of COL1A2-AS1 promoted normal skin fibroblast apoptosis. On the basis of mRNA-seq data and gene set enrichment analysis plus Kyoto encyclopedia of genes and genomes pathway analysis, 16 upregulated and 125 downregulated mRNAs were found; TGF-ß, Wnt, and MAPK pathways were potentially involved. Western blot assay confirmed that overexpression of COL1A2-AS1 repressed p-Smad3 expression and promoted ß-catenin expression. Furthermore, COL1A2-AS1 overexpression combined with either TGF-ß1 or siRNA against ß-catenin reversed the upregulation of apoptosis in the COL1A2-AS1 overexpression group. In conclusion, our study revealed the roles of COL1A2-AS1 in normal skin fibroblast apoptosis, with COL1A2-AS1 functioning by repressing p-Smad3 expression and promoting ß-catenin expression.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , RNA Longo não Codificante/fisiologia , Proteína Smad3/metabolismo , beta Catenina/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Humanos , Regulação para Cima
14.
J Bone Miner Metab ; 39(3): 416-422, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33070251

RESUMO

INTRODUCTION: Osteogenesis imperfecta (OI) is a well-known heritable disorder of connective tissue characterized by skeletal fragility and low bone mass. Nearly 90% of patients with OI have disease variants in COL1A1 and COL1A2 that encode for the α1 and α2 chains of type I collagen. MATERIALS AND METHODS: A retrospective analysis of 185 probands who were diagnosed with OI in Shanghai Jiao Tong University Affiliated Sixth People's Hospital from March 2005 to December 2019 was performed. RESULTS: A total of 140 mutations in COL1A1 and 45 mutations in COL1A2 were identified, of which 18 variations were novel. In the phenotype analysis, there were more sporadic cases than familial OI cases in China (54.6% vs. 45.4%, P < 0.001). A total of 98.9% of patients presented with a fracture history. The most common fracture sites were extremity long bones (femur, tibia-fibula and radius-ulna accounted for 36.6%, 17.1% and 11.7%, respectively). Patients with OI types III and IV, especially type III, had a higher proportion of dentinogenesis imperfecta (DI) than patients with OI type I (55% vs. 28%, P < 0.001). Interestingly, G767S and D1219N in COL1A1 and G337S in COL1A2 were the most frequent (3.52%, 2.11% and 8.89%, respectively), which seem to be hotspot mutations in the COL1A1 and COL1A2 genes in Chinese patients. CONCLUSIONS: This study describes the mutations in the main pathogenic genes, COL1A1 and COL1A2, and the clinical characteristics of osteogenesis imperfecta in China. Furthermore, these findings help reveal the genetic basis of Asian OI patients and contribute to genetic counselling.


Assuntos
Povo Asiático/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , China , Colágeno Tipo I/genética , Feminino , Fêmur , Fraturas Ósseas/genética , Estudos de Associação Genética , Haploinsuficiência/genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Estudos Retrospectivos , Adulto Jovem
15.
BMC Musculoskelet Disord ; 22(1): 525, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098919

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a heterogeneous connective tissue disorder characterized by increased bone fragility and a series of extraskeletal manifestations. Approximately 90 % of OI cases are caused by type I collagen variants encoded by the collagen type I alpha 1 (COL1A1) or type I alpha 2 (COL1A2) gene. Lumbar Scheuermann's disease is an atypical type of Scheuermann's disease accompanied by Schmorl's nodes and irregular endplates but without pronounced kyphosis. Although the etiology of Scheuermann's disease is unclear, genetic and environmental factors are likely. CASE PRESENTATION: Here, we report a 32-year-old male patient who experienced multiple brittle fractures. Gene sequencing revealed a heterozygous mutation, c.4048G > A (p.G1350S), in the COL1A2 gene, and the patient was diagnosed with OI. Magnetic resonance imaging of his thoracolumbar spine revealed multiple Schmorl's nodes. CONCLUSIONS: This is the first reported case of OI coexisting with the spinal presentation of Scheuermann's disease. It is speculated that the COL1A2 gene mutation might be an underlying novel genetic cause of Scheuermann's disease. In conclusion, this case demonstrates the relationship between Scheuermann's disease and OI for the first time and enriches the genotype-phenotype spectrum of OI.


Assuntos
Deslocamento do Disco Intervertebral , Osteogênese Imperfeita , Doença de Scheuermann , Adulto , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Humanos , Masculino , Mutação , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética
16.
J Cell Mol Med ; 24(9): 4915-4930, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198822

RESUMO

DICER is a key rate-limiting enzyme in the canonical miRNAs biogenesis pathway, and DICER and DICER-dependent miRNAs have been proved to play essential roles in many physiological and pathological processes. However, whether DICER is involved in placentation has not been studied. Successful spiral artery remodelling is one of the key milestones during placentation, which depends mostly on the invasion of trophoblasts and the crosstalk between trophoblasts and endothelial cells. In the present study, we show that DICER knockdown impairs the invasion ability of both primary extravillous trophoblasts (EVT) and HTR8/SVneo (HTR8) cell lines. The decreased invasion of HTR8 cells upon DICER knockdown (sh-Dicer) was partly due to the up-regulation of miR-16-2-3p, which led to a reduced expression level of the collagen type 1 alpha 2 chain (COL1A2) protein. Moreover, microvesicles (MVs) can be secreted by HTR8 cells and promote the tube formation ability of human umbilical cord vein endothelial cells (HUVECs). However, conditioned medium and MVs derived from sh-Dicer HTR8 cells have an anti-angiogenic effect, due to reduced angiogenic factors and increased anti-angiogenic miRNAs (including let-7d, miR-1-6-2 and miR-15b), respectively. In addition, reduced protein expression of DICER is found in PE placenta by immunoblotting and immunohistochemistry. In summary, our study uncovered a novel DICER-miR-16-2-COL1A2 mediated pathway involved in the invasion ability of EVT, and DICER-containing MVs mediate the pro-angiogenic effect of trophoblast-derived conditioned medium on angiogenesis, implying the involvement of DICER in the pathogenesis of PE.


Assuntos
RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Neovascularização Fisiológica , Ribonuclease III/deficiência , Ribonuclease III/genética , Trofoblastos/metabolismo , Indutores da Angiogênese/metabolismo , Linhagem Celular , Movimento Celular , Colágeno Tipo I/metabolismo , Meios de Cultivo Condicionados/metabolismo , Eletroporação , Células Endoteliais/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/metabolismo , Nanopartículas/química , Neovascularização Patológica , Placenta/metabolismo , Placentação , Gravidez , RNA Interferente Pequeno/metabolismo , Regulação para Cima
17.
Ann Hum Genet ; 84(4): 339-344, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31853946

RESUMO

Osteogenesis imperfecta (OI) is a rare heritable disease with systemic connective tissue disorder. Most of the patients represent autosomal dominant form of OI, and are usually resulting from the mutations in type I collagen genes. However, the gene mutations reported previously only account for ∼70% of the OI cases. Here, in a Chinese OI family, we examined seven patients and nine normal individuals using the whole genome sequencing and molecular genetic analysis. The mutation of rs66612022 (COL1A2:p.Gly328Ser) related to glycine substitution was found in the seven patients. Moreover, we identified a novel missense mutation (HMMR:p.Glu2Gln). Interestingly, the individuals of this family with both the mutations were suffering from OI, while the others carried one or none of them are normal. The mutations of COL1A2 and HMMR and their combined effect on OI would further expand the genetic spectrum of OI.


Assuntos
Colágeno Tipo I/genética , Proteínas da Matriz Extracelular/genética , Receptores de Hialuronatos/genética , Osteogênese Imperfeita/genética , Povo Asiático/genética , China , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
18.
Clin Genet ; 97(3): 396-406, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794058

RESUMO

The 2017 classification of Ehlers-Danlos syndromes (EDS) identifies three types associated with causative variants in COL1A1/COL1A2 and distinct from osteogenesis imperfecta (OI). Previously, patients have been described with variable features of both disorders, and causative variants in COL1A1/COL1A2; but this phenotype has not been included in the current classification. Here, we expand and re-define this OI/EDS overlap as a missing EDS type. Twenty-one individuals from 13 families were reported, in whom COL1A1/COL1A2 variants were found after a suspicion of EDS. None of them could be classified as affected by OI or by any of the three recognized EDS variants associated with COL1A1/COL1A2. This phenotype is dominated by EDS-related features. OI-related features were limited to mildly reduced bone mass, occasional fractures and short stature. Eight COL1A1/COL1A2 variants were novel and five recurrent with a predominance of glycine substitutions affecting residues within the procollagen N-proteinase cleavage site of α1(I) and α2(I) procollagens. Selected variants were investigated by biochemical, ultrastructural and immunofluorescence studies. The pattern of observed changes in the dermis and in vitro for selected variants was more typical of EDS rather than OI. Our findings indicate the existence of a wider recognizable spectrum associated with COL1A1/COL1A2.


Assuntos
Colágeno Tipo I/genética , Doenças do Tecido Conjuntivo/classificação , Síndrome de Ehlers-Danlos/classificação , Variação Genética , Osteogênese Imperfeita/classificação , Adolescente , Adulto , Criança , Pré-Escolar , Colágeno Tipo I/ultraestrutura , Cadeia alfa 1 do Colágeno Tipo I , Tecido Conjuntivo/ultraestrutura , Doenças do Tecido Conjuntivo/genética , Demografia , Síndrome de Ehlers-Danlos/genética , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Osteogênese Imperfeita/genética , Fenótipo , Adulto Jovem
19.
Am J Med Genet A ; 182(5): 994-1007, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32091183

RESUMO

Arthrochalasia Ehlers-Danlos syndrome (aEDS) is a rare autosomal dominant connective tissue disorder that is characterized by congenital bilateral hip dislocations, severe generalized joint hypermobility, recurrent joint (sub)luxations, and skin hyperextensibility. To date, 42 patients with aEDS have been published. We report 12 patients with aEDS from 10 families with 6 unpublished individuals and follow-up data on 6 adult patients. The clinical features are largely comparable with patients reported in the literature. Most (n = 10) patients had variants leading to (partial) loss of exon 6 of the COL1A1 or COL1A2 genes. One patient did not have a previously reported likely pathogenic COL1A1 variant. Data regarding management were retrieved. Hip surgery was performed in 5/12 patients and 3/12 patients underwent spinal surgery. As much as 4/12 patients were wheelchair-bound or unable to walk unaided. Fractures were present in 9/12 individuals with 1 patient requiring bisphosphonate treatment. Echocardiograms were performed in 10 patients and 2 individuals showed an abnormality likely unrelated to aEDS. One patient gave birth to two affected children and went through preterm labor requiring medication but had no additional complications. Of the eight adults in our cohort, the majority entered a career. Our data point toward a genotype-phenotype relationship with individuals with aEDS due to pathogenic COL1A1 variants causing complete or partial loss of exon 6 being more severely affected regarding musculoskeletal features. There is a significant lack of knowledge with regard to management of aEDS, particularly in adulthood. As such, systematic follow-up and multidisciplinary treatment is essential.


Assuntos
Colágeno Tipo I/genética , Síndrome de Ehlers-Danlos/genética , Luxação Congênita de Quadril/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cadeia alfa 1 do Colágeno Tipo I , Síndrome de Ehlers-Danlos/epidemiologia , Síndrome de Ehlers-Danlos/fisiopatologia , Éxons/genética , Feminino , Predisposição Genética para Doença , Luxação Congênita de Quadril/epidemiologia , Luxação Congênita de Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fenótipo , Anormalidades da Pele/genética , Anormalidades da Pele/fisiopatologia , Adulto Jovem
20.
J Bone Miner Metab ; 38(2): 188-197, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31414283

RESUMO

High-resolution melting (HRM) analysis has been shown to be a time-saving method for the screening of genetic variants. To increase the precision of the diagnosis of osteogenesis imperfecta (OI), we used HRM to explore COL1A1/COL1A2 mutations in 87 Chinese OI patients and to perform population-based studies of the relationships between their genotypes and phenotypes. Peripheral blood samples were collected from the 87 non-consanguineous probands. The coding regions and exon boundaries of COL1A1/COL1A2 were detected by HRM and confirmed by Sanger sequencing. The functional effects of mutations were predicted through bioinformatic tools. Mutations were detected in 70.3% of familial cases and 40% of sporadic cases (p < 0.01). Compared with COL1A1 mutations, patients with COL1A2 mutations were more prone to severe phenotypes. Helical mutations (caused by substitution of the glycine within the Gly-X-Y triplet domain) were more likely to occur in patients with type III and IV (p < 0.05). Haploinsufficiency mutations (caused by frameshift, nonsense, and splice-site mutations) appeared more frequently in patients with type I (p < 0.05). Compared with the Sanger sequencing and whole exome sequencing (WES), HRM was found to reduce total costs by 78%- 80% in patients who had a positive HRM separate melting curve. Our findings suggest that HRM would greatly benefit small and understaffed hospitals and laboratories, and would facilitate the accurate diagnosis and early treatment of OI in remote and less developed regions.


Assuntos
Povo Asiático/genética , Colágeno Tipo I/genética , Testes Genéticos , Mutação/genética , Desnaturação de Ácido Nucleico , Osteogênese Imperfeita/genética , Adolescente , Substituição de Aminoácidos/genética , Criança , Cadeia alfa 1 do Colágeno Tipo I , Éxons/genética , Feminino , Testes Genéticos/economia , Genótipo , Humanos , Masculino , Fenótipo , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA