Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 800
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Biochem Sci ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39384487

RESUMO

Strigolactones (SLs) perform versatile functions in plants. The different members of the α/ß-hydrolase superfamily bind and hydrolyze SLs at varying rates to transduce their signal or maintain SL homeostasis. Recent work by Palayam et al. on SL-degrading carboxylesterases (CXEs) uncovers structural elements that determine the mechanism, efficiency of SL hydrolysis, and biological functions.

2.
Proc Natl Acad Sci U S A ; 120(23): e2217398120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252955

RESUMO

We investigate the underlying distribution of orbital eccentricities for planets around early-to-mid M dwarf host stars. We employ a sample of 163 planets around early- to mid-M dwarfs across 101 systems detected by NASA's Kepler Mission. We constrain the orbital eccentricity for each planet by leveraging the Kepler lightcurve together with a stellar density prior, constructed using metallicity from spectroscopy, Ks magnitude from 2MASS, and stellar parallax from Gaia. Within a Bayesian hierarchical framework, we extract the underlying eccentricity distribution, assuming alternately Rayleigh, half-Gaussian, and Beta functions for both single- and multi-transit systems. We described the eccentricity distribution for apparently single-transiting planetary systems with a Rayleigh distribution with [Formula: see text], and for multitransit systems with [Formula: see text]. The data suggest the possibility of distinct dynamically warmer and cooler subpopulations within the single-transit distribution: The single-transit data prefer a mixture model composed of two distinct Rayleigh distributions with [Formula: see text] and [Formula: see text] over a single Rayleigh distribution, with 7:1 odds. We contextualize our findings within a planet formation framework, by comparing them to analogous results in the literature for planets orbiting FGK stars. By combining our derived eccentricity distribution with other M dwarf demographic constraints, we estimate the underlying eccentricity distribution for the population of early- to mid-M dwarf planets in the local neighborhood.

3.
Plant J ; 119(1): 432-444, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38635415

RESUMO

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Assuntos
Hordeum , Doenças das Plantas , Proteínas de Plantas , Tiamina , Hordeum/virologia , Hordeum/genética , Hordeum/metabolismo , Tiamina/metabolismo , Tiamina/biossíntese , Doenças das Plantas/virologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luteovirus/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Virais/metabolismo , Proteínas Virais/genética , Cloroplastos/metabolismo , Ácido Salicílico/metabolismo , Interações Hospedeiro-Patógeno , Resistência à Doença/genética
4.
Plant J ; 119(5): 2484-2499, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39007841

RESUMO

Pathogen infection induces massive reprogramming of host primary metabolism. Lipid and fatty acid (FA) metabolism is generally disrupted by pathogens and co-opted for their proliferation. Lipid droplets (LDs) that play important roles in regulating cellular lipid metabolism are utilized by a variety of pathogens in mammalian cells. However, the function of LDs during pathogenic infection in plants remains unknown. We show here that infection by rice black streaked dwarf virus (RBSDV) affects the lipid metabolism of maize, which causes elevated accumulation of C18 polyunsaturated fatty acids (PUFAs) leading to viral proliferation and symptom development. The overexpression of one of the two novel LD-associated proteins (LDAPs) of maize (ZmLDAP1 and ZmLDAP2) induces LD clustering. The core capsid protein P8 of RBSDV interacts with ZmLDAP2 and prevents its degradation through the ubiquitin-proteasome system mediated by a UBX domain-containing protein, PUX10. In addition, silencing of ZmLDAP2 downregulates the expression of FA desaturase genes in maize, leading to a decrease in C18 PUFAs levels and suppression of RBSDV accumulation. Our findings reveal that plant virus may recruit LDAP to regulate cellular FA metabolism to promote viral multiplication and infection. These results expand the knowledge of LD functions and viral infection mechanisms in plants.


Assuntos
Ácidos Graxos , Doenças das Plantas , Proteínas de Plantas , Replicação Viral , Zea mays , Zea mays/virologia , Zea mays/metabolismo , Zea mays/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/virologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/genética , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Vírus de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Reoviridae/fisiologia
5.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35574989

RESUMO

Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas/genética , Humanos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo
6.
Plant J ; 115(6): 1699-1715, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300848

RESUMO

Plant architecture, lodging resistance, and yield are closely associated with height. In this paper, we report the identification and characterization of two allelic EMS-induced mutants of Zea mays, xyl-1, and xyl-2 that display dwarf phenotypes. The mutated gene, ZmXYL, encodes an α-xylosidase which functions in releasing xylosyl residue from a ß-1,4-linked glucan chain. Total α-xylosidase activity in the two alleles is significantly decreased compared to wild-type plants. Loss-of-function mutants of ZmXYL resulted in a decreased xylose content, an increased XXXG content in xyloglucan (XyG), and a reduced auxin content. We show that auxin has an antagonistic effect with XXXG in promoting cell divisions within mesocotyl tissue. xyl-1 and xyl-2 were less sensitive to IAA compared to B73. Based on our study, a model is proposed that places XXXG, an oligosaccharide derived from XyG and the substrate of ZmXYL, as having a negative impact on auxin homeostasis resulting in the dwarf phenotypes of the xyl mutants. Our results provide a insight into the roles of oligosaccharides released from plant cell walls as signals in mediating plant growth and development.


Assuntos
Xilosidases , Zea mays , Zea mays/genética , Ácidos Indolacéticos , Oligossacarídeos/química , Plantas/genética
7.
Curr Issues Mol Biol ; 46(3): 2757-2771, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534789

RESUMO

This study explored the chloroplast (cp) genomes of three Hibiscus syriacus (HS) specimens endemic to Korea possessing unique ornamental and conservation values: the dwarf H. syriacus var. micranthus (HSVM), renowned for its small stature and breeding potential; HS 'Tamra', a cultivar from Korea's southernmost islands, noteworthy for its distinctive beauty; and HS Natural Monument no. 521 (N.M.521), a specimen of significant lifespan and height. Given the scarcity of evolutionary studies on these specimens, we assembled and analyzed their cp genomes. We successfully assembled genomes spanning 160,000 to 160,100 bp and identified intraspecific variants. Among these, a unique ATA 3-mer insertion in the trnL-UAA region was identified in HSVM, highlighting its value as a genetic resource. Leveraging this finding, we developed a novel InDel dCAPS marker, which was validated across 43 cultivars, enhancing our ability to distinguish HSVM and its derivatives from other HS cultivars. Phylogenetic analysis involving 23 Malvaceae species revealed that HSVM forms a clade with woody Hibiscus species, closely associating with N.M.520, which may suggest a shared ancestry or parallel evolutionary paths. This investigation advances our understanding of the genetic diversity in Korean HS and offers robust tools for accurate cultivar identification, aiding conservation and breeding efforts.

8.
Proc Biol Sci ; 291(2031): 20240967, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39288802

RESUMO

The hypothesized main drivers of megafauna extinctions in the late Quaternary have wavered between over-exploitation by humans and environmental change, with recent investigations demonstrating more nuanced synergies between these drivers depending on taxon, spatial scale, and region. However, most studies still rely on comparing archaeologically based chronologies of timing of initial human arrival into naïve ecosystems and palaeontologically inferred dates of megafauna extinctions. Conclusions arising from comparing chronologies also depend on the reliability of dated evidence, dating uncertainties, and correcting for the low probability of preservation (Signor-Lipps effect). While some models have been developed to test the susceptibility of megafauna to theoretical offtake rates, none has explicitly linked human energetic needs, prey choice, and hunting efficiency to examine the plausibility of human-driven extinctions. Using the island of Cyprus in the terminal Pleistocene as an ideal test case because of its late human settlement (~14.2-13.2 ka), small area (~11 000 km2), and low megafauna diversity (2 species), we developed stochastic models of megafauna population dynamics, with offtake dictated by human energetic requirements, prey choice, and hunting-efficiency functions to test whether the human population at the end of the Pleistocene could have caused the extinction of dwarf hippopotamus (Phanourios minor) and dwarf elephants (Palaeoloxodon cypriotes). Our models reveal not only that the estimated human population sizes (n = 3000-7000) in Late Pleistocene Cyprus could have easily driven both species to extinction within < 1000 years, the model predictions match the observed, Signor-Lipps-corrected chronological sequence of megafauna extinctions inferred from the palaeontological record (P. minor at ~12-11.1 ka, followed by P. cypriotes at ~10.3-9.1 ka).


Assuntos
Extinção Biológica , Animais , Humanos , Chipre , Caça , Fósseis , Paleontologia
9.
Planta ; 259(5): 93, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509429

RESUMO

MAIN CONCLUSION: dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.


Assuntos
Giberelinas , Oryza , Oryza/metabolismo , Alelos , Melhoramento Vegetal , Citocininas/metabolismo , Grão Comestível/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo
10.
Plant Biotechnol J ; 22(5): 1387-1401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38130080

RESUMO

Viral diseases seriously threaten rice production. Plasmodesmata (PD)-associated proteins are deemed to play a key role in viral infection in host plants. However, few PD-associated proteins have been discovered in rice to afford viral infection. Here, inspired by the infection mechanism in insect vectors, we identified a member of the Flotillin family taking part in the cell-to-cell transport of rice stripe virus (RSV) in rice. Flotillin1 interacted with RSV nucleocapsid protein (NP) and was localized on PD. In flotillin1 knockout mutant rice, which displayed normal growth, RSV intercellular movement was retarded, leading to significantly decreased disease incidence. The PD pore sizes of the mutant rice were smaller than those of the wild type due to more callose deposits, which was closely related to the upregulation of two callose synthase genes. RSV infection stimulated flotillin1 expression and enlarged the PD aperture via RSV NP. In addition, flotillin1 knockout decreased disease incidences of southern rice black-streaked dwarf virus (SRBSDV) and rice dwarf virus (RDV) in rice. Overall, our study reveals a new PD-associated protein facilitating virus cell-to-cell trafficking and presents the potential of flotillin1 as a target to produce broad-spectrum antiviral rice resources in the future.


Assuntos
Hemípteros , Proteínas de Membrana , Oryza , Viroses , Animais , Plasmodesmos/metabolismo , Proteínas Virais/metabolismo , Oryza/metabolismo , Doenças das Plantas , Hemípteros/metabolismo
11.
Plant Biotechnol J ; 22(3): 572-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37855813

RESUMO

Barley yellow dwarf viruses (BYDVs) cause widespread damage to global cereal crops. Here we report a novel strategy for elevating resistance to BYDV infection. The 17K protein, a potent virulence factor conserved in BYDVs, interacted with barley IMP-α1 and -α2 proteins that are nuclear transport receptors. Consistently, a nuclear localization signal was predicted in 17K, which was found essential for 17K to be transported into the nucleus and to interact with IMP-α1 and -α2. Reducing HvIMP-α1 and -α2 expression by gene silencing attenuated BYDV-elicited dwarfism, accompanied by a lowered nuclear accumulation of 17K. Among the eight common wheat CRISPR mutants with two to four TaIMP-α1 and -α2 genes mutated, the triple mutant α1aaBBDD /α2AAbbdd and the tetra-mutant α1aabbdd /α2AAbbDD displayed strong BYDV resistance without negative effects on plant growth under field conditions. The BYDV resistance exhibited by α1aaBBDD /α2AAbbdd and α1aabbdd /α2AAbbDD was correlated with decreased nuclear accumulation of 17K and lowered viral proliferation in infected plants. Our work uncovers the function of host IMP-α proteins in BYDV pathogenesis and generates the germplasm valuable for breeding BYDV-resistant wheat. Appropriate reduction of IMP-α gene expression may be broadly useful for enhancing antiviral resistance in agricultural crops and other economically important organisms.


Assuntos
Luteovirus , Triticum , Triticum/genética , alfa Carioferinas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Luteovirus/genética , Produtos Agrícolas/genética , Expressão Gênica , Doenças das Plantas/genética
12.
Plant Biotechnol J ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361445

RESUMO

Dwarf plant architecture facilitates dense planting, and increased planting densities boost the maize yield. However, breeding applications of dwarfing materials for maize are currently limited. There is an urgent need remove the obstacles to applying dwarf resources. Here, we innovated a new method to add a novel maize dwarf germplasm through the distant hybridization of Maize-Tripsacum-Teosinte allopolyploid (MTP) with maize. We identified ten independent dwarf families with unique characteristics. Five germplasms in our library were controlled by their respective dwarf genes. However, no allele was controlled by Br2. Subsequently, d024 in the library was successfully fine mapped, revealing its linkage to indel-4 in ZmCYP90D1. The indel-4 polymorphism regulates the expression of ZmCYP90D1 and is controlled by an upstream transcription factor (ZmBES1/BZR1-5). The indel-4 of ZmCYP90D1 allele, which reduces plant height, originated from Tripsacum, a wild variety of maize. However, d024 exhibits sensitivity to brassinosteroids (BRs), with lower castasterone levels in the internodes than that in the wild type. Furthermore, ZmCYP90D1 interacted with ZmFDXs and ZmNAD(P)H to positively regulate the downstream BR synthesis pathway. Additionally, we showed that introgressing the indel-4 of the Tripsacum allele into modern hybrids ensures yield potential and improves the harvest index under high-density conditions. Overall, as we begin to manufacture highly engineered dwarf materials using the MTP, this approach will solve the problems faced by corn dwarfs.

13.
New Phytol ; 241(2): 687-702, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950543

RESUMO

Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas
14.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38872462

RESUMO

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Assuntos
Brassinosteroides , Regulação da Expressão Gênica de Plantas , MicroRNAs , Proteínas de Plantas , Prunus persica , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Prunus persica/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Sequência de Bases , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas
15.
Plant Cell Environ ; 47(2): 429-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37916615

RESUMO

The ratio of red light to far-red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different hormones in the light regulation of shoot branching in tomato (Solanum lycopersicum) are elusive. Here, we found that defects in SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 in tomato resulted in more lateral bud growth but failed to reverse the FR inhibition of lateral bud growth, which was associated with increased auxin synthesis and decreased synthesis of cytokinin (CK) and brassinosteroid (BR). Treatment of auxin also inhibited shoot branching in ccd mutants. However, CK released the FR inhibition of lateral bud growth in ccd mutants, concomitant with the upregulation of BR synthesis genes. Furthermore, plants that overexpressed BR synthesis gene showed more lateral bud growth and the shoot branching was less sensitive to the low R:FR ratio. The results indicate that SL synthesis is dispensable for light regulation of shoot branching in tomato. Auxin mediates the response to R:FR ratio to regulate shoot branching by suppressing CK and BR synthesis.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Luz Vermelha , Brotos de Planta/metabolismo , Citocininas , Lactonas , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Exp Bot ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196982

RESUMO

In angiosperms, the strigolactone (SL) receptor is the α/ß hydrolase DWARF14 (D14) that, upon SL binding, undergoes conformational changes, triggers SL-dependent responses and hydrolyses SLs. SL signalling involves the formation of a complex between SL-bound D14, the E3-ubiquitin ligase SCFMAX2 and the transcriptional corepressors SMXL6/7/8, which become ubiquitinated and degraded by the proteasome. SL also destabilises the D14 receptor. The current model proposes that D14 degradation occurs after SMXLs ubiquitination via SCFMAX2 and proteasomal degradation. Using fluorescence and luminescence assays on transgenic lines expressing D14 fused to GREEN FLUORESCENT PROTEIN or LUCIFERASE, we showed that SL-induced D14 degradation may also occur independently of SCFMAX2 and/or SMXL6/7/8 through a proteasome-independent mechanism. Furthermore, SLs hydrolysis was not essential for triggering either D14 or SMXL7 degradation. The activity of mutant D14 proteins predicted to be non-functional for SL signalling was also examined, and their capability to bind SLs in vitro was studied using Differential Scanning Fluorimetry. Finally, we found that under certain conditions, the efficiency of D14 degradation was not aligned with that of SMXL7 degradation. These findings suggest a more complex regulatory mechanism governing D14 degradation than previously anticipated and provide novel insights into the dynamics of SL signalling in Arabidopsis.

17.
Biogerontology ; 25(1): 147-160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37707683

RESUMO

Brain aging is a major risk factor for cognitive diseases such as Alzheimer's disease (AD) and vascular dementia. The rate of aging and age-related pathology are modulated by stress responses and repair pathways that gradually decline with age. However, recent reports indicate that exceptional longevity sustains and may even enhance the stress response. Whether normal and exceptional aging result in either attenuated or enhanced stress responses across all organs is unknown. This question arises from our understanding that biological age differs from chronological age and evidence that the rate of aging varies between organs. Thus, stress responses may differ between organs and depend upon regenerative capacity and ability to manage damaged proteins and proteotoxicity. To answer these questions, we assessed age-dependent changes in brain stress responses with normally aged wild type and long-lived Dwarf mice. Results from this study show that normal aging unfavorably impacts activation of the brain heat shock (HS) axis with key changes noted in the transcription factor, HSF1, and its regulation. Exceptional aging appears to preserve and strengthen many elements of HSF1 activation in the brain. These results support the possibility that reconstitution of aging brain stress responses requires a multi-factorial approach that addresses HSF1 protein levels, its DNA binding, and regulatory elements such as phosphorylation and protein interactions.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Camundongos , Animais , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição/genética , Envelhecimento/metabolismo , Encéfalo/metabolismo
18.
Biol Lett ; 20(5): 20240095, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38774968

RESUMO

The transmission efficiency of aphid-vectored plant viruses can differ between aphid populations. Intra-species diversity (genetic variation, endosymbionts) is a key determinant of aphid phenotype; however, the extent to which intra-species diversity contributes towards variation in virus transmission efficiency is unclear. Here, we use multiple populations of two key aphid species that vector barley yellow dwarf virus (BYDV) strain PAV (BYDV-PAV), the grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi), and examine how diversity in vector populations influences virus transmission efficiency. We use Illumina sequencing to characterize genetic and endosymbiont variation in multiple Si. avenae and Rh. padi populations and conduct BYDV-PAV transmission experiments to identify links between intra-species diversity in the vector and virus transmission efficiency. We observe limited variation in the transmission efficiency of Si. avenae, with transmission efficiency consistently low for this species. However, for Rh. padi, we observe a range of transmission efficiencies and show that BYDV transmission efficiency is influenced by genetic diversity within the vector, identifying 542 single nucleotide polymorphisms that potentially contribute towards variable transmission efficiency in Rh. padi. Our results represent an important advancement in our understanding of the relationship between genetic diversity, vector-virus interactions, and virus transmission efficiency.


Assuntos
Afídeos , Variação Genética , Insetos Vetores , Luteovirus , Doenças das Plantas , Afídeos/virologia , Afídeos/genética , Animais , Insetos Vetores/virologia , Insetos Vetores/genética , Doenças das Plantas/virologia , Luteovirus/genética , Luteovirus/fisiologia , Simbiose
19.
Mol Breed ; 44(4): 25, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516203

RESUMO

Maize rough dwarf disease (MRDD) caused by pathogenic viruses in the genus Fijivirus in the family Reoviridae is one of the most destructive diseases in maize. The pyramiding of effective resistance genes into maize varieties is a potential approach to reduce the damage resulting from the disease. Two major quantitative trait loci (QTLs) (qMrdd2 and qMrdd8) have been previously identified. The resistance genes ZmGLK36 and ZmGDIα-hel have also been cloned with the functional markers Indel-26 and IDP25K, respectively. In this study, ZmGLK36 and ZmGDIα-hel were introgressed to improve MRDD resistance of maize lines (Zheng58, Chang7-2, B73, Mo17, and their derived hybrids Zhengdan958 and B73 × Mo17) via marker-assisted selection (MAS). The converted lines and their derived hybrids, carrying one or two genes, were evaluated for MRDD resistance using artificial inoculation methods. The double-gene pyramiding lines and their derived hybrids exhibited increased resistance to MRDD compared to the monogenic lines and the respective hybrids. The genetic backgrounds of the converted lines were highly similar (90.85-98.58%) to the recurrent parents. In addition, agronomic trait evaluation demonstrated that pyramiding lines with one or two genes and their derived hybrids were not significantly different from the recurrent parents and their hybrids under nonpathogenic stress, including period traits (tasseling, pollen shedding, and silking), yield traits (ear length, grain weight per ear and 100-kernel weight) and quality traits (protein and starch content). There were differences in plant architecture traits between the improved lines and their hybrids. This study illustrated the successful development of gene pyramiding for improving MRDD resistance by advancing the breeding process. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01466-9.

20.
Network ; : 1-20, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320977

RESUMO

The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA