Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123.719
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 39-71, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36525691

RESUMO

Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.


Assuntos
Doenças do Sistema Imunitário , Imunidade , Fenótipo , Animais , Humanos , Camundongos , Imunidade/genética , Doenças do Sistema Imunitário/genética
2.
Annu Rev Immunol ; 39: 719-757, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33646859

RESUMO

The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.


Assuntos
Eosinófilos , Preparações Farmacêuticas , Animais , Terapia Biológica , Humanos , Camundongos , Camundongos Knockout
3.
Annu Rev Immunol ; 39: 313-344, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902313

RESUMO

Tissue-resident macrophages are present in most tissues with developmental, self-renewal, or functional attributes that do not easily fit into a textbook picture of a plastic and multifunctional macrophage originating from hematopoietic stem cells; nor does it fit a pro- versus anti-inflammatory paradigm. This review presents and discusses current knowledge on the developmental biology of macrophages from an evolutionary perspective focused on the function of macrophages, which may aid in study of developmental, inflammatory, tumoral, and degenerative diseases. We also propose a framework to investigate the functions of macrophages in vivo and discuss how inherited germline and somatic mutations may contribute to the roles of macrophages in diseases.


Assuntos
Células-Tronco Hematopoéticas , Macrófagos , Animais , Biologia , Humanos
4.
Annu Rev Immunol ; 38: 79-98, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800327

RESUMO

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


Assuntos
DNA/imunologia , Imunidade Inata , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Biomarcadores , Citoplasma/imunologia , Citoplasma/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo
5.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446062

RESUMO

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Assuntos
Doenças Cardiovasculares/imunologia , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta , Homeostase , Humanos , Imunidade , Receptores Acoplados a Proteínas G/imunologia
6.
Cell ; 187(14): 3506-3530, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996486

RESUMO

Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.


Assuntos
Imunidade Inata , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/imunologia , Doenças Pulmonares Intersticiais/patologia , Animais , Imunidade Adaptativa , Imunoterapia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Pulmão/patologia , Pulmão/imunologia
7.
Cell ; 187(18): 4890-4904.e9, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013470

RESUMO

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Miosite , Receptores de Antígenos Quiméricos , Escleroderma Sistêmico , Humanos , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Miosite/terapia , Miosite/imunologia , Escleroderma Sistêmico/terapia , Escleroderma Sistêmico/imunologia , Imunoterapia Adotiva/métodos , Feminino , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
8.
Cell ; 187(1): 17-43, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181740

RESUMO

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Assuntos
Microbiota , Fatores Sociais , Simbiose , Animais , Humanos , Doenças não Transmissíveis , Virulência
9.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776919

RESUMO

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Assuntos
Fungos , Microbioma Gastrointestinal , Micobioma , Animais , Humanos , Masculino , Camundongos , Fezes/microbiologia , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Genoma Fúngico/genética , Genômica , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Metagenoma , Filogenia , Feminino , Adulto , Pessoa de Meia-Idade
10.
Cell ; 187(9): 2336-2341.e5, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38582080

RESUMO

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.uci.edu/TRgnomAD), a biobank-scale reference of 0.86 million TRs derived from 338,963 whole-genome sequencing (WGS) samples of diverse ancestries (39.5% non-European samples). TR-gnomAD offers critical insights into ancestry-specific disease prevalence using disparities in TR unit number frequencies among ancestries. Moreover, TR-gnomAD is able to differentiate between common, presumably benign TR expansions, which are prevalent in TR-gnomAD, from those potentially pathogenic TR expansions, which are found more frequently in disease groups than within TR-gnomAD. Together, TR-gnomAD is an invaluable resource for researchers and physicians to interpret TR expansions in individuals with genetic diseases.


Assuntos
Genoma Humano , Sequências de Repetição em Tandem , Humanos , Sequências de Repetição em Tandem/genética , Sequenciamento Completo do Genoma , Bases de Dados Genéticas , Expansão das Repetições de DNA/genética , Estudo de Associação Genômica Ampla
11.
Cell ; 187(20): 5604-5619.e14, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39208798

RESUMO

We use cryoelectron microscopy (cryo-EM) as a sequence- and culture-independent diagnostic tool to identify the etiological agent of an agricultural pandemic. For the past 4 years, American insect-rearing facilities have experienced a distinctive larval pathology and colony collapse of farmed Zophobas morio (superworm). By means of cryo-EM, we discovered the causative agent: a densovirus that we named Zophobas morio black wasting virus (ZmBWV). We confirmed the etiology of disease by fulfilling Koch's postulates and characterizing strains from across the United States. ZmBWV is a member of the family Parvoviridae with a 5,542 nt genome, and we describe intersubunit interactions explaining its expanded internal volume relative to human parvoviruses. Cryo-EM structures at resolutions up to 2.1 Å revealed single-strand DNA (ssDNA) ordering at the capsid inner surface pinned by base-binding pockets in the capsid inner surface. Also, we demonstrated the prophylactic potential of non-pathogenic strains to provide cross-protection in vivo.


Assuntos
Besouros , Microscopia Crioeletrônica , Animais , Besouros/virologia , Parvovirus/genética , Parvovirus/química , DNA de Cadeia Simples/química , Capsídeo/ultraestrutura , Capsídeo/química , Capsídeo/metabolismo , Genoma Viral , Densovirus/genética , Densovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/epidemiologia , Modelos Moleculares , Filogenia , Larva/virologia
12.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428424

RESUMO

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Assuntos
Genoma , Primatas , Animais , Humanos , Sequência de Bases , Primatas/classificação , Primatas/genética , Evolução Biológica , Análise de Sequência de DNA , Variação Estrutural do Genoma
13.
Cell ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39326416

RESUMO

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.

14.
Cell ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39437779

RESUMO

Endo-ß-N-acetylglucosaminidases (ENGases) that specifically hydrolyze the Asn297-linked glycan on immunoglobulin G (IgG) antibodies, the major molecular determinant of fragment crystallizable (Fc) γ receptor (FcγR) binding, are exceedingly rare. All previously characterized IgG-specific ENGases are multi-domain proteins secreted as an immune evasion strategy by Streptococcus pyogenes strains. Here, using in silico analysis and mass spectrometry techniques, we identified a family of single-domain ENGases secreted by pathogenic corynebacterial species that exhibit strict specificity for IgG antibodies. By X-ray crystallographic and surface plasmon resonance analyses, we found that the most catalytically efficient IgG-specific ENGase family member recognizes both protein and glycan components of IgG. Employing in vivo models, we demonstrated the remarkable efficacy of this IgG-specific ENGase in mitigating numerous pathologies that rely on FcγR-mediated effector functions, including T and B lymphocyte depletion, autoimmune hemolytic anemia, and antibody-dependent enhancement of dengue disease, revealing its potential for treating and/or preventing a wide range of IgG-mediated diseases in humans.

15.
Annu Rev Immunol ; 34: 173-202, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26772211

RESUMO

The formation and accumulation of crystalline material in tissues is a hallmark of many metabolic and inflammatory conditions. The discovery that the phase transition of physiologically soluble substances to their crystalline forms can be detected by the immune system and activate innate immune pathways has revolutionized our understanding of how crystals cause inflammation. It is now appreciated that crystals are part of the pathogenesis of numerous diseases, including gout, silicosis, asbestosis, and atherosclerosis. In this review we discuss current knowledge of the complex mechanisms of crystal formation in diseased tissues and their interplay with the nutrients, metabolites, and immune cells that account for crystal-induced inflammation.


Assuntos
Asbestose/imunologia , Aterosclerose/imunologia , Cristalização , Gota/imunologia , Imunidade Inata , Inflamação/metabolismo , Silicose/imunologia , Animais , Humanos , Interleucina-1/metabolismo , Nanotecnologia , Transição de Fase
16.
Annu Rev Immunol ; 34: 479-510, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26927205

RESUMO

CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.


Assuntos
Doenças Autoimunes/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/fisiologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Apresentação de Antígeno , Antígenos/imunologia , Antígenos CD1/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vigilância Imunológica , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética
17.
Cell ; 186(21): 4514-4527.e14, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757828

RESUMO

Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity.


Assuntos
Consanguinidade , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Homozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único , Bancos de Espécimes Biológicos , Genoma Humano , Predisposição Genética para Doença , Reino Unido
18.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
19.
Annu Rev Immunol ; 33: 823-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706096

RESUMO

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Predisposição Genética para Doença , Inflamação/genética , Inflamação/imunologia , Animais , Doenças Autoimunes/metabolismo , Autoimunidade , Modelos Animais de Doenças , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Interleucina-1/metabolismo , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
20.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563662

RESUMO

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Assuntos
Macrófagos , Fagocitose , Animais , Camundongos , Macrófagos/metabolismo , Inflamação/metabolismo , Fagócitos/metabolismo , Proteínas de Transporte/metabolismo , Apoptose , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA