RESUMO
How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at â¼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.
Assuntos
Ribossomos , Saccharomyces cerevisiae , Códon de Iniciação/metabolismo , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de ProteínasRESUMO
3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.
Assuntos
Regiões 3' não Traduzidas/genética , Evolução Biológica , Doença/genética , Estudo de Associação Genômica Ampla , Algoritmos , Alelos , Regulação da Expressão Gênica , Genes Reporter , Variação Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Polirribossomos/metabolismo , Locos de Características Quantitativas/genética , RNA/genéticaRESUMO
Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.
Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/fisiologia , Expressão Gênica/genética , Genes Essenciais/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologiaRESUMO
Circular RNAs (circRNAs) are natural outputs of eukaryotic transcription and RNA processing and have emerged as critical regulators in physiology and diseases. Although multiple cis-elements and trans-factors are reported to modulate the backsplicing of circRNA biogenesis, most of these regulations play roles in flanking introns of circRNAs. Here, using a genome-wide CRISPR knockout screen, we have identified an evolutionarily conserved RNA-binding protein ZC3H14 in regulating circRNA biogenesis. ZC3H14 binds to 3' and 5' exon-intron boundaries and 3' UTRs of cognate mRNAs to promote circRNA biogenesis through dimerization and the association with spliceosome. Yeast knockout of the ZC3H14 ortholog Nab2 has significantly lower levels of circRNAs. Zc3h14-/- mice exhibit disrupted spermatogenesis and reduced testicular circRNA levels. Additionally, expression levels of human ZC3H14 are associated with non-obstructive azoospermia. Our findings reveal a conserved requirement for ZC3H14 in the modulation of backsplicing and link ZC3H14 and circRNA biogenesis to male fertility.
RESUMO
The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments. Compartment enrichment correlates with a combinatorial code based on mRNA length, exon length, and 3' UTR-bound RNA-binding proteins. Compartment-biased mRNAs differ in the functional classes of their encoded proteins: TG-enriched mRNAs encode low-abundance proteins with strong enrichment of transcription factors, whereas ER-enriched mRNAs encode large and highly expressed proteins. Compartment localization is an important determinant of mRNA and protein abundance, which is supported by reporter experiments showing that redirecting cytosolic mRNAs to the ER increases their protein expression. In summary, the cytoplasm is functionally compartmentalized by local translation environments.
Assuntos
Retículo Endoplasmático , Proteínas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transporte Proteico , Biossíntese de ProteínasRESUMO
To study the function of Rli1/ABCE1 in vivo, we used ribosome profiling and biochemistry to characterize its contribution to ribosome recycling. When Rli1 levels were diminished, 80S ribosomes accumulated both at stop codons and in the adjoining 3'UTRs of most mRNAs. Frequently, these ribosomes reinitiated translation without the need for a canonical start codon, as small peptide products predicted by 3'UTR ribosome occupancy in all three reading frames were confirmed by western analysis and mass spectrometry. Eliminating the ribosome-rescue factor Dom34 dramatically increased 3'UTR ribosome occupancy in Rli1 depleted cells, indicating that Dom34 clears the bulk of unrecycled ribosomes. Thus, Rli1 is crucial for ribosome recycling in vivo and controls ribosome homeostasis. 3'UTR translation occurs in wild-type cells as well, and observations of elevated 3'UTR ribosomes during stress suggest that modulating recycling and reinitiation is involved in responding to environmental changes.
Assuntos
Regiões 3' não Traduzidas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Códon de Terminação , Histidina/metabolismo , Dados de Sequência MolecularRESUMO
The tissue-specific deployment of highly extended neural 3' UTR isoforms, generated by alternative polyadenylation (APA), is a broad and conserved feature of metazoan genomes. However, the factors and mechanisms that control neural APA isoforms are not well understood. Here, we show that three ELAV/Hu RNA binding proteins (Elav, Rbp9, and Fne) have similar capacities to induce a lengthened 3' UTR landscape in an ectopic setting. These factors promote accumulation of chromatin-associated, 3' UTR-extended, nascent transcripts, through inhibition of proximal polyadenylation site (PAS) usage. Notably, Elav represses an unannotated splice isoform of fne, switching the normally cytoplasmic Fne toward the nucleus in elav mutants. We use genomic profiling to reveal strong and broad loss of neural APA in elav/fne double mutant CNS, the first genetic background to largely abrogate this distinct APA signature. Overall, we demonstrate how regulatory interplay and functionally overlapping activities of neural ELAV/Hu RBPs drives the neural APA landscape.
Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas ELAV/metabolismo , Neurônios/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas ELAV/química , Larva/metabolismo , Mutação/genética , Poli A/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The production of alternative RNA variants contributes to the tissue-specific regulation of gene expression. In the animal nervous system, a systematic shift toward distal sites of transcription termination produces transcript signatures that are crucial for neuron development and function. Here, we report that, in Drosophila, the highly conserved protein ELAV globally regulates all sites of neuronal 3' end processing and directly binds to proximal polyadenylation sites of target mRNAs in vivo. We uncover an endogenous strategy of functional gene rescue that safeguards neuronal RNA signatures in an ELAV loss-of-function context. When not directly repressed by ELAV, the transcript encoding the ELAV paralog FNE acquires a mini-exon, generating a new protein able to translocate to the nucleus and rescue ELAV-mediated alternative polyadenylation and alternative splicing. We propose that exon-activated functional rescue is a more widespread mechanism that ensures robustness of processes regulated by a hierarchy, rather than redundancy, of effectors.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas ELAV/metabolismo , Éxons/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Masculino , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genéticaRESUMO
Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
Assuntos
Complexos Multiproteicos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Códon de Iniciação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Fatores de Iniciação de Peptídeos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Alternative polyadenylation (APA) contributes to transcriptome complexity by generating mRNA isoforms with varying 3' UTR lengths. APA leading to 3' UTR shortening (3' US) is a common feature of most cancer cells; however, the molecular mechanisms are not understood. Here, we describe a widespread mechanism promoting 3' US in cancer through ubiquitination of the mRNA 3' end processing complex protein, PCF11, by the cancer-specific MAGE-A11-HUWE1 ubiquitin ligase. MAGE-A11 is normally expressed only in the male germline but is frequently re-activated in cancers. MAGE-A11 is necessary for cancer cell viability and is sufficient to drive tumorigenesis. Screening for targets of MAGE-A11 revealed that it ubiquitinates PCF11, resulting in loss of CFIm25 from the mRNA 3' end processing complex. This leads to APA of many transcripts affecting core oncogenic and tumor suppressors, including cyclin D2 and PTEN. These findings provide insights into the molecular mechanisms driving APA in cancer and suggest therapeutic strategies.
Assuntos
Regiões 3' não Traduzidas/genética , Antígenos de Neoplasias/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/patologia , RNA Mensageiro/metabolismo , Ubiquitina/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Antígenos de Neoplasias/genética , Apoptose , Biomarcadores Tumorais , Carcinogênese , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Poliadenilação , Splicing de RNA , RNA Mensageiro/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores de Poliadenilação e Clivagem de mRNA/genéticaRESUMO
Identifying modifiers of dosage-sensitive genes involved in neurodegenerative disorders is imperative to discover novel genetic risk factors and potential therapeutic entry points. In this study, we focus on Ataxin-1 (ATXN1), a dosage-sensitive gene involved in the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). While the precise maintenance of ATXN1 levels is essential to prevent disease, the mechanisms that regulate ATXN1 expression remain largely unknown. We demonstrate that ATXN1's unusually long 5' untranslated region (5' UTR) negatively regulates its expression via posttranscriptional mechanisms. Based on recent reports that microRNAs (miRNAs) can interact with both 3' and 5' UTRs to regulate their target genes, we identify miR760 as a negative regulator that binds to a conserved site in ATXN1's 5' UTR to induce RNA degradation and translational inhibition. We found that delivery of Adeno-associated virus (AAV)-expressing miR760 in the cerebellum reduces ATXN1 levels in vivo and mitigates motor coordination deficits in a mouse model of SCA1. These findings provide new insights into the regulation of ATXN1 levels, present additional evidence for miRNA-mediated gene regulation via 5' UTR binding, and raise the possibility that noncoding mutations in the ATXN1 locus may act as risk factors for yet to be discovered progressive ataxias.
Assuntos
Regiões 5' não Traduzidas/genética , Ataxina-1/genética , Regulação da Expressão Gênica/genética , MicroRNAs/metabolismo , Ataxias Espinocerebelares/genética , Animais , Ataxina-1/metabolismo , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mutação , Fatores de Risco , Ataxias Espinocerebelares/fisiopatologiaRESUMO
Pathomechanistic studies of neurodegenerative diseases have documented the toxic effects of mutant protein expression, misfolding, and aggregation. However, alterations in the expression of the corresponding wild-type (WT) gene, due to either variations in copy number or transcriptional regulation, have also been linked to Alzheimer's and Parkinson's diseases. Another striking example of this mutant and WT duality is spinocerebellar ataxia type 1 (SCA1) caused by an ATXN1 polyglutamine protein, although subtle variations in WT AXTN1 levels also lead to ataxia. In this issue of Genes & Development, Nitschke and colleagues (pp. 1147-1160) delve into posttranscriptional events that fine-tune ATXN1 expression and uncover a key role for 5' untranslated region (5' UTR)-miR760 interactions. Thus, this study not only provides significant insights into the complexities of modulating the expression of a dosage-sensitive gene but also highlights the critical importance of identifying noncoding polymorphisms as disease risk factors.
Assuntos
Ataxina-1/genética , Regulação da Expressão Gênica , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/prevenção & controle , Regiões 5' não Traduzidas/genética , Animais , Ataxina-1/metabolismo , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Polimorfismo Genético , Fatores de Risco , Ataxias Espinocerebelares/fisiopatologiaRESUMO
Our ability to determine the clinical impact of variants in 3' untranslated regions (UTRs) of genes remains poor. We provide a thorough analysis of 3' UTR variants from several datasets. Variants in putative regulatory elements, including RNA-binding protein motifs, eCLIP peaks, and microRNA sites, are up to 16 times more likely than variants not in these elements to have gene expression and phenotype associations. Variants in regulatory motifs result in allele-specific protein binding in cell lines and allele-specific gene expression differences in population studies. In addition, variants in shared regions of alternatively polyadenylated isoforms and those proximal to polyA sites are more likely to affect gene expression and phenotype. Finally, pathogenic 3' UTR variants in ClinVar are up to 20 times more likely than benign variants to fall in a regulatory site. We incorporated these findings into RegVar, a software tool that interprets regulatory elements and annotations for any 3' UTR variant and predicts whether the variant is likely to affect gene expression or phenotype. This tool will help prioritize variants for experimental studies and identify pathogenic variants in individuals.
Assuntos
MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , MicroRNAs/genética , Sequências Reguladoras de Ácido Nucleico/genética , Linhagem Celular , Ligação ProteicaRESUMO
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an â¼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
Assuntos
Regiões 3' não Traduzidas , Elementos Alu , RNA de Cadeia Dupla , Elementos Alu/genética , Humanos , RNA de Cadeia Dupla/genética , Regiões 3' não Traduzidas/genética , Íntrons/genética , Mutagênese Insercional/genética , Homozigoto , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Iron deposition is frequently observed in human autoinflammatory diseases, but its functional significance is largely unknown. Here we showed that iron promoted proinflammatory cytokine expression in T cells, including GM-CSF and IL-2, via regulating the stability of an RNA-binding protein PCBP1. Iron depletion or Pcbp1 deficiency in T cells inhibited GM-CSF production by attenuating Csf2 3' untranslated region (UTR) activity and messenger RNA stability. Pcbp1 deficiency or iron uptake blockade in autoreactive T cells abolished their capacity to induce experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. Mechanistically, intracellular iron protected PCBP1 protein from caspase-mediated proteolysis, and PCBP1 promoted messenger RNA stability of Csf2 and Il2 by recognizing UC-rich elements in the 3' UTRs. Our study suggests that iron accumulation can precipitate autoimmune diseases by promoting proinflammatory cytokine production. RNA-binding protein-mediated iron sensing may represent a simple yet effective means to adjust the inflammatory response to tissue homeostatic alterations.
Assuntos
Proteínas de Transporte/metabolismo , Citocinas/biossíntese , Encefalomielite Autoimune Experimental/metabolismo , Ferro/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Linhagem Celular , Citocinas/genética , Proteínas de Ligação a DNA , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Ferro/agonistas , Deficiências de Ferro , Camundongos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores da Transferrina/deficiência , Linfócitos T Auxiliares-Indutores/transplanteRESUMO
Alternative 3' untranslated regions (3' UTRs) are widespread, but their functional roles are largely unknown. We investigated the function of the long BIRC3 3' UTR, which is upregulated in leukemia. The 3' UTR does not regulate BIRC3 protein localization or abundance but is required for CXCR4-mediated B cell migration. We established an experimental pipeline to study the mechanism of regulation and used mass spectrometry to identify BIRC3 protein interactors. In addition to 3'-UTR-independent interactors involved in known BIRC3 functions, we detected interactors that bind only to BIRC3 protein encoded from the mRNA with the long 3' UTR. They regulate several functions, including CXCR4 trafficking. We further identified RNA-binding proteins differentially bound to the alternative 3' UTRs and found that cooperative binding of Staufen and HuR mediates 3'-UTR-dependent complex formation. We show that the long 3' UTR is required for the formation of specific protein complexes that enable additional functions of BIRC3 protein beyond its 3'-UTR-independent functions.
Assuntos
Proteína 3 com Repetições IAP de Baculovírus/genética , Leucemia/genética , Complexos Multiproteicos/genética , Receptores CXCR4/genética , Regiões 3' não Traduzidas/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Proteína 3 com Repetições IAP de Baculovírus/química , Movimento Celular/genética , Proteínas do Citoesqueleto/genética , Proteína Semelhante a ELAV 1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/patologia , Complexos Multiproteicos/química , Transporte Proteico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genéticaRESUMO
Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.
Assuntos
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Poliadenilação , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Núcleo Celular/genética , Células HEK293 , Células HeLa , Humanos , Cinética , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genéticaRESUMO
TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3' untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias , Humanos , Camundongos , Camundongos Knockout , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Domínios Proteicos/genética , Interferência de RNA , Proteínas de Ligação a RNA/metabolismoRESUMO
While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).
Assuntos
Regiões 3' não Traduzidas , Estudo de Associação Genômica Ampla , Pulmão , Poliadenilação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Humanos , Regiões 3' não Traduzidas/genética , Poliadenilação/genética , Pulmão/metabolismo , Masculino , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/genética , Feminino , Regulação da Expressão Gênica/genéticaRESUMO
Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.