Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190782

RESUMO

Among the three active aldehyde oxidases in Arabidopsis thaliana leaves (AAO1-3), AAO3, which catalyzes the oxidation of abscisic-aldehyde to abscisic-acid, was shown recently to function as a reactive aldehyde detoxifier. Notably, aao2KO mutants exhibited less senescence symptoms and lower aldehyde accumulation, such as acrolein, benzaldehyde, and 4-hydroxyl-2-nonenal (HNE) than in wild-type leaves exposed to UV-C or Rose-Bengal. The effect of AAO2 expression absence on aldehyde detoxification by AAO3 and/or AAO1 was studied by comparing the response of wild-type plants to the response of single-functioning aao1 mutant (aao1S), aao2KO mutants, and single-functioning aao3 mutants (aao3Ss). Notably, aao3Ss exhibited similar aldehyde accumulation and chlorophyll content to aao2KO treated with UV-C or Rose-Bengal. In contrast, wild-type and aao1S exhibited higher aldehyde accumulation that resulted in lower remaining chlorophyll than in aao2KO leaves, indicating that the absence of active AAO2 enhanced AAO3 detoxification activity in aao2KO mutants. In support of this notion, employing abscisic-aldehyde as a specific substrate marker for AAO3 activity revealed enhanced AAO3 activity in aao2KO and aao3Ss leaves compared to wild-type treated with UV-C or Rose-Bengal. The similar abscisic-acid level accumulated in leaves of unstressed or stressed genotypes indicates that aldehyde detoxification by AAO3 is the cause for better stress resistance in aao2KO mutants. Employing the sulfuration process (known to activate aldehyde oxidases) in wild-type, aao2KO, and molybdenum-cofactor sulfurase (aba3-1) mutant plants revealed that the active AAO2 in WT employs sulfuration processes essential for AAO3 activity level, resulting in the lower AAO3 activity in WT than AAO3 activity in aao2KO.

2.
Photochem Photobiol Sci ; 23(8): 1521-1531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38995521

RESUMO

The defensive role performed by exogenously supplied ascorbic acid in the cyanobacterium Nostoc muscorum Meg1 against damages produced by UV-C radiation exposure was assessed in this study. Exposure to UV-C (24 mJ/cm2) significantly enhanced reactive oxygen species (ROS) (50%) along with peroxidation of lipids (21%) and protein oxidation (22%) in the organism. But, addition of 0.5 mM ascorbic acid prior to UV-C exposure showed reduction in ROS production (1.7%) and damages to lipids and proteins (1.5 and 2%, respectively). Light and transmission electron microscopic studies revealed that ascorbic acid not only protected filament breakage but also restricted severe ultrastructural changes and cellular damages in the organism. Although the growth of the organism was repressed up to 9% under UV-C treatment within 15 days, a pre-treatment with ascorbic acid led to growth enhancement by 42% in the same period. Various growth parameters such as photo-absorbing pigments (phycoerythrin, phycocyanin, allophycocyanin, chlorophyll a, and carotenoids), water splitting complex (WSC), D1 protein, RuBisCO, glutamine synthetase and nitrogenase activities in the UV-C treated organism were seen to be relatively intact in the presence of ascorbic acid. Thus, a detailed analysis undertaken in the present study was able to demonstrate that ascorbic acid not only act as first responder against harmful UV-C radiation by down-regulating ROS production, it also accelerated the growth performance in the organism in the post UV-C incubation period as an immediate response to an adverse experience presented in the form of UV-C radiation exposure.


Assuntos
Ácido Ascórbico , Espécies Reativas de Oxigênio , Raios Ultravioleta , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Espécies Reativas de Oxigênio/metabolismo , Nostoc muscorum/efeitos dos fármacos , Nostoc muscorum/metabolismo , Nostoc muscorum/química , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Bactérias/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 74, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194146

RESUMO

Donor human milk (DHM) provides myriad nutritional and immunological benefits for preterm and low birthweight infants. However, pasteurization leaves DHM devoid of potentially beneficial milk microbiota. In the present study, we performed milk microbiome transplantation from freshly collected mother's own milk (MOM) into pasteurized DHM. Small volumes of MOM (5%, 10%, or 30% v/v) were inoculated into pasteurized DHM and incubated at 37 °C for up to 8 h. Further, we compared microbiome recolonization in UV-C-treated and Holder-pasteurized DHM, as UV-C treatment has been shown to conserve important biochemical components of DHM that are lost during Holder pasteurization. Bacterial culture and viability-coupled metataxonomic sequencing were employed to assess the effectiveness of milk microbiome transplantation. Growth of transplanted MOM bacteria occurred rapidly in recolonized DHM samples; however, a greater level of growth was observed in Holder-pasteurized DHM compared to UV-C-treated DHM, potentially due to the conserved antimicrobial properties in UV-C-treated DHM. Viability-coupled metataxonomic analysis demonstrated similarity between recolonized DHM samples and fresh MOM samples, suggesting that the milk microbiome can be successfully transplanted into pasteurized DHM. These results highlight the potential of MOM microbiota transplantation to restore the microbial composition of UV-C-treated and Holder-pasteurized DHM and enhance the nutritional and immunological benefits of DHM for preterm and vulnerable infants. KEY POINTS: • Mother's own milk microbiome can be successfully transplanted into donor human milk. • Recolonization is equally successful in UV-C-treated and Holder-pasteurized milk. • Recolonization time should be restricted due to rapid bacterial growth.


Assuntos
Microbiota , Leite Humano , Lactente , Recém-Nascido , Feminino , Humanos , Mães , Pasteurização , Folhas de Planta
4.
Appl Microbiol Biotechnol ; 108(1): 286, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578301

RESUMO

Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.


Assuntos
Biofilmes , Desinfecção , Matriz Extracelular , Bactérias , Matriz Extracelular de Substâncias Poliméricas , Pseudomonas aeruginosa
5.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38660981

RESUMO

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Assuntos
Avena , Germinação , Sementes , Raios Ultravioleta , Avena/efeitos dos fármacos , Avena/efeitos da radiação , Avena/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Estresse Salino/efeitos dos fármacos , Plântula/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Cloreto de Sódio
6.
Biomed Chromatogr ; : e5975, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105236

RESUMO

In this research, the study utilized the root, leaf, and petiole parts of in vitro grown Salvia hispanica plants as explants. Following UV-C treatment applied to developing callus, methanol extracts were obtained and analyzed using liquid chromatography-mass spectrometry (LC/MS) to investigate their anticancer properties. First, the seeds of S. hispanica were soaked in commercial bleach for 6 min to ensure surface sterilization. The most effective antimicrobial activity on Gram-negative bacteria, with a zone diameter (11 ± 0.82 mm), was noticed in callus extracts obtained from the petiole explant in the second protocol against Klebsiella pneumoniae EMCS bacteria. Anticancer activities on SH-SY5Y human neuroblastoma cells were investigated by using 1000, 500, 250, 125, 62.5, 31.25, 15.62, and 78.12 µg/mL doses of the extracts, and the most effective cytotoxic activity was determined at the 1000 µg/mL dose of the extracts obtained from both protocols. The extracts were determined to inhibit hCAI, hCAII, AChE, and BChE enzymes. The content of 53 different phytochemical components of the extracts was analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Rosmarinic acid, quinic acid, and caffeic acid were found in the highest concentration. The comprehensive LC-MS/MS analysis of S. hispanica extracts revealed a diverse array of phytochemical compounds, highlighting its potential for therapeutic applications.

7.
Reprod Domest Anim ; 59(1): e14520, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268205

RESUMO

Sterilization of the culture medium using ultraviolet (UV)-C reduces the potential adverse effects of microorganisms and allows for long-term use. In the present study, we investigated the effects of a medium directly irradiated with UV-C prior to in vitro culture on the development and quality of porcine in vitro-fertilized embryos and the free amino acid composition of the culture media. The culture media (porcine zygote medium [PZM-5] and porcine blastocyst medium [PBM]) were irradiated with UV-C at 228 and 260 nm for 1 and 3 days, respectively. Next, the culture media were irradiated with UV-C at 228 nm for 3, 7, or 14 days. After in vitro fertilization, the embryos were cultured in the UV-C-irradiated media for 7 days. Free amino acid levels in culture media irradiated with 228 and 260 nm UV-C for 3 days were analysed. The blastocyst formation rate of embryos cultured in media irradiated with 260 nm UV-C for 3 days was significantly lower than that of embryos cultured in non-irradiated control media. However, 228 nm UV-C irradiation for up to 14 days did not affect blastocyst formation rates and quality in the resulting blastocysts. Moreover, 260 nm UV-C irradiation significantly increased the taurine concentration in both culture media and decreased methionine concentration in the PBM. In conclusion, UV-C irradiation at 228 nm before in vitro culture had no detrimental effects on embryonic development. However, 260 nm UV-C irradiation decreased embryo development and altered the composition of free amino acids in the medium.


Assuntos
Aminoácidos , Desenvolvimento Embrionário , Animais , Feminino , Gravidez , Suínos , Zigoto , Fertilização in vitro/veterinária , Meios de Cultura
8.
Plant Dis ; 108(8): 2518-2529, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38549272

RESUMO

Cercospora leaf spot (CLS), caused by the hemibiotrophic fungus Cercospora beticola, is a destructive disease affecting table beet. Multiple applications of fungicides are needed to reduce epidemic progress to maintain foliar health and enable mechanized harvest. The sustainability of CLS control is threatened by the rapid development of fungicide resistance, the need to grow commercially acceptable yet CLS-susceptible cultivars, and the inability to manipulate agronomic conditions to mitigate disease risk. Nighttime applications of germicidal UV light (UV-C) have recently been used to suppress several plant diseases, notably those caused by ectoparasitic biotrophs such as powdery mildews. We evaluated the efficacy of nighttime applications of UV-C for suppression of CLS in table beet. In vitro lethality of UV-C to germinating conidia increased with increasing dose, with complete suppression at 1,000 J/m2. Greenhouse-grown table beet tolerated relatively high doses of UV-C without lethal effects despite some bronzing on the leaf blade. A UV-C dose >1,500 J/m2 resulted in phytotoxicity severities greater than 50%. UV-C exposure to ≤750 J/m2 resulted in negligible phytotoxicity. Older (6-week-old) greenhouse-grown plants were more susceptible to UV-C damage than younger (2- and 4-week-old) plants. Suppression of CLS by UV-C was greater when applied within 6 days of C. beticola inoculation than if delayed until 13 days after infection in greenhouse-grown plants. In field trials, there were significant linear relationships between UV-C dose and CLS control and phytotoxicity severity, and a significant negative linear relationship between phytotoxicity and CLS severity at the final assessment. Significant differences between UV-C doses on the severity of CLS and phytotoxicity indicated an efficacious dose near 800 J/m2. Collectively, these findings illustrate significant and substantial suppression by nighttime applications of UV-C for CLS control on table beet, with potential for incorporation in both conventional and organic table beet broadacre production systems.


Assuntos
Beta vulgaris , Cercospora , Doenças das Plantas , Raios Ultravioleta , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Beta vulgaris/microbiologia , Beta vulgaris/efeitos da radiação , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação
9.
Vet Ophthalmol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118265

RESUMO

OBJECTIVE: To investigate the therapeutic effect of 275 nm wavelength ultraviolet C (UV-C) light for treatment of bacterial keratitis in canine corneas using an affordable, broadly available modified handheld device. METHODS: UV-C therapy (UVCT) was evaluated in two experiments: in vitro using triplicates of three bacterial genera (Staphylococcus, Streptococcus, Pseudomonas spp., and a mix of all species) where the UVCT was performed at a distance of 10, 15, and 20 mm with 1 or 2 doses (4 h apart) for 5, 15, or 30 s; ex vivo model where healthy canine corneal buttons were inoculated superficially and deep (330 µm) with the same bacterial isolates and treated at a 10 mm distance for 15 s with one dose of 22.5 mJ/cm2. Fluorescent marker (STYO9-PI) was used to label (green = live bacteria, red = dead bacteria), and confocal microscopy was used to image the bacteria. RESULTS: In vitro results showed all plates treated with UVCT had 100% bactericidal effect for all isolates with single dose of 15 s at 10 mm distance or two doses, 4 h apart at 15 mm and was ineffective with single dose at 15-20 mm. The ex vivo results confirmed a significant decrease in bacterial load for all isolates on samples inoculated superficially but were inconclusive for intrastromal ones. CONCLUSIONS: UVCT confirmed the therapeutic potential for all tested isolates, for both in vitro and ex vivo experiments using a single exposure of 15 s. While safety studies are underway, clinical trials are warranted.

10.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339691

RESUMO

In the face of today's ever-evolving global health landscape and ambient assisted living (AAL), marked by the persistent emergence of novel viruses and diseases that impact vulnerable categories and individual safety, the need for innovative disinfection solutions has surged to unprecedented levels. In pursuit of advancing the field of autonomous UV-C disinfection robotics, we conducted two comprehensive state-of-the-art analyses: the first one in the literature and the second one in existing commercial disinfection robots to identify current challenges. Of all of the challenges, we consider the most outstanding ones to be safeguarding humans and animals and understanding the surroundings while operating the disinfection process challenges that we will address in this article. While UV-C lamps have demonstrated their effectiveness in sterilizing air and surfaces, the field of autonomous UV-C disinfection robotics represents a critical domain that requires advancement, particularly in safeguarding the wellbeing of humans and animals during operation. Operating UV-C disinfection robots in close proximity to humans or animals introduces inherent risks, and existing disinfection robots often fall short in incorporating advanced safety systems. In response to these challenges, we propose the RoboCoV Cleaner-an indoor autonomous UV-C disinfection robot equipped with an advanced dual and redundant safety system. This novel approach incorporates multiple passive infrared (PIR) sensors and AI object detection on a 360-degree camera. Under our test, the dual-redundant system reached more than 90% when detecting humans with high accuracy using the AI system 99% up to 30 m away in a university hallway (different light conditions) combined with the PIR system (with lower accuracy). The PIR system was proved to be a redundant system for uninterrupted operation during communication challenges, ensuring continuous sensor information collection with a swift response time of 50 ms (image processing within 200 ms). It empowers the robot to detect and react to human presence, even under challenging conditions, such as when individuals wear masks, in complete darkness, under UV light, or in environments with blurred visual conditions. In our test, the detection system performed outstandingly well with up to 99% detection rate of humans. Beyond safety features, the RoboCoV Cleaner can identify objects in its surroundings. This capability empowers the robot to discern objects affected by UV-C light, enabling it to apply specialized rules for targeted disinfection. The proposed system exhibits a wide range of capabilities beyond its core purpose of disinfection, making it suitable for healthcare facilities, universities, conference venues, and hospitals. Its implementation has the ability to improve significantly human safety and protect people. By showcasing the RoboCoV Cleaner's safety-first approach and adaptability, we aim to set a new benchmark for UV-C disinfection robots, promoting clean and secure environments while protecting vulnerable people, even in challenging scenarios.


Assuntos
Robótica , Humanos , Robótica/métodos , Desinfecção , Raios Ultravioleta
11.
J Environ Manage ; 364: 121442, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870793

RESUMO

The widespread use of low or medium pressure mercury lamps in UV-C water disinfection should consider recent advances in UV-C LED lamps that offer a more sustainable approach and avoid its main drawbacks. The type of water and the mode of operation are critical when deciding on the treatment technology to be used. Therefore, this study investigates the potential application of UV-C LED disinfection technology in terms of kinetics, environmental assessment, and economic analysis for two scenarios: the continuous disinfection of a wastewater treatment plant (WWTP), and disinfection of harvested rainwater (RWH) in a residential household that operates intermittently. Experiments are conducted using both the new UV-C LED system and the conventional mercury lamp to disinfect real wastewater. Removal of total coliforms and Escherichia coli bacteria, with concentrations of approximately 105 and 104 CFU per 100 mL has been followed to assess the performance of both types of UV-C lamps. The experimental study provides kinetic parameters that have been further used in the environmental assessment conducted from a life cycle perspective. Additionally, considering the significant role of electricity consumption, a preliminary economic analysis has been conducted. The results indicate that first-order kinetic constants of pathogens removal with UV-C LEDs achieve 1.4 times higher values than Hg lamp. Regarding the environmental and economic assessment, for disinfection systems operating continuously, LEDs result in environmental impacts 5 times higher than Hg lamp in most categories, indicating that Hg lamps offer a viable option both from economic and environmental point of view. However, for installations with intermittent operation, LEDs emerge as the most competitive alternative, due to their ability to be turned on and off without affecting their lifespan. This study shows that UV-C LED lamps hold promise to replace conventional mercury lamps in a near future.


Assuntos
Desinfecção , Raios Ultravioleta , Purificação da Água , Desinfecção/métodos , Purificação da Água/métodos , Purificação da Água/economia , Escherichia coli/efeitos da radiação , Águas Residuárias
12.
J Sci Food Agric ; 104(5): 3013-3026, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38053417

RESUMO

BACKGROUND: Consumers are seeking healthier alternatives to traditional confectioneries. They value the use of sugar replacers, more natural ingredients and/or environmentally friendly preservation technologies. UV-C light is considered an emerging alternative to thermal pasteurization that leaves no residue and requires minimal energy. The present study aimed to investigate the effect of novel sweetener combinations and juice UV-C assisted by mild heat treatment (UV-C/H) on the physicochemical, microbiological, morphological, rheological and sensory properties of orange juice pectin-based confectioneries stored at 5 ± 1 °C for 35 days. RESULTS: For orange juice processing, UV-C/H (pilot-scale Dean-flow reactor; 892 mJ cm-2 ; 50 ± 1 °C) and thermal (T-coil, 80 °C; 6 min) treatments were used. Low-calorie confectionery gels were elaborated using the treated juices, low-methoxyl pectin and various sweetener combinations. UV-C/H and T-coil effectively inactivated juice native microbiota. The proposed formulations, derived from a previous Box-Behnken optimization study, included partial (F1: 3%-sucrose-S + 0.019%-rebaudioside-A-RA) or complete sucrose replacement (F2: 5.5%-erythritol-E + 0.019%-RA), and one control (C:10%-S). In general, the microbiota of the gels prepared with the UV-C/H or T-coil treated juices did not recover during storage. The physicochemical and mechanical parameters of the formulations were significantly influenced by the choice of sweetener and the duration of storage. The gel surface got smoother and had fewer holes when the sucrose level dropped, according to a scanning electron microscopy study. The UV-C/H-treated samples did not differ in acceptability, whereas the measured sensory attributes approached ideal levels. F1 and F2 showed distinctive temporal-dominance-of-sensations profiles, mainly dominated by sweetness and orange taste, respectively. However, consumers perceived sourness and astringency in C during consumption. CONCLUSION: The present study provides significant evidence in support of the development of confectionery gels F1 and F2 made from fruit juice treated by UV-C light assisted by mild heat and combinations of sucrose-alternative sweeteners. In terms of the properties investigated, these confectionery gels were comparable to, or even outperformed the full-sucrose option. © 2023 Society of Chemical Industry.


Assuntos
Citrus sinensis , Edulcorantes , Edulcorantes/análise , Sucos de Frutas e Vegetais , Pectinas , Paladar , Sacarose , Géis
13.
Int J Environ Health Res ; 34(4): 1995-2014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37086061

RESUMO

In this study, the detection rates of four enteric viruses, Human Astrovirus (HAstVs), Aichivirus (AiVs), Human Adenovirus (HAdVs), and Sapovirus (SaVs) are carried out to assess the virological quality of the treated wastewater. A total of 140 samples was collected from wastewater treatment plant WWTP of Tunis-City. Real-time RT-PCR and conventional RT-PCR results showed high frequencies of detection of the four enteric viruses investigated at the entry and exit of the biological activated sludge procedure and a significant reduction in viral titers after tertiary treatment with UV-C254 irradiation. These results revealed the ineffectiveness of the biological activated sludge treatment in removing viruses and the poor quality of the treated wastewater intended for recycling, agricultural reuse, and safe discharge into the natural environment. The UV-C254 irradiation, selected while considering the non-release of known disinfection by-products because of eventual reactions with the large organic and mineral load commonly present in the wastewater.


Assuntos
Enterovirus , Sapovirus , Vírus , Humanos , Esgotos , Sapovirus/genética , Adenoviridae , Águas Residuárias
14.
J Bacteriol ; 205(9): e0019123, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695857

RESUMO

Bacterial SOS response is an inducible system of DNA repair and mutagenesis. Streptococci lack a canonical SOS response, but an SOS-like response was reported in some species. The mef(A)-msr(D)-carrying prophage Ф1207.3 of Streptococcus pyogenes contains a region, spanning orf6 to orf11, showing homology to characterized streptococcal SOS-like cassettes. Genome-wide homology search showed the presence of the whole Φ1207.3 SOS-like cassette in three S. pyogenes prophages, while parts of it were found in other bacterial species. To investigate whether this cassette confers an SOS-mutagenesis phenotype, we constructed Streptococcus pneumoniae R6 isogenic derivative strains: (i) FR172, streptomycin resistant, (ii) FR173, carrying Φ1207.3, and (iii) FR174, carrying a recombinant Φ1207.3, where the SOS-like cassette was deleted. These strains were used in survival and mutation rate assays using a UV-C LED instrument, for which we designed and 3D-printed a customized equipment, constituted of an instrument support and swappable-autoclavable mini-plates and lids. Upon exposure to UV fluences ranging from 0 to 6,400 J/m2 at four different wavelengths, 255, 265, 275, and 285 nm, we found that the presence of Φ1207.3 SOS-like cassette increases bacterial survival up to 34-fold. Mutation rate was determined by measuring rifampicin resistance acquisition upon exposure to UV fluence of 50 J/m2 at the four wavelengths by fluctuation test. The presence of Φ1207.3 SOS-like cassette resulted in a significant increase in the mutation rate (up to 18-fold) at every wavelength. In conclusion, we demonstrated that Φ1207.3 carries a functional SOS-like cassette responsible for an increased survival and increased mutation rate in S. pneumoniae. IMPORTANCE Bacterial mutation rate is generally low, but stress conditions and DNA damage can induce stress response systems, which allow for improved survival and continuous replication. The SOS response is a DNA repair mechanism activated by some bacteria in response to stressful conditions, which leads to a temporary hypermutable phenotype and is usually absent in streptococcal genomes. Here, using a reproducible and controlled UV irradiation system, we demonstrated that the SOS-like gene cassette of prophage Φ1207.3 is functional, responsible for a temporary hypermutable phenotype, and enhances bacterial survival to UV irradiation. Prophage Φ1207.3 also carries erythromycin resistance genes and can lysogenize different pathogenic bacteria, constituting an example of a mobile genetic element which can confer multiple phenotypes to its host.


Assuntos
Taxa de Mutação , Prófagos , Prófagos/genética , Streptococcus pneumoniae , Streptococcus pyogenes/genética , Bioensaio
15.
J Physiol ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818797

RESUMO

Studies with RNA enzymes (ribozymes) and protein enzymes have identified certain structural elements that are present in some cellular mRNAs and viral RNAs. These elements do not share a primary structure and, thus, are not phylogenetically related. However, they have common (secondary/tertiary) structural folds that, according to some lines of evidence, may have an ancient and common origin. The term 'mRNA archaeology' has been coined to refer to the search for such structural/functional relics that may be informative of early evolutionary developments in the cellular and viral worlds and have lasted to the present day. Such identified RNA elements may have developed as biological signals with structural and functional relevance (as if they were buried objects with archaeological value), and coexist with the standard linear information of nucleic acid molecules that is translated into proteins. However, there is a key difference between the methods that extract information from either the primary structure of mRNA or the signals provided by secondary and tertiary structures. The former (sequence comparison and phylogenetic analysis) requires strict continuity of the material vehicle of information during evolution, whereas the archaeological method does not require such continuity. The tools of RNA archaeology (including the use of ribozymes and enzymes to investigate the reactivity of the RNA elements) establish links between the concepts of communication and language theories that have not been incorporated into knowledge of virology, as well as experimental studies on the search for functionally relevant RNA structures.

16.
J Physiol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983617

RESUMO

Information concepts from physics, mathematics and computer science support many areas of research in biology. Their focus is on objective information, which provides correlations and patterns related to objects, processes, marks and signals. In these approaches only the quantitative aspects of the meaning of the information is relevant. In other areas of biology, 'meaningful information', which is subjective in nature, relies on the physiology of the organism's sensory organs and on the interpretation of the perceived signals, which is then translated into action, even if this is only mental (in brained animals). Information is involved, in terms of both amount and quality. Here we contextualize and review the main theories that deal with 'meaningful-information' at a molecular level from different areas of natural language research, namely biosemiotics, code-biology, biocommunication and biohermeneutics. As this information mediates between the organism and its environment, we emphasize how such theories compare with the neo-Darwinian treatment of genetic information, and how they project onto the rapid evolution of RNA viruses.

17.
Clin Infect Dis ; 76(2): 291-298, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36124706

RESUMO

BACKGROUND: The effectiveness of enhanced terminal room cleaning with ultraviolet C (UV-C) disinfection in reducing gram-negative rod (GNR) infections has not been well evaluated. We assessed the association of implementation of UV-C disinfection systems with incidence rates of hospital-onset (HO) GNR bloodstream infection (BSI). METHODS: We obtained information regarding UV-C use and the timing of implementation through a survey of all Veterans Health Administration (VHA) hospitals providing inpatient acute care. Episodes of HO-GNR BSI were identified between January 2010 and December 2018. Bed days of care (BDOC) was used as the denominator. Over-dispersed Poisson regression models were fitted with hospital-specific random intercept, UV-C disinfection use for each month, baseline trend, and seasonality as explanatory variables. Hospitals without UV-C use were also included to the analysis as a nonequivalent concurrent control group. RESULTS: Among 128 VHA hospitals, 120 provided complete survey responses with 40 reporting implementations of UV-C systems. We identified 13 383 episodes of HO-GNR BSI and 24 141 378 BDOC. UV-C use was associated with a lower incidence rate of HO-GNR BSI (incidence rate ratio: 0.813; 95% confidence interval: .656-.969; P = .009). There was wide variability in the effect size of UV-C disinfection use among hospitals. CONCLUSIONS: In this large quasi-experimental analysis within the VHA System, enhanced terminal room cleaning with UV-C disinfection was associated with an approximately 19% lower incidence of HO-GNR BSI, with wide variability in effectiveness among hospitals. Further studies are needed to identify the optimal implementation strategy to maximize the effectiveness of UV-C disinfection technology.


Assuntos
Infecção Hospitalar , Sepse , Humanos , Desinfecção , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Hospitais , Bactérias Gram-Negativas
18.
Plant Cell Physiol ; 64(10): 1204-1219, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37674261

RESUMO

Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.


Assuntos
Arabidopsis , Estilbenos , Estilbenos/metabolismo , Transcriptoma , Arabidopsis/genética , Perfilação da Expressão Gênica , Árvores/genética
19.
Chembiochem ; 24(5): e202200682, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36597005

RESUMO

Ultraviolet C (UV-C) radiation induces apoptosis in mammalian cells via the mitochondrion-mediated pathway. The Bcl-2 family of proteins are the regulators of the mitochondrial pathway of apoptosis and appears responsive to UV-C radiation. It is unknown how the structure and, effectively, the function of these proteins are directly impacted by UV-C exposure. Here, we present the effect of UV-C irradiation on the structure and function of pro-apoptotic Bid-FL and anti-apoptotic Bcl-xlΔC proteins. Using a variety of biophysical tools, we show that, following UV-C irradiation, the structures of Bcl-xlΔC and Bid-FL are irreversibly altered. Bcl-xLΔC is found to be more sensitive to UV stress than Bid-FL Interestingly, UV-C exposure shows dramatic chemical shift perturbations in consequence of dramatic structural perturbations (α-helix to ß-sheet) in the BH3- binding region, a crucial segment of Bcl-xlΔC. Furter it has been shown that UV-exposed Bcl-xlΔC has reduced efficacy of its interactions with pro-apoptotic tBid.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Animais , Proteína bcl-X/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mamíferos/metabolismo
20.
Appl Environ Microbiol ; 89(10): e0065023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800967

RESUMO

Light-based technologies of different wavelengths can inactivate pathogenic microorganisms, but each wavelength has its limitations. This work explores the potential of sequential treatments with different wavelengths for enhancing the disinfection performance of individual treatments by employing various bactericidal mechanisms. The effectiveness, inactivation kinetics, and bactericidal mechanisms of treatments with 222/405, 280/405, and 405 nm alone against Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Pseudomonas aeruginosa were evaluated. Inactivation experiments were performed in thin liquid bacterial suspensions that were treated either individually with 48 h of 405-nm light or sequentially with (i) 30 s of 222-nm far-UV-C light, followed by 48 h of 405-nm light, or (ii) 30 s of 280-nm far-UV-C light, followed by 48 h of 405-nm light. Survivors were recovered and enumerated by standard plate counting. All inactivation curves were non-linear and followed the Weibull model (0.99 ≥ R2 ≥ 0.70). Synergistic effects were found for E. coli, L. monocytogenes, and S. Typhimurium, with maximum inactivation level increases of 2.9, 3.3, and 1.1 log CFU after the sequential treatments, respectively. Marginal synergy was found for S. aureus, and an antagonistic effect was found for P. aeruginosa after sequential treatments. Significant differences in reactive oxygen species accumulation were found (P < 0.05) after various treatment combinations, and the performance of sequential treatments was correlated with cellular oxidative damage. The sequential wavelength treatments proposed demonstrate the potential for enhanced disinfection of multiple foodborne pathogens compared with individual wavelength treatments, which can have significant food safety benefits. IMPORTANCE Nonthermal light-based technologies offer a chemical-free method to mitigate microbial contamination in the food and healthcare industries. However, each individual wavelength has different limitations in terms of efficacy and operating conditions, which limits their practical applicability. In this study, bactericidal synergism of sequential treatments with different wavelengths was identified. Pre-treatments with 280 and 222 nm enhanced the disinfection performance of follow-up 405-nm treatments for multiple foodborne pathogens by inducing higher levels of cellular membrane damage and oxidative stress. These findings deliver useful information for light equipment manufacturers, food processors, and healthcare users, who can design and optimize effective light-based systems to realize the full potential of germicidal light technologies. The results from the sequential treatments offer practical solutions to improve the germicidal efficacy of visible light systems, as well as provide inspiration for future hurdle disinfection systems design, with a positive impact on food safety and public health.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Staphylococcus aureus , Raios Ultravioleta , Luz , Desinfecção/métodos , Microbiologia de Alimentos , Contagem de Colônia Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA