Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phytochem Anal ; 34(3): 329-346, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36740772

RESUMO

INTRODUCTION: Radix Angelicae sinensis (Danggui, DG) is known as one of the typical traditional Chinese medicines. DG material consists of a variety of volatile substances, polysaccharides, organic acids, ceramides, amino acids, vitamins, microelements, among others, and thus has been used for medicinal and edible purposes in a long history. The fragrance is of importance to assessing the DG material quality. OBJECTIVES: This study was to determine volatile flavour compositions of DG materials and to reveal the odour complexity. MATERIAL AND METHODS: Electronic nose (E-nose), integrated gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and comprehensive two-dimensional gas chromatography-time-of-flight-mass spectrometry (GC × GC-TOF-MS), combined with solid-phase micro-extraction (SPME), were mainly used to address the flavour complexity of DG materials. RESULTS: Using the E-nose sensor responses, a total of 105 batches of DG samples cultivated in six provinces of China were categorised according to their odour differentiations, and a principal component analysis (PCA) model was established for evaluating the sample quality through a combination of Hotelling's T2 and Q-residual values in a statistical quantitative sense. By the GC-MS/O and GC × GC-TOF-MS analyses, 196 volatile flavour compounds were identified, 51 odour-active areas discerned and 39 odourants determined. It was terpenes and aromatics of the flavour compounds that mainly contributed to the odour attributes of DG herb. CONCLUSION: The SPME-GC × GC-TOF-MS method was the first time employed to analyse the volatile flavours of DG materials, and thus made a breakthrough in determining 196 flavour compounds, much more than those in any previous report. The work also made a significant step forward to link the flavour compositions and odour complexity of radix Angelicae sinensis by E-nose and GC-MS/O techniques. It not only provided a statistical PCA model that did not depend on any predetermined compositions or sensory properties for, but also a comprehensive insight into the quality evaluation of DG materials.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Nariz Eletrônico , Compostos Orgânicos Voláteis/análise
2.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903370

RESUMO

Lactic acid bacteria (LAB) are industrially important bacteria that are widely used in the fermented food industry, especially in the manufacture of yogurt. The fermentation characteristics of LAB are an important factor affecting the physicochemical properties of yogurts. Here, different ratios of L. delbrueckii subsp. bulgaricus IMAU20312 and S. thermophilus IMAU80809 were compared with a commercial starter JD (control) for their effects on viable cell counts, pH values, titratable acidity (TA), viscosity and water holding capacity (WHC) of milk during fermentation. Sensory evaluation and flavour profiles were also determined at the end of fermentation. All samples had a viable cell count above 5.59 × 107 CFU/mL at the end of fermentation, and a significant increase in TA and decrease in pH were observed. Viscosity, WHC and the sensory evaluation results of one treatment ratio (A3) were closer to the commercial starter control than the others. A total of 63 volatile flavour compounds and 10 odour-active (OAVs) compounds were detected in all treatment ratios and the control according to the results from solid-phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS). Principal components analysis (PCA) also indicated that the flavour characteristics of the A3 treatment ratio were closer to the control. These results help us understand how the fermentation characteristics of yogurts are affected by the ratio of L. delbrueckii subsp. bulgaricus to S. thermophilus in starter cultures; this is useful for the development of value-added fermented dairy products.


Assuntos
Produtos Fermentados do Leite , Lactobacillus delbrueckii , Animais , Iogurte/análise , Streptococcus thermophilus , Fermentação , Leite/química , Aromatizantes/análise
3.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 275-285, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36262057

RESUMO

This study evaluated the effects of different dietary metabolizable energy (ME) concentrations on the meat quality, carcass traits, volatile flavour and lipid metabolism-related gene expression levels in yellow-feathered chickens. In total, 600 Huxu female chickens aged 90 days were randomly assigned to six dietary treatments, each with 10 replicates of 10 birds. During the finisher phase, the birds were fed diets containing 2880 (low), 2940, 3000, 3060, 3120 and 3180 (high) kcal ME/kg. The results showed that the average daily gain of chickens increased as the dietary ME concentration increased, while the feed to gain improved (p < 0.05), and the intramuscular fat content of breast muscle increased (p < 0.05). The energy concentration had no effect on the breast muscle pH (45 min and 24 h), colour parameter (L*) or percentage of drip loss (p > 0.05), but the shear force values decreased significantly (p < 0.05). The diameter and area of the breast muscle fiber decreased and the muscle fibre density increased as the dietary ME concentration increased (p < 0.05). The highest ME concentration (3180 kcal) increased the percentages of aldehydes (hexanal, heptanal, 2,4-nonadienal, octanal, nonanal and 2-decenal), alcohols (2-nonen-1-ol, trans-2-undecen-1-ol, 7-hexadecenal, 2-hexyl-1-decanoal and n-nonadecanol-1,3,7,11-trimethyl-1-dodecanol), alkanes (2,6-dimethyl-heptadecane) and carboxylic acids (9-hexadecenoic acid), but reduced the percentages of octadecanal, octadecane, heneicosane and tetradecanal (p < 0.05). In addition, the mRNA gene expression levels of fatty acid-binding protein 3 and apolipoprotein B were significantly upregulated in the liver, whereas that of cholesteryl ester transfer protein was significantly downregulated. In conclusion, increasing the ME diet to 3180 kcal/kg significantly improved the quality and flavour of the meat from yellow-feathered broilers. our finding may help poultry producers to improve the taste of meat by regulating genes related to lipid metabolism, thereby achieving the flavour and taste characteristics preferred by consumers.


Assuntos
Galinhas , Suplementos Nutricionais , Animais , Feminino , Galinhas/fisiologia , Metabolismo dos Lipídeos , Dieta/veterinária , Carne/análise , Expressão Gênica , Ração Animal/análise
4.
J Sci Food Agric ; 102(4): 1457-1465, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34398982

RESUMO

BACKGROUND: The present study has revealed an innovative method of coupling enzyme hydrolysis, yeast fermentation and thermal treatment to transform pork trimmings into a seasoning product. The pork trimmings were first enzymatically hydrolysed and fermented into liquid pork hydrolysates, followed by adding xylose and cysteine, then heat treatment. RESULTS: Approximately 28% of xylose and 7% of glucose were consumed, and amino acids increased by around 31% after thermal treatment. The heated yeast fermented pork hydrolysates possessed a characteristic 'savoury, roasted-meat and fruity sweet' aroma as a result of the formation of thermally induced sulfur-containing volatiles such as 2-furfurylthiol, as well as retention of yeast generated esters including isoamyl acetate and hexyl acetate. CONCLUSION: The heat-treated fermented pork hydrolysates impart an attractive and innovative aroma because of yeast fermentation and heat treatment. The innovative heated fermented pork hydrolysates could be further processed into a nutritional and savoury pork broth and/or a meat sauce. © 2021 Society of Chemical Industry.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Cisteína , Fermentação , Odorantes , Saccharomyces cerevisiae , Suínos , Xilose
5.
Food Microbiol ; 76: 487-496, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166178

RESUMO

The objective of this study was to explore the core functional microbiota for the production of volatile flavour during the traditional brewing of Wuyi Hong Qu glutinous rice wine, one of the most typical representatives of rice wine in China. Microbiological analysis based on high-throughput sequencing (HTS) technology demonstrated that bacteria of Lactobacillus, Bacillus, Leuconostoc, Lactococcus, Raoultella, Staphylococcus, Pediococcus, and Weissella, and fungi of Saccharomyces, Saccharomycopsis, Rhizopus, Monascus, Pichia, Wickerhamomyces, Candida, and Aspergillus were the predominant genera during the traditional fermentation process. Principal component analysis (PCA) based on the relative abundance showed that both of bacterial and fungal communities varied significantly in different fermentation phases. Some predominant microbial species or genera (including bacteria of Bacillus spp., Staphylococcus spp., Weissella spp., and P. acidilactici, and fungi of M. purpureus, R. oryzae, R. arrhizus var. arrhizus, and A. niger) were detected at the initial brewing stage, and their populations decreased as the fermentation progressed, while those of Lactobacillus, Gluconacetobacter, Leuconostoc, Pichia, Wickerhamomyces, and Saccharomyces increased to become the predominant genera at the final stage. A total of 79 volatile compounds were identified in traditional fermentation starters and during the traditional brewing process, mainly including esters, alcohols, acids, aldehydes, ketones, and phenols. Heatmaps and PCA also revealed the significant variances in the composition of volatile compounds among different samples. Furthermore, the potential correlations between microbiota succession and volatile flavour dynamics were explored through bidirectional orthogonal partial least squares (O2PLS) based correlation analysis. Three bacterial genera, namely, Gluconacetobacter, Lactobacillus, Lactococcus, and three fungal genera of Pichia, Wickerhamomyces, and Saccharomyces, were determined as the core functional microbiota for production of main volatile compounds in Wuyi Hong Qu glutinous rice wine. To conclude, information provided by this study is valuable to the development of effective strategies for the selection of beneficial bacterial and fungal strains to improve the quality of Wuyi Hong Qu glutinous rice wine.


Assuntos
Bactérias/metabolismo , Aromatizantes/metabolismo , Fungos/metabolismo , Microbiota , Oryza/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Vinho/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , China , Fermentação , Aromatizantes/química , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Oryza/química , Compostos Orgânicos Voláteis/química , Vinho/análise
6.
Phytochem Anal ; 28(5): 392-403, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28444796

RESUMO

INTRODUCTION: Citrus fruits are known to have characteristic enantiomeric key compounds biosynthesised by highly stereoselective enzymatic mechanisms. In the past, evaluation of the enantiomeric ratios of chiral compounds in fruits has been applied as an effective indicator of adulteration by the addition of synthetic compounds or natural components of different botanical origin. OBJECTIVE: To analyse the volatile flavour compounds of Citrus junos Sieb. ex Tanaka (yuzu), Citrus limon BURM. f. (lemon) and Citrus aurantifolia Christm. Swingle (lime), and determine the enantiomeric ratios of their chiral compounds for discrimination and authentication of extracted oils. METHODOLOGY: Volatile flavour compounds of the fruits of the three Citrus species were extracted by simultaneous distillation extraction and analysed by gas chromatography-mass spectrometry. The enantiomeric composition (ee%) of chiral camphene, sabinene, limonene and ß-phellandrene was analysed by heart-cutting multidimensional gas chromatography-mass spectrometry. RESULTS: Sixty-seven (C. junos), 77 (C. limon) and 110 (C. aurantifolia) volatile compounds were identified with limonene, γ-terpinene and linalool as the major compounds. Stereochemical analysis (ee%) revealed 1S,4R-(-) camphene (94.74, 98.67, 98.82), R-(+)-limonene (90.53, 92.97, 99.85) and S-(+)-ß-phellandrene (98.69, 97.15, 92.13) in oil samples from all three species; R-(+)-sabinene (88.08) in C. junos; and S-(-)-sabinene (81.99, 79.74) in C. limon and C. aurantifolia, respectively. CONCLUSION: The enantiomeric composition and excess ratios of the chiral compounds could be used as reliable indicators of genuineness and quality assurance of the oils derived from the Citrus fruit species. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Citrus/química , Frutas/química , Óleos Voláteis/análise , Monoterpenos Acíclicos , Monoterpenos Cicloexânicos , Cicloexenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Monoterpenos/análise , Terpenos/análise
7.
J Dairy Res ; 83(4): 479-486, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27691999

RESUMO

In cheese, a negative oxidation-reduction (redox) potential is required for the stability of aroma, especially that associated with volatile sulphur compounds. To control the redox potential during ripening, redox agents were added to the salted curd of Cheddar cheese before pressing. The control cheese contained only salt, while different oxidising or reducing agents were added with the NaCl to the experimental cheeses. KIO3 (at 0·05, 0·1 and 1%, w/w) was used as the oxidising agent while cysteine (at 2%, w/w) and Na2S2O4 (at 0·05 and 0·1%, w/w) were used as reducing agents. During ripening the redox potential of the cheeses made with the reducing agents did not differ significantly from the control cheese (E h ≈ -120 mV) while the cheeses made with 0·1 and 0·05% KIO3 had a significantly higher and positive redox potential in the first month of ripening. Cheese made with 1% KIO3 had positive values of redox potential throughout ripening but no starter lactic acid bacteria survived in this cheese; however, numbers of starter organisms in all other cheeses were similar. Principal component analysis (PCA) of the volatile compounds clearly separated the cheeses made with the reducing agents from cheeses made with the oxidising agents at 2 month of ripening. Cheeses with reducing agents were characterized by the presence of sulphur compounds whereas cheeses made with KIO3 were characterized mainly by aldehydes. At 6 month of ripening, separation by PCA was less evident. These findings support the hypothesis that redox potential could be controlled during ripening and that this parameter has an influence on the development of cheese flavour.


Assuntos
Manipulação de Alimentos/métodos , Compostos Orgânicos Voláteis/análise , Animais , Queijo/análise , Queijo/microbiologia , Concentração de Íons de Hidrogênio , Oxidantes , Oxirredução , Substâncias Redutoras , Cloreto de Sódio , Paladar , Compostos Orgânicos Voláteis/química
8.
J Food Sci Technol ; 53(3): 1670-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27570292

RESUMO

The primary objective was to characterize Indian Coriandrum sativum L. foliage (Vulgare alef and Microcarpum DC varieties) and its radical scavenging activity. Foliage of Vulgare alef and Microcarpum DC contained ascorbic acid (1.16 ± 0.35 and 1.22 ± 0.54 mg/g), total carotenoids (1.49 ± 0.38 and 3.08 ± 1.2 mg/g), chlorophyll 'a' (8.23 ± 2.4 and 12.18 ± 2.9 mg/g), chlorophyll 'b' (2.74 ± 0.8 and 4.39 ± 1.3 mg/g) and total chlorophyll (10.97 ± 2.6 and 16.57 ± 3.2 mg/g). The polyphenol content was 26.75 ± 1.85 and 30.00 ± 2.64 mg/g in Vulgare alef and Microcarpum DC, respectively. Ethanol extracts (200 ppm) of alef and Microcarpum DC showed higher radical scavenging activity of 42.05 ± 2.42 % and 62.79 ± 1.36 % when compared with 95 % butylated hydroxyanisole. The principal component analysis results indicated that e-nose can distinguish the volatiles effectively. Quantitative descriptive sensory analysis showed that Microcarpum DC variety is superior to Vulgare alef variety. Nearly 90 % of the flavour compounds present were identified by GC-MS in both varieties. The principal component identified in both the varieties were decanal (7.645 and 7.74 %), decanol < n- > (25.12 and 39.35 %), undecanal (1.20 and 1.75 %), dodecanal (7.07 and 2.61 %), tridecen-1-al < 2E > (6.67 and 1.21 %), dodecen-1-ol < 2E- > (16.68 and 8.05 %), 13-tetradecenal (9.53 and 8.60 %), tetradecanal (5.61 and 4.35 %) and 1-octadecanol (1.25 and 3.67 %).

9.
FEMS Yeast Res ; 14(6): 833-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24920045

RESUMO

Aroma alcohols of fermented food and beverages are derived from fungal amino acids catabolism via the Ehrlich pathway. This linear pathway consists of three enzymatic reactions to form fusel alcohols. Regulation of some of the enzymes occurs on the transcriptional level via Aro80. The riboflavin overproducer Ashbya gossypii produces strong fruity flavours in contrast to its much less aromatic relative Eremothecium cymbalariae. Genome comparisons indicated that A. gossypii harbors genes for aromatic amino acid catabolism (ARO8a, ARO8b, ARO10, and ARO80) while E. cymbalariae only encodes ARO8a and thus lacks major components of aromatic amino acid catabolism. Volatile compound (VOC) analysis showed that both Eremothecium species produce large amounts of isoamyl alcohol while A. gossypii also produces high levels of 2-phenylethanol. Deletion of the A. gossypii ARO-genes did not confer any growth deficiencies. However, A. gossypii ARO-mutants (except Agaro8a) were strongly impaired in aroma production, particularly in the production of the rose flavour 2-phenylethanol. Conversely, overexpression of ARO80 via the AgTEF1 promoter resulted in 50% increase in VOC production. Together these data indicate that A. gossypii is a very potent flavour producer and that amongst the non-Saccharomyces biodiversity strains can be identified that could provide positive sensory properties to fermented beverages.


Assuntos
Ascomicetos/metabolismo , Fermentação , Aromatizantes/metabolismo , Redes e Vias Metabólicas , Álcool Feniletílico/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Carboxiliases/genética , Eremothecium/metabolismo , Deleção de Genes , Expressão Gênica , Mutação , Fenótipo , Filogenia , Saccharomyces cerevisiae/metabolismo , Transaminases/genética
10.
Foods ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36673428

RESUMO

Bifidobacterium animalis A12 was used for the development of fermented sausage. The growth activity, tolerance, and enzyme activity of B. animalis A12 and its contribution to the texture and flavour of fermented sausages were evaluated. Additionally, the sensory texture, flavour components, and amino acid nutrients during the fermentation process were assessed. B. animalis had high tolerance to NaCl and nitrite, and B. animalis A12 had protease and lipase activities. The pH value of sausage fermented with B. animalis A12 was lower than that of sausage fermented without any fermentation strain. Hexanal, heptanal, decanal, cis-2-decanal, and 4-methoxy-benzaldehyde are the unique aldehydes flavour components of fermented sausages in the A12 group. The highest content of volatile flavour substances and amino acids, and the color and texture characteristics of fermented sausage in the experimental group at 18 h were better than those at other times. These results suggest that B. animalis A12 has the potential to be used as a starter culture for im-proving flavour and texture in fermented sausage.

11.
Front Nutr ; 9: 1035623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761989

RESUMO

Introduction: Crataegi fructus (CF) is an edible and medicinal functional food used worldwide that enhances digestion if consumed in the roasted form. The odour of CF, as a measure of processing degree during roasting, significantly changes. However, the changes remain unclear, but are worth exploring. Methods: Herein, the variations in volatile flavour compounds due to CF roasting were investigated using an electronic nose (E-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). Results: A total of 54 components were identified by GC-MS. Aldehydes, ketones, esters, and furans showed the most significant changes. The Maillard reaction, Strecker degradation, and fatty acid oxidation and degradation are the main reactions that occur during roasting. The results of grey relational analysis (GRA) showed that 25 volatile compounds were closely related to odour (r > 0.9). Finally, 9 volatile components [relative odour activity value, (ROAV) ≥ 1] were confirmed as key substances causing odour changes. Discussion: This study not only achieves the objectification of odour evaluation during food processing, but also verifies the applicability and similarity of the E-nose and HS-GC-MS.

12.
Food Res Int ; 137: 109672, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233249

RESUMO

Rice-acid is a unique Chinese traditional fermented acid rice soup and its microbial community plays an important role in the formation of flavour compounds. In the study, rice-acid products from high-temperature and low-temperature fermentation methods were selected to analyze the microbial community, organic acids, and volatile flavour compounds (VFCs). The main bacterial and fungal phyla in Chinese traditional fermented rice-acid were determined to be Firmicutes and Ascomycota, including 62 bacterial genera and 57 fungal genera. The dominant bacterial genera were Lactobacillus, Acetobacter, and Prevotella and the dominant fungal genera were Naumovia, Pichia, Candida, and Saccharomyces. Among organic acids in rice-acid, L-lactic acid had the highest concentration, followed by malic acid, acetic acid, citric acid, oxalic acid, and tartaric acid. Volatile flavour compounds had a high contribution to the flavour, including ethyl acetate, ethanol, acetic acid, propanoic acid, 1-octen-3-ol, 2-nonanol, 2-undecanol, propyl propionate, ethyl propanoate, propyl propionate, and 2,3-butanedione. The microorganisms which were closely correlated with key organic acids in rice-acid included Lactobacillus, Acetobacter, Pichia, Candida, Kluyveromyces and Meyerozyma. The microorganisms which were correlated with VFCs included Acetobacter, Prevotella, Kluyveromyces and Saccharomyces. In particular, Lactobacillus, Pichia, Malassezia, Clavispora, Rhizopus and Cystofilobasidium were significantly positively correlated with lactic acid in rice-acid. Kluyveromyces, Saccharomyces and Emericella were significantly positively correlated with ethanol and ethyl acetate. The study provides the basis for improving the quality of rice-acid.


Assuntos
Microbiota , Oryza , Compostos Orgânicos Voláteis , China , Fermentação
13.
Food Res Int ; 138(Pt A): 109717, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292962

RESUMO

The pickled products of finger citron are famous in southern China for their unique taste and flavor. Although pickling process involves complex treatments including salting, desalting, sugaring, cooking and drying, extended shelf-life up to ten years after pickling can be achieved. In this study, the variations of volatile flavour components in the pickling process of finger citron were investigated by electronic nose (E-nose), headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). HS-SPME-GC-MS identified 85 substances, and HS-GC-IMS identified 81 substances, including terpenoids (21), aromatic hydrocarbons (11), alcohols (11), aldehydes (10), esters (7), phenols (6), acids (5), ethers (2), ketones (2), and other species (10). Linalool, limonene, (E)-3,7-dimethyl-1,3,6-octatriene, myrcene, 3-carene, ß-pinene, α-pinene, terpinolene, 1-methyl-4-(1-methylethyl)-1,4-cyclohexadiene, α-terpinene, (S)-ß-bisabolene, 1-isopropyl-2-methylbenzene and 1-methyl-4-(1-methylethenyl)-benzene were the stable substances at relatively high contents in finger citron at different pickling process. Salting and drying steps in the pickling process exerted greatest influence on the volatile components of finger citron. Salting promoted the generation of aldehydes, esters and acids, but led to the disappearance of alcohols, while drying promoted the generation of alcohols, phenols, aldehydes and acids at the expense of reduction in terpenoids. Our study revealed that the characteristic volatile compounds of finger citron pickled products was mainly formed by the biological reactions in the salting stage and thermal chemical transformations in the drying stage. This study also validated the suitability of E-nose combined with HS-SPME-GC-MS and HS-GC-IMS in tracking the changes of volatile components in finger citron during the pickling process.


Assuntos
Citrus , Compostos Orgânicos Voláteis , China , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Paladar , Compostos Orgânicos Voláteis/análise
14.
Food Res Int ; 123: 217-225, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284971

RESUMO

The impacts of the vacuum freeze (VFD), hot air (HAD), microwave (MD) and vacuum microwave (VMD) drying on the flavour of golden pompano fillets were evaluated using an electronic nose (E-nose), an electronic tongue (E-tongue) and simultaneous distillation extraction (SDE) - gas chromatography - mass spectrometry (GC-MS). The results showed that the E-nose and E-tongue systems could effectively differentiate volatile compounds of four samples. A total of 86 volatile flavour components were identified in the dried fillets; the main flavour components contained hydrocarbons (39), aldehydes (15), esters (10) and alcohols (9). HAD, MD and VMD processing promoted a gradual reduction in ketones and the generation of esters, while the fillets that were processed by VFD contained more hydrocarbon (29.68%) and alcohol (2.64%) compounds. The volatile compounds of dried golden pompano fillets were developed through four potential pathways, including the Maillard reaction, lipid oxidation and degradation, protein hydrolysis, and Strecker degradation.


Assuntos
Nariz Eletrônico , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Alimentos Marinhos/análise , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Aldeídos/análise , Animais , Dessecação , Destilação , Ésteres/análise , Peixes , Cetonas/análise , Proteínas de Carne , Odorantes/análise , Paladar
15.
Food Chem ; 109(1): 196-206, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26054281

RESUMO

As tea is traded all over the world, it is necessary for both customs officers and business investigators to develop an easy and reliable method to discriminate teas from each other. A total of 56 kinds of various green, Oolong, and black teas were collected from different countries and markets, and their catechin contents and volatile flavour compounds (VFC) were compared by analyses, using HPLC and solid-phase microextraction-gas chromatograph (SPME-GC). It was found that neither total catechin nor individual catechin contents in green and Oolong teas were significantly different among the samples investigated, but the fermentation processes altered the profiles of tea VFC. Because many of the individual VFC did not change in response to the fermentation levels, several VFC in combination might be more reliable than a single compound to identify broader ranges of teas. A total concentration of five VFC, trans-2-hexenal, benzaldehyde, methyl-5-hepten-2-one, methyl salicylate, and indole, was shown to be able to discriminate clearly unfermented and fermented teas, while that of trans-2-hexenal and methyl salicylate together supplied an index to differentiate semi- and fully-fermented teas. In addition, the SPME-GC analysis was also able to distinguish real jasmine teas from fake jasmine teas based on the disappearance of some grassy/green odorants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA