RESUMO
Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Sistema Nervoso Central , Humanos , Inflamação , MonócitosRESUMO
Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.
Assuntos
Suscetibilidade a Doenças , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Autoimunidade , Biomarcadores , Gerenciamento Clínico , Humanos , Ativação Linfocitária/imunologia , Terapia de Alvo Molecular , Tolerância a Antígenos Próprios/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.
Assuntos
Autofagia , Suscetibilidade a Doenças , Inflamação/etiologia , Animais , Biomarcadores , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Inflamação/diagnóstico , Inflamação/metabolismo , Transdução de SinaisRESUMO
Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.
Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Miosite , Receptores de Antígenos Quiméricos , Escleroderma Sistêmico , Humanos , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Miosite/terapia , Miosite/imunologia , Escleroderma Sistêmico/terapia , Escleroderma Sistêmico/imunologia , Imunoterapia Adotiva/métodos , Feminino , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante HomólogoRESUMO
The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.
Assuntos
Antígenos de Neoplasias , Neoplasias , Proteínas do Tecido Nervoso , Síndromes Paraneoplásicas do Sistema Nervoso , Animais , Humanos , Camundongos , Autoanticorpos , Capsídeo/metabolismo , Epitopos , Neoplasias/complicações , Síndromes Paraneoplásicas do Sistema Nervoso/metabolismo , Síndromes Paraneoplásicas do Sistema Nervoso/patologia , Antígenos de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Medula Espinal , Animais , Humanos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Camundongos , Análise da Expressão Gênica de Célula Única , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Neuroglia/metabolismo , Neuroglia/patologiaRESUMO
Endo-ß-N-acetylglucosaminidases (ENGases) that specifically hydrolyze the Asn297-linked glycan on immunoglobulin G (IgG) antibodies, the major molecular determinant of fragment crystallizable (Fc) γ receptor (FcγR) binding, are exceedingly rare. All previously characterized IgG-specific ENGases are multi-domain proteins secreted as an immune evasion strategy by Streptococcus pyogenes strains. Here, using in silico analysis and mass spectrometry techniques, we identified a family of single-domain ENGases secreted by pathogenic corynebacterial species that exhibit strict specificity for IgG antibodies. By X-ray crystallographic and surface plasmon resonance analyses, we found that the most catalytically efficient IgG-specific ENGase family member recognizes both protein and glycan components of IgG. Employing in vivo models, we demonstrated the remarkable efficacy of this IgG-specific ENGase in mitigating numerous pathologies that rely on FcγR-mediated effector functions, including T and B lymphocyte depletion, autoimmune hemolytic anemia, and antibody-dependent enhancement of dengue disease, revealing its potential for treating and/or preventing a wide range of IgG-mediated diseases in humans.
RESUMO
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Assuntos
Doenças Autoimunes/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/fisiologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Apresentação de Antígeno , Antígenos/imunologia , Antígenos CD1/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vigilância Imunológica , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
Anti-NMDA receptor (NMDAR) autoantibodies cause NMDAR encephalitis, the most common autoimmune encephalitis, leading to psychosis, seizures, and autonomic dysfunction. Current treatments comprise broad immunosuppression or non-selective antibody removal. We developed NMDAR-specific chimeric autoantibody receptor (NMDAR-CAAR) T cells to selectively eliminate anti-NMDAR B cells and disease-causing autoantibodies. NMDAR-CAARs consist of an extracellular multi-subunit NMDAR autoantigen fused to intracellular 4-1BB/CD3ζ domains. NMDAR-CAAR T cells recognize a large panel of human patient-derived autoantibodies, release effector molecules, proliferate, and selectively kill antigen-specific target cell lines even in the presence of high autoantibody concentrations. In a passive transfer mouse model, NMDAR-CAAR T cells led to depletion of an anti-NMDAR B cell line and sustained reduction of autoantibody levels without notable off-target toxicity. Treatment of patients may reduce side effects, prevent relapses, and improve long-term prognosis. Our preclinical work paves the way for CAAR T cell phase I/II trials in NMDAR encephalitis and further autoantibody-mediated diseases.
Assuntos
Autoanticorpos , Encefalite , Linfócitos T , Animais , Humanos , Camundongos , Autoanticorpos/metabolismo , Encefalite/metabolismo , Encefalite/terapia , Receptores de N-Metil-D-Aspartato , Doenças Autoimunes , Modelos Animais de DoençasRESUMO
Autoantibodies targeting neuronal membrane proteins can cause encephalitis, seizures, and severe behavioral abnormalities. While antibodies for several neuronal targets have been identified, structural details on how they regulate function are unknown. Here we determined cryo-electron microscopy structures of antibodies derived from an encephalitis patient bound to the γ-aminobutyric acid type A (GABAA) receptor. These antibodies induced severe encephalitis by directly inhibiting GABAA function, resulting in nervous-system hyperexcitability. The structures reveal mechanisms of GABAA inhibition and pathology. One antibody directly competes with a neurotransmitter and locks the receptor in a resting-like state. The second antibody targets the subunit interface involved in binding benzodiazepines and antagonizes diazepam potentiation. We identify key residues in these antibodies involved in specificity and affinity and confirm structure-based hypotheses for functional effects using electrophysiology. Together these studies define mechanisms of direct functional antagonism of neurotransmission underlying autoimmune encephalitis in a human patient.
Assuntos
Encefalite , Receptores de GABA-A , Autoanticorpos , Microscopia Crioeletrônica , Doença de Hashimoto , Humanos , Receptores de GABA-A/metabolismo , Ácido gama-AminobutíricoRESUMO
Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.
Assuntos
Escleroderma Sistêmico , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Pele/metabolismoRESUMO
Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/patologia , FagocitoseRESUMO
Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.
Assuntos
Desenho de Fármacos , Integrina alfa4beta1 , Conformação Proteica , Serina , ÁguaRESUMO
Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.
Assuntos
Autoimunidade/imunologia , Modelos Biológicos , Células Th17/imunologia , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose/efeitos dos fármacos , Algoritmos , Animais , Autoimunidade/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citocinas/metabolismo , Eflornitina/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Epigenoma , Ácidos Graxos/metabolismo , Glicólise/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Oxirredução/efeitos dos fármacos , Putrescina/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.
Assuntos
Esclerose Múltipla/metabolismo , Propionatos/imunologia , Propionatos/metabolismo , Adulto , Idoso , Progressão da Doença , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunomodulação/fisiologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Propionatos/uso terapêutico , Linfócitos T Reguladores/imunologia , Células Th17/imunologiaRESUMO
The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS.
Assuntos
Subtipos Sorológicos de HLA-DR/imunologia , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Alelos , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Reações Cruzadas/imunologia , Feminino , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Peptídeos/imunologia , Proteoma/metabolismo , Adulto JovemRESUMO
Lymphoid cells that produce interleukin (IL)-17 cytokines protect barrier tissues from pathogenic microbes but are also prominent effectors of inflammation and autoimmune disease. T helper 17 (Th17) cells, defined by RORγt-dependent production of IL-17A and IL-17F, exert homeostatic functions in the gut upon microbiota-directed differentiation from naive CD4+ T cells. In the non-pathogenic setting, their cytokine production is regulated by serum amyloid A proteins (SAA1 and SAA2) secreted by adjacent intestinal epithelial cells. However, Th17 cell behaviors vary markedly according to their environment. Here, we show that SAAs additionally direct a pathogenic pro-inflammatory Th17 cell differentiation program, acting directly on T cells in collaboration with STAT3-activating cytokines. Using loss- and gain-of-function mouse models, we show that SAA1, SAA2, and SAA3 have distinct systemic and local functions in promoting Th17-mediated inflammatory diseases. These studies suggest that T cell signaling pathways modulated by the SAAs may be attractive targets for anti-inflammatory therapies.
Assuntos
Síndrome do Intestino Irritável/metabolismo , Proteína Amiloide A Sérica/metabolismo , Células Th17/metabolismo , Adulto , Animais , Doenças Autoimunes/metabolismo , Diferenciação Celular/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Interleucina-17/metabolismo , Síndrome do Intestino Irritável/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th1 , Células Th17/imunologiaRESUMO
The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.
Assuntos
DNA/imunologia , Nucleotidiltransferases/metabolismo , Tolerância a Antígenos Próprios/imunologia , Acetilação , Sequência de Aminoácidos , Animais , Aspirina/farmacologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Autoimunidade , Linhagem Celular , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Exodesoxirribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Células THP-1RESUMO
Plasma cells (PC) are found in the CNS of multiple sclerosis (MS) patients, yet their source and role in MS remains unclear. We find that some PC in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) originate in the gut and produce immunoglobulin A (IgA). Moreover, we show that IgA+ PC are dramatically reduced in the gut during EAE, and likewise, a reduction in IgA-bound fecal bacteria is seen in MS patients during disease relapse. Removal of plasmablast (PB) plus PC resulted in exacerbated EAE that was normalized by the introduction of gut-derived IgA+ PC. Furthermore, mice with an over-abundance of IgA+ PB and/or PC were specifically resistant to the effector stage of EAE, and expression of interleukin (IL)-10 by PB plus PC was necessary and sufficient to confer resistance. Our data show that IgA+ PB and/or PC mobilized from the gut play an unexpected role in suppressing neuroinflammation.
Assuntos
Imunoglobulina A/metabolismo , Interleucina-10/metabolismo , Intestinos/imunologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Imunoglobulina A/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Neuroimunomodulação/imunologia , Plasmócitos/metabolismoRESUMO
Circular RNAs (circRNAs) produced from back-splicing of exons of pre-mRNAs are widely expressed, but current understanding of their functions is limited. These RNAs are stable in general and are thought to have unique structural conformations distinct from their linear RNA cognates. Here, we show that endogenous circRNAs tend to form 16-26 bp imperfect RNA duplexes and act as inhibitors of double-stranded RNA (dsRNA)-activated protein kinase (PKR) related to innate immunity. Upon poly(I:C) stimulation or viral infection, circRNAs are globally degraded by RNase L, a process required for PKR activation in early cellular innate immune responses. Augmented PKR phosphorylation and circRNA reduction are found in peripheral blood mononuclear cells (PBMCs) derived from patients with autoimmune disease systemic lupus erythematosus (SLE). Importantly, overexpression of the dsRNA-containing circRNA in PBMCs or T cells derived from SLE can alleviate the aberrant PKR activation cascade, thus providing a connection between circRNAs and SLE.