Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799442

RESUMO

Understanding the functional role of protein-excited states has important implications in protein design and drug discovery. However, because these states are difficult to find and study, it is still unclear if excited states simply result from thermal fluctuations and generally detract from function or if these states can actually enhance protein function. To investigate this question, we consider excited states in ß-lactamases and particularly a subset of states containing a cryptic pocket which forms under the Ω-loop. Given the known importance of the Ω-loop and the presence of this pocket in at least two homologs, we hypothesized that these excited states enhance enzyme activity. Using thiol-labeling assays to probe Ω-loop pocket dynamics and kinetic assays to probe activity, we find that while this pocket is not completely conserved across ß-lactamase homologs, those with the Ω-loop pocket have a higher activity against the substrate benzylpenicillin. We also find that this is true for TEM ß-lactamase variants with greater open Ω-loop pocket populations. We further investigate the open population using a combination of NMR chemical exchange saturation transfer experiments and molecular dynamics simulations. To test our understanding of the Ω-loop pocket's functional role, we designed mutations to enhance/suppress pocket opening and observed that benzylpenicillin activity is proportional to the probability of pocket opening in our designed variants. The work described here suggests that excited states containing cryptic pockets can be advantageous for function and may be favored by natural selection, increasing the potential utility of such cryptic pockets as drug targets.


Assuntos
Penicilinase/química , Penicilinase/efeitos dos fármacos , beta-Lactamases/química , beta-Lactamases/farmacologia , Sítios de Ligação , Escherichia coli , Proteínas de Escherichia coli , Simulação de Dinâmica Molecular , Mutação , Penicilina G/química , Penicilina G/metabolismo , Penicilinase/metabolismo , Conformação Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , beta-Lactamases/genética
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468647

RESUMO

Bromodomains (BDs) are small protein modules that interact with acetylated marks in histones. These posttranslational modifications are pivotal to regulate gene expression, making BDs promising targets to treat several diseases. While the general structure of BDs is well known, their dynamical features and their interplay with other macromolecules are poorly understood, hampering the rational design of potent and selective inhibitors. Here, we combine extensive molecular dynamics simulations, Markov state modeling, and available structural data to reveal a transiently formed state that is conserved across all BD families. It involves the breaking of two backbone hydrogen bonds that anchor the ZA-loop with the αA helix, opening a cryptic pocket that partially occludes the one associated to histone binding. By analyzing more than 1,900 experimental structures, we unveil just two adopting the hidden state, explaining why it has been previously unnoticed and providing direct structural evidence for its existence. Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Correpressoras/química , Proteínas de Ligação a DNA/química , Histona Acetiltransferases/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fatores Genéricos de Transcrição/química , Fatores de Transcrição/química , Proteína 28 com Motivo Tripartido/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
3.
Trends Biochem Sci ; 44(4): 351-364, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30555007

RESUMO

A protein is a dynamic shape-shifter whose function is determined by the set of structures it adopts. Unfortunately, atomically detailed structures are only available for a few conformations of any given protein, and these structures have limited explanatory and predictive power. Here, we provide a brief historical perspective on protein dynamics and introduce recent advances in computational and experimental methods that are providing unprecedented access to protein shape-shifting. Next, we focus on how these tools are revealing the mechanism of allosteric communication and features like cryptic pockets; both of which present new therapeutic opportunities. A major theme is the importance of considering the relative probabilities of different structures and the control one can exert over protein function by modulating this balance.


Assuntos
Biologia Computacional , Proteínas/química , Humanos , Conformação Proteica , Proteínas/metabolismo
4.
Curr Opin Struct Biol ; 83: 102702, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716095

RESUMO

The concept of allostery has become a central tenet in the study of biological systems. In parallel, the discovery of allosteric drugs is generating new opportunities to selectively modulate difficult targets involved in pathologic mechanisms. Molecular simulations can provide atomistically detailed insight into the processes involved in allosteric regulation and signaling, and at the same time, they have the potential to unveil regulatory hotspots or cryptic sites that are not immediately evident from the analysis of static structures. In this context, computational approaches should be able to connect the study of allosteric regulation at different scales to the possibility of leveraging this knowledge to expand the chemical space of new, active drugs. Here, we will discuss recent advances in the study of allosteric regulation via computational methods and connect the mechanistic knowledge generated to the possibility of designing new small molecules that can tweak the functions of their receptors.


Assuntos
Transdução de Sinais , Sítio Alostérico , Regulação Alostérica , Ligantes
5.
Elife ; 122023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705568

RESUMO

The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least six of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 ms of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin's binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 µM vs. 0.36 µM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.


Assuntos
Miosina Tipo II , Miosinas , Miosinas/metabolismo , Miosina Tipo II/metabolismo , Isoformas de Proteínas , Probabilidade , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/química
6.
Elife ; 122023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144875

RESUMO

Flaviviruses are enveloped viruses which include human pathogens that are predominantly transmitted by mosquitoes and ticks. Some, such as dengue virus, exhibit the phenomenon of antibody-dependent enhancement (ADE) of disease, making vaccine-based routes of fighting infections problematic. The pH-dependent conformational change of the envelope (E) protein required for fusion between the viral and endosomal membranes is an attractive point of inhibition by antivirals as it has the potential to diminish the effects of ADE. We examined six flaviviruses by employing large-scale molecular dynamics (MD) simulations of raft systems that represent a substantial portion of the flaviviral envelope. We utilised a benzene-mapping approach that led to a discovery of shared hotspots and conserved cryptic sites. A cryptic pocket previously shown to bind a detergent molecule exhibited strain-specific characteristics. An alternative conserved cryptic site at the E protein domain interfaces showed a consistent dynamic behaviour across flaviviruses and contained a conserved cluster of ionisable residues. Constant-pH simulations revealed cluster and domain-interface disruption under low pH conditions. Based on this, we propose a cluster-dependent mechanism that addresses inconsistencies in the histidine-switch hypothesis and highlights the role of cluster protonation in orchestrating the domain dissociation pivotal for the formation of the fusogenic trimer.


Assuntos
Flavivirus , Animais , Humanos , Simulação de Dinâmica Molecular , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Proteínas do Envelope Viral/metabolismo
7.
QRB Discov ; 3: e19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529288

RESUMO

Coarse-grained (CG) modelling with the Martini force field has come of age. By combining a variety of bead types and sizes with a new mapping approach, the newest version of the model is able to accurately simulate large biomolecular complexes at millisecond timescales. In this perspective, we discuss possible applications of the Martini 3 model in drug discovery and development pipelines and highlight areas for future development. Owing to its high simulation efficiency and extended chemical space, Martini 3 has great potential in the area of drug design and delivery. However, several aspects of the model should be improved before Martini 3 CG simulations can be routinely employed in academic and industrial settings. These include the development of automatic parameterisation protocols for a variety of molecule types, the improvement of backmapping procedures, the description of protein flexibility and the development of methodologies enabling efficient sampling. We illustrate our view with examples on key areas where Martini could give important contributions such as drugs targeting membrane proteins, cryptic pockets and protein-protein interactions and the development of soft drug delivery systems.

8.
Structure ; 30(8): 1062-1074.e4, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660160

RESUMO

The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop. A full representation of glycan moieties was essential to accurately describe pocket dynamics. A multi-conformational behavior of the 617-628 loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry experiments, supportive of opening and closing dynamics. The pocket is the site of multiple mutations associated with increased transmissibility found in SARS-CoV-2 variants of concern including Omicron. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Benzeno , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
9.
Elife ; 112022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36412088

RESUMO

Non-structural protein 1 (Nsp1) is a main pathogenicity factor of α- and ß-coronaviruses. Nsp1 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suppresses the host gene expression by sterically blocking 40S host ribosomal subunits and promoting host mRNA degradation. This mechanism leads to the downregulation of the translation-mediated innate immune response in host cells, ultimately mediating the observed immune evasion capabilities of SARS-CoV-2. Here, by combining extensive molecular dynamics simulations, fragment screening and crystallography, we reveal druggable pockets in Nsp1. Structural and computational solvent mapping analyses indicate the partial crypticity of these newly discovered and druggable binding sites. The results of fragment-based screening via X-ray crystallography confirm the druggability of the major pocket of Nsp1. Finally, we show how the targeting of this pocket could disrupt the Nsp1-mRNA complex and open a novel avenue to design new inhibitors for other Nsp1s present in homologous ß-coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cristalografia , Proteínas não Estruturais Virais/metabolismo , Estabilidade de RNA
10.
Elife ; 112022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323112

RESUMO

Spike (S) protein is the primary antigenic target for neutralization and vaccine development for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It decorates the virus surface and undergoes large motions of its receptor binding domains (RBDs) to enter the host cell. Here, we observe Down, one-Up, one-Open, and two-Up-like structures in enhanced molecular dynamics simulations, and characterize the transition pathways via inter-domain interactions. Transient salt-bridges between RBDA and RBDC and the interaction with glycan at N343B support RBDA motions from Down to one-Up. Reduced interactions between RBDA and RBDB in one-Up induce RBDB motions toward two-Up. The simulations overall agree with cryo-electron microscopy structure distributions and FRET experiments and provide hidden functional structures, namely, intermediates along Down-to-one-Up transition with druggable cryptic pockets as well as one-Open with a maximum exposed RBD. The inherent flexibility of S-protein thus provides essential information for antiviral drug rational design or vaccine development.


Assuntos
Glicoproteína da Espícula de Coronavírus , COVID-19 , Microscopia Crioeletrônica , Humanos , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
11.
J Mol Biol ; 433(15): 167061, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34023403

RESUMO

Mycobacterium tuberculosis is responsible for more than 1.6 million deaths each year. One potential antibacterial target in M. tuberculosis is filamentous temperature sensitive protein Z (FtsZ), which is the bacterial homologue of mammalian tubulin, a validated cancer target. M. tuberculosis FtsZ function is essential, with its inhibition leading to arrest of cell division, elongation of the bacterial cell and eventual cell death. However, the development of potent inhibitors against FtsZ has been a challenge owing to the lack of structural information. Here we report multiple crystal structures of M. tuberculosis FtsZ in complex with a coumarin analogue. The 4-hydroxycoumarin binds exclusively to two novel cryptic pockets in nucleotide-free FtsZ, but not to the binary FtsZ-GTP or GDP complexes. Our findings provide a detailed understanding of the molecular basis for cryptic pocket formation, controlled by the conformational flexibility of the H7 helix, and thus reveal an important structural and mechanistic rationale for coumarin antibacterial activity.


Assuntos
4-Hidroxicumarinas/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Mycobacterium tuberculosis/metabolismo , 4-Hidroxicumarinas/química , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice
12.
J Biomol Struct Dyn ; 39(15): 5735-5755, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32679006

RESUMO

The COVID-19 pandemic has been responsible for several deaths worldwide. The causative agent behind this disease is the Severe Acute Respiratory Syndrome - novel Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 belongs to the category of RNA viruses. The main protease, responsible for the cleavage of the viral polyprotein is considered as one of the hot targets for treating COVID-19. Earlier reports suggest the use of HIV anti-viral drugs for targeting the main protease of SARS-CoV, which caused SARS in the year 2002-2003. Hence, drug repurposing approach may prove to be useful in targeting the main protease of SARS-CoV-2. The high-resolution crystal structure of the main protease of SARS-CoV-2 (PDB ID: 6LU7) was used as the target. The Food and Drug Administration approved and SWEETLEAD database of drug molecules were screened. The apo form of the main protease was simulated for a cumulative of 150 ns and 10 µs open-source simulation data was used, to obtain conformations for ensemble docking. The representative structures for docking were selected using RMSD-based clustering and Markov State Modeling analysis. This ensemble docking approach for the main protease helped in exploring the conformational variation in the drug-binding site of the main protease leading to the efficient binding of more relevant drug molecules. The drugs obtained as top hits from the ensemble docking possessed anti-bacterial and anti-viral properties. This in silico ensemble docking approach would support the identification of potential candidates for repurposing against COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA