Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Genet ; 143(5): 683-694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38592547

RESUMO

Generalized lipodystrophy is a feature of various hereditary disorders, often leading to a progeroid appearance. In the present study we identified a missense and a frameshift variant in a compound heterozygous state in SUPT7L in a boy with intrauterine growth retardation, generalized lipodystrophy, and additional progeroid features. SUPT7L encodes a component of the transcriptional coactivator complex STAGA. By transcriptome sequencing, we showed the predicted missense variant to cause aberrant splicing, leading to exon truncation and thereby to a complete absence of SUPT7L in dermal fibroblasts. In addition, we found altered expression of genes encoding DNA repair pathway components. This pathway was further investigated and an increased rate of DNA damage was detected in proband-derived fibroblasts and genome-edited HeLa cells. Finally, we performed transient overexpression of wildtype SUPT7L in both cellular systems, which normalizes the number of DNA damage events. Our findings suggest SUPT7L as a novel disease gene and underline the link between genome instability and progeroid phenotypes.


Assuntos
Retardo do Crescimento Fetal , Lipodistrofia Generalizada Congênita , Fatores de Transcrição , Humanos , Masculino , Dano ao DNA , Reparo do DNA/genética , Retardo do Crescimento Fetal/genética , Fibroblastos/metabolismo , Células HeLa , Lipodistrofia/genética , Lipodistrofia Generalizada Congênita/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fatores de Transcrição/genética
2.
Genet Med ; 24(9): 1927-1940, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35670808

RESUMO

PURPOSE: In this study we aimed to identify the molecular genetic cause of a progressive multisystem disease with prominent lipodystrophy. METHODS: In total, 5 affected individuals were investigated using exome sequencing. Dermal fibroblasts were characterized using RNA sequencing, proteomics, immunoblotting, immunostaining, and electron microscopy. Subcellular localization and rescue studies were performed. RESULTS: We identified a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life (A1, A2, and A3), 2 are adults with normal intellectual development (A4 and A5). All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. The nucleotide substitution caused alternative splicing of BUD13 leading to a stable truncated protein whose expression positively correlated with disease expression and life expectancy. In dermal fibroblasts, we found elevated intron retention, a global reduction of spliceosomal proteins, and nuclei with multiple invaginations, which were more pronounced in A1, A2, and A3. Overexpression of both BUD13 isoforms normalized the nuclear morphology. CONCLUSION: Our results define a hitherto unknown syndrome and show that the alternative splice product converts a loss-of-function into a hypomorphic allele, thereby probably determining the severity of the disease and the survival of affected individuals.


Assuntos
Processamento Alternativo , Lipodistrofia , Proteínas de Ligação a RNA/genética , Criança , Deficiências do Desenvolvimento/genética , Humanos , Íntrons , Lipodistrofia/genética , Splicing de RNA
3.
Am J Hum Genet ; 101(5): 844-855, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100094

RESUMO

A series of simplex cases have been reported under various diagnoses sharing early aging, especially evident in congenitally decreased subcutaneous fat tissue and sparse hair, bone dysplasia of the skull and fingers, a distinctive facial gestalt, and prenatal and postnatal growth retardation. For historical reasons, we suggest naming the entity Fontaine syndrome. Exome sequencing of four unrelated affected individuals showed that all carried the de novo missense variant c.649C>T (p.Arg217Cys) or c.650G>A (p.Arg217His) in SLC25A24, a solute carrier 25 family member coding for calcium-binding mitochondrial carrier protein (SCaMC-1, also known as SLC25A24). SLC25A24 allows an electro-neutral and reversible exchange of ATP-Mg and phosphate between the cytosol and mitochondria, which is required for maintaining optimal adenine nucleotide levels in the mitochondrial matrix. Molecular dynamic simulation studies predict that p.Arg217Cys and p.Arg217His narrow the substrate cavity of the protein and disrupt transporter dynamics. SLC25A24-mutant fibroblasts and cells expressing p.Arg217Cys or p.Arg217His variants showed altered mitochondrial morphology, a decreased proliferation rate, increased mitochondrial membrane potential, and decreased ATP-linked mitochondrial oxygen consumption. The results suggest that the SLC25A24 mutations lead to impaired mitochondrial ATP synthesis and cause hyperpolarization and increased proton leak in association with an impaired energy metabolism. Our findings identify SLC25A24 mutations affecting codon 217 as the underlying genetic cause of human progeroid Fontaine syndrome.


Assuntos
Envelhecimento/genética , Antiporters/genética , Doenças do Desenvolvimento Ósseo/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas Mitocondriais/genética , Mutação/genética , Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Citosol/metabolismo , Feminino , Morte Fetal , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Fosfatos/metabolismo , Síndrome
4.
Aging Cell ; 21(11): e13688, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36225129

RESUMO

Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.


Assuntos
Senilidade Prematura , Laminopatias , Masculino , Humanos , Adolescente , Lamina Tipo A/genética , Senilidade Prematura/genética , Proteostase/genética , Mutação/genética
5.
Front Neurol ; 9: 601, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140252

RESUMO

Myotonic dystrophies (DM) are slowly progressing multisystemic disorders caused by repeat expansions in the DMPK or CNBP genes. The multisystemic involvement in DM patients often reflects the appearance of accelerated aging. This is partly due to visible features such as cataracts, muscle weakness, and frontal baldness, but there are also less obvious features like cardiac arrhythmia, diabetes or hypogammaglobulinemia. These aging features suggest the hypothesis that DM could be a segmental progeroid disease. To identify the molecular cause of this characteristic appearance of accelerated aging we compare clinical features of DM to "typical" segmental progeroid disorders caused by mutations in DNA repair or nuclear envelope proteins. Furthermore, we characterize if this premature aging effect is also reflected on the cellular level in DM and investigate overlaps with "classical" progeroid disorders. To investigate the molecular similarities at the cellular level we use primary DM and control cell lines. This analysis reveals many similarities to progeroid syndromes linked to the nuclear envelope. Our comparison on both clinical and molecular levels argues for qualification of DM as a segmental progeroid disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA